
Illinois Journal of Mathematics
Volume 48, Number 2, Summer 2004, Pages 567–573
S 0019-2082

ORTHOGONALITY PRESERVING TRANSFORMATIONS ON
THE SET OF n-DIMENSIONAL SUBSPACES OF A HILBERT

SPACE

PETER ŠEMRL

Abstract. We characterize bijective transformations on the set of all
n-dimensional subspaces of a Hilbert space that preserve orthogonality

in both directions. This extends Uhlhorn’s improvement of Wigner’s
classical theorem on symmetry transformations.

1. Introduction and statement of the results

Throughout this paper, H will be an infinite-dimensional (real or complex)
Hilbert space. We denote by B(H) the algebra of all bounded linear operators
on H. By a projection we mean a self-adjoint idempotent in B(H). For any
n ∈ N, Pn(H) denotes the set of all rank-n projections on H, and P∞(H)
stands for the set of all infinite rank projections.

Wigner’s unitary-antiunitary theorem plays a fundamental role in quantum
mechanics. It states that every quantum mechanical invariance transforma-
tion can be represented by a unitary or antiunitary operator on a complex
Hilbert space. Reformulated in mathematical language, it states that every
bijective transformation φ on the set of all one-dimensional linear subspaces
of a complex Hilbert space H preserving the angle between every pair of such
subspaces (which is the transition probability in the language of quantum
mechanics) is induced by a unitary or antiunitary operator. Uhlhorn [3] im-
proved this result by requiring only that φ preserves orthogonality between
the one-dimensional subspaces of H. This is a significant generalization, since
Uhlhorn’s transformation preserves only the logical structure of the quantum
mechanical system in question, while Wigner’s transformation preserves its
complete probabilistic structure.
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Recently, Molnár [2] improved Wigner’s theorem in a different way. He
characterized bijective transformations on the set of all n-dimensional sub-
spaces of a Hilbert space preserving principal angles between such subspaces.
In fact, he also obtained the general form of nonbijective transformations pre-
serving principal angles, but we will consider the nonbijective case later. The
concept of principal angles is a natural generalization of the usual notion of
angles between one-dimensional subspaces.

The aim of this paper is to extend and unify the above results by charac-
terizing bijective transformations on the set of n-dimensional subspaces of a
Hilbert space preserving orthogonality. Of course, every n-dimensional sub-
space of H can be identified with the projection onto this subspace. If P and
Q are two projections with the range spaces R(P ) and R(Q), respectively,
then the spaces R(P ) and R(Q) are orthogonal if and only if PQ = 0, which
is equivalent to QP = 0.

Theorem 1.1. Let n ∈ N and let H be a real or complex infinite-dimen-
sional Hilbert space. Suppose that φ : Pn(H)→ Pn(H) is a bijective transfor-
mation such that

PQ = 0 ⇐⇒ φ(P )φ(Q) = 0, P,Q ∈ Pn(H).

Then there exists a unitary or antiunitary operator U on H such that

φ(P ) = UPU∗, P ∈ Pn(H).

Molnár [2] characterized maps φ : Pn(H) → Pn(H) satisfying the much
stronger assumption that ∠(P,Q) = ∠(φ(P ), φ(Q)) for every pair P,Q ∈
Pn(H). Here, ∠(P,Q) denotes the system of all principal angles between
R(P ) and R(Q). However, he did not need the bijectivity assumption for
his characterization. Having his result in mind, it would be tempting to
conjecture that our result also holds without the bijectivity assumption, with
the obvious difference that then the operator U in the conclusion does not
need to be unitary or antiunitary, but just a (not necessarily surjective) linear
or conjugate-linear isometry on H. This conjecture turns out to be wrong.
To see this, take any nonsurjective linear isometry U : H → H and choose
and fix some R ∈ Pn(H). Then U∗ is surjective and because the null space
of U∗ is the orthogonal complement of R(U), we can find a subspace W ⊂ H
of dimension n such that W 6⊂ R(U) and U∗W = R(R). Let S be the
projection onto W . Define φ : Pn(H) → Pn(H) by φ(P ) = UPU∗ whenever
P 6= R, and φ(R) = S. Then φ is not of the form P 7→ V PV ∗ with V being
a linear or conjugate-linear isometry. Indeed, if φ were of this form, then
V PV ∗ = UPU∗ whenever P 6= R would imply that R(V ) = R(U), which
in turn would yield that W = R(S) = R(V RV ∗) ⊂ R(U), a contradiction.
But φ preserves orthogonality in both directions. Indeed, it is clear that
PQ = 0 ⇐⇒ φ(P )φ(Q) = 0 whenever P 6= R and Q 6= R. If P = R
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and Q 6= R, then QR = 0 if and only if QU∗W = {0}, which is equivalent to
φ(Q)W = {0}, and this is true if and only if φ(Q)φ(R) = 0. So, the bijectivity
assumption is indispensable in our theorem.

For P,Q ∈ Pn(H) we have ∠(P,Q) = ∠(φ(P ), φ(Q)) if and only if the
positive operators QPQ and φ(Q)φ(P )φ(Q) are unitarily equivalent. This
observation enabled Molnár to also extend Wigner’s theorem to the case of
infinite rank projections [2]. We thus have the natural question whether every
bijective transformation φ : P∞(H) → P∞(H) satisfying PQ = 0 ⇐⇒
φ(P )φ(Q) = 0, P,Q ∈ P∞(H), is of the form φ(P ) = UPU∗, P ∈ P∞(H),
for some unitary or antiunitary operator U on H. It is easy to see that the
answer to this question is negative. We write P∞(H) as a disjoint union
P∞(H) = P∞(H) ∪ F , where P∞(H) denotes the set of all projections on
H with infinite-dimensional range space and infinite-dimensional null space,
while F ⊂ P∞(H) denotes the subset of all projections whose range spaces
are of finite codimension in H. If ϕ : F → F is any bijective map, then the
map φ : P∞(H)→ P∞(H) defined by

φ(P ) =

{
P if P ∈ P∞(H),
ϕ(P ) if P ∈ F ,

is bijective and preserves orthogonality in both directions. So, nothing can be
said about the behaviour of bijective orthogonality preserving transformations
on the subset F . But if we consider such maps on P∞(H), then we get the
expected result.

Theorem 1.2. Let H be a real or complex infinite-dimensional Hilbert
space. Suppose that φ : P∞(H)→ P∞(H) is a bijective transformation such
that

PQ = 0 ⇐⇒ φ(P )φ(Q) = 0, P,Q ∈ P∞(H).

Then there exists a unitary or antiunitary operator U on H such that

φ(P ) = UPU∗, P ∈ P∞(H).

The bijectivity assumption is indispensable in this result. To see this we
use the same idea as in the case of Theorem 1.1.

2. Proofs

Before proving Theorem 1.1, we introduce some more notation. Let H be a
real or complex infinite-dimensional Hilbert space and P,Q two projections on
H. We write P ⊥ Q if the range spaces R(P ) and R(Q) are orthogonal. We
further write P ≤ Q if R(P ) ⊂ R(Q), or equivalently, PQ = QP = P . For a
positive integer n we denote by P≥n(H) the set of all finite rank projections
on H whose rank is at least n, i.e., P≥n(H) =

⋃
k≥n Pk(H).
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Proof of Theorem 1.1. Let S be any subset of Pn(H). We denote by S⊥
the set of all projections P ∈ Pn(H) satisfying P ⊥ Q for every Q ∈ S. For
P,Q ∈ Pn(H) we write P ∼ Q if P 6= Q and for every R ∈ Pn(H)\{P,Q}⊥ we
have #({R}∪{P,Q}⊥)⊥ ≤ 1. Here, the symbol # stands for the cardinality of
the set. Since φ : Pn(H)→ Pn(H) is a bijective map preserving orthogonality
in both directions, we have φ(S⊥) = φ(S)⊥ for every subset S ⊂ Pn(H), and
consequently,

P ∼ Q ⇐⇒ φ(P ) ∼ φ(Q), P,Q ∈ Pn(H).

Next, we will prove that for P,Q ∈ Pn(H) with P 6= Q we have P ∼ Q
if and only if there exists T ∈ Pn+1(H) such that P ≤ T and Q ≤ T .
Assume first that P,Q ∈ Pn(H) satisfy P 6= Q and that there exists T ∈
Pn+1(H) such that P ≤ T and Q ≤ T . Because P 6= Q we have dim(R(P ) +
R(Q)) ≥ n + 1. Hence, R(T ) = R(P ) + R(Q), and thus, {P,Q}⊥ = {S ∈
Pn(H) : S ≤ I − T}. Choose any R ∈ Pn(H) \ {P,Q}⊥. Then R(R) 6⊂
R(I − T ). If S ∈ ({R} ∪ {P,Q}⊥)⊥, then R(S) ⊥ (R(R) + R(I − T )).
But the codimension of R(R) + R(I − T ) is at most n. In the case when
codim(R(R)+R(I−T )) = n there exists exactly one S ∈ Pn(H) whose range
is orthogonal to R(R)+R(I−T ), while there is no such projection S ∈ Pn(H)
when codim(R(R) + R(I − T )) < n. It follows that P ∼ Q. To prove the
converse, assume that for a given pair P,Q ∈ Pn(H) there is no T ∈ Pn+1(H)
with P ≤ T and Q ≤ T . Denote by S the projection onto R(P ) + R(Q).
We have S ∈ P≥n+2(H). Therefore, we can find R ∈ Pn(H) \ {P,Q}⊥ such
that codim(R(R) + R(I − S)) ≥ n + 1. Thus, there are infinitely many
projections T ∈ Pn(H) satisfying R(T ) ⊥ (R(R) +R(I−S)), or equivalently,
T ∈ ({R} ∪ {P,Q}⊥)⊥. Consequently, P 6∼ Q, as desired.

We will define now a new map ϕ : Pn+1(H) → Pn+1(H). For every T ∈
Pn+1(H) we can find P,Q ∈ Pn(H) with P 6= Q and P ≤ T and Q ≤ T .
So, P ∼ Q and therefore φ(P ) ∼ φ(Q). Thus, by the above observation there
exists R ∈ Pn+1(H) such that φ(P ) ≤ R and φ(Q) ≤ R. Obviously, such an
R is uniquely determined. We define ϕ(T ) = R. To see that ϕ is well-defined
we choose P1, Q1 ∈ Pn(H) with P1 6= Q1 and P1 ≤ T and Q1 ≤ T . As before
there is a unique R1 ∈ Pn+1(H) with φ(P1) ≤ R1 and φ(Q1) ≤ R1. We have
to show that R = R1. We have {S ∈ Pn(H) : S ≤ I−R} = {φ(P ), φ(Q)}⊥ =
φ({P,Q}⊥) = φ({P1, Q1}⊥) = {S ∈ Pn(H) : S ≤ I −R1}, and consequently,
R = R1, as desired. Clearly, ϕ is bijective, and for P ∈ Pn(H) and Q ∈
Pn+1(H) we have P ≤ Q if and only if φ(P ) ≤ ϕ(Q). It follows easily that
for P,Q ∈ Pn+1(H) we have P ⊥ Q if and only if ϕ(P ) ⊥ ϕ(Q).

We extend φ : Pn(H) → Pn(H) to a map from Pn(H) ∪ Pn+1(H) onto
Pn(H)∪Pn+1(H) by defining φ(P ) = ϕ(P ) whenever P ∈ Pn+1(H). Then, in
the same way as we extended φ from Pn(H) to Pn(H)∪Pn+1(H), we extend φ
further to a bijective map from the set Pn(H)∪Pn+1(H)∪Pn+2(H) onto itself.
Proceeding inductively, we extend φ to a bijective map φ : P≥n(H)→ P≥n(H)
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satisfying
P ⊥ Q ⇐⇒ φ(P ) ⊥ φ(Q), P,Q ∈ P≥n(H),

and
P ≤ Q ⇐⇒ φ(P ) ≤ φ(Q), P,Q ∈ P≥n(H).

In the next step we will define yet another map ψ : P1(H)→ P1(H) with the
following properties:

• ψ is bijective,
• P ⊥ Q if and only if ψ(P ) ⊥ ψ(Q) for every pair P,Q ∈ P1(H), and
• P ≤ Q if and only if ψ(P ) ≤ φ(Q) for every pair P ∈ P1(H), Q ∈
Pn(H).

Let P ∈ P1(H). Then we can find Q ∈ Pn+1(H) and R ∈ Pn(H) such that
P = Q−R. Then, of course, P ⊥ R. Set ψ(P ) = φ(Q)− φ(R).

We first have to show that ψ is well-defined. In order to do this suppose that
we have P = Q1−R1 for another pair of projections Q1 ∈ Pn+1(H) and R1 ∈
Pn(H). The first possibility we will treat is that R1 ⊥ R. Set T = P+R1 +R.
This is the orthogonal sum. In particular, Q ⊥ R1 and Q1 ⊥ R. Hence,
φ(R) ≤ φ(Q) ≤ φ(T ), φ(R1) ≤ φ(Q1) ≤ φ(T ), φ(Q) ⊥ φ(R1), φ(Q1) ⊥ φ(R),
and φ(R), φ(R1) ∈ Pn(H), φ(Q), φ(Q1) ∈ Pn+1(H), and φ(T ) ∈ P2n+1(H). It
follows easily that φ(Q)−φ(R) = φ(Q1)−φ(R1) = φ(T )− (φ(R)+φ(R1)). In
the case when R1 6⊥ R we can find R2 ∈ Pn(H) and Q2 ∈ Pn+1(H) such that
P = Q2−R2 and R2 ⊥ R and R2 ⊥ R1. Then, by the previous step, we have
φ(Q)−φ(R) = φ(Q2)−φ(R2) as well as φ(Q1)−φ(R1) = φ(Q2)−φ(R2). So,
we have φ(Q)− φ(R) = φ(Q1)− φ(R1) in this case as well.

Hence, ψ is well-defined and it is easy to see that it has all of the above-
mentioned properties. One can now complete the proof using Uhlhorn’s theo-
rem. However, for the sake of completeness we present here a short argument
leading to the desired conclusion.

We denote by PH the projective space over H, PH = {[x] : x ∈ H \ {0}}.
Here, [x] denotes the one-dimensional subspace of H spanned by x. Now,
ψ induces in a natural way a bijective map ξ from PH onto itself. If for
x ∈ H \ {0} we denote by Px the projection onto the linear span of x and if
ψ(Px) = Py, then we define ξ([x]) = [y]. Clearly, if [x] ⊂ [y] + [z] for some
nonzero x, y, z ∈ H, then every Q ∈ P1(H) orthogonal to Py and Pz is also
orthogonal to Px, and therefore any R ∈ P1(H) orthogonal to Py′ and Pz′

must be orthogonal to Px′ . Here, x′ ∈ ξ([x]), y′ ∈ ξ([y]), and z′ ∈ ξ([z]) are
nonzero vectors. Thus, ξ([x]) ⊂ ξ([y])+ξ([z]). The same is true for the inverse
of ξ, and consequently, by the fundamental theorem of projective geometry,
there exists a bijective semilinear map U : H → H such that ξ([x]) = [Ux],
x ∈ H \ {0}. Here we have to distinguish between the real and the complex
case. The real case is much easier, since in this case every semilinear map
is linear. Therefore, we will only consider the complex case. Let f : C → C

be the automorphism of the field of complex numbers corresponding to U .
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Choose any x, y ∈ H and λ ∈ C with x ⊥ y and ‖x‖ = ‖y‖ = 1. Then
[λx+y] ⊥ [x−λy] and hence, [f(λ)Ux+Uy] ⊥ [Ux−f(λ)Uy], λ ∈ C. We use
[Ux] ⊥ [Uy] and f(1) = 1 to conclude first that ‖Ux‖ = ‖Uy‖ and then that
f(λ) = f(λ), λ ∈ C. Thus, f(R) ⊂ R. The only nonzero endomorphism of
the real field is the identity and therefore f : C→ C is either the identity, or
the complex conjugation. So, U is either linear, or conjugate-linear. It maps
the orthogonal complement of a nonzero element x ∈ H onto the orthogonal
complement of Ux in H. By [1, Lemma 3], U is a bounded linear or conjugate-
linear operator on H. It also preserves orthogonality. Thus, 〈U∗Ux, y〉 = 0
whenever 〈x, y〉 = 0, x, y ∈ H. It follows that U∗U = cI for some positive
real number c. Absorbing the constant we may assume that U is a unitary or
antiunitary operator. Thus we have ψ(P ) = UPU∗, P ∈ P1(H). The third
property of the map ψ given above yields now easily that φ(P ) = UPU∗,
P ∈ Pn(H). This completes the proof. �

Remark. We have assumed that dimH =∞. We obviously get the same
conclusion with the same proof when dimH is finite, but large enough.

Proof of Theorem 1.2. We first observe that φ preserves the order in both
directions, that is, P ≤ Q if and only if φ(P ) ≤ φ(Q) for every pair of
projections P,Q ∈ P∞(H). Indeed, we have P ≤ Q if and only if RQ = 0
implies RP = 0 for every R ∈ P∞(H). Moreover, if P ≤ Q and if the
codimension of R(P ) in R(Q) is one, then the same is true for φ(P ) and φ(Q).
Namely, for projections P,Q ∈ P∞(H) satisfying P ≤ Q the codimension of
R(P ) in R(Q) is one if and only if P 6= Q and every R ∈ P∞(H) satisfying
P ≤ R ≤ Q is either equal to P , or equal to Q. As in the proof of the
previous theorem we define a new map ψ : P1(H) → P1(H) in the following
way. For P ∈ P1(H) choose Q,R ∈ P∞(H) with P = Q−R. This, of course,
is equivalent to the fact that R(Q) is the orthogonal direct sum of R(P ) and
R(R). Then we define ψ(P ) = φ(Q)− φ(R).

Assume for a moment that we have already proved that ψ is well-defined.
Then, obviously, P ≤ Q, P ∈ P1(H), Q ∈ P∞(H), yields that ψ(P ) ≤ φ(Q).
It follows easily that P ⊥ Q implies ψ(P ) ⊥ ψ(Q), P,Q ∈ P1(H). It is
also not difficult to see that ψ is a bijective map whose inverse also preserves
orthogonality. One can then complete the proof using a similar approach as
in the previous theorem.

So, it remains to prove that ψ is well-defined. First note that if P,Q ∈
P∞(H) with P ⊥ Q and P +Q ∈ P∞(H), then we have φ(P +Q) = φ(P ) +
φ(Q). This is true because P,Q ≤ P + Q and {P,Q}⊥ = {P + Q}⊥. Here,
for S ⊂ P∞(H), S⊥ denotes the set of all projections from P∞(H) that are
orthogonal to every member of S. Now, if Q − R = Q1 − R1 with R ≤ Q,
R1 ≤ Q1, the codimension of R(R) in R(Q) is one, the codimension of R(R1)
in R(Q1) is one, R ⊥ R1, and R + R1 ∈ P∞(H), that is, the null space of
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R+R1 is infinite-dimensional, then we use the same arguments as in the proof
of our first theorem to show that φ(Q)− φ(R) = φ(Q1)− φ(R1).

Take now Q,Q1, R, R1 ∈ P∞(H) with Q − R = Q1 − R1 ∈ P1(H) and
R1 ≤ R with R(R1) having infinite codimension in R(R). Then the set {T ∈
P∞(H) : T ≤ Q and T ⊥ Q1} = {T ∈ P∞(H) : T ≤ R and T ⊥ R1} is
mapped onto the set {S ∈ P∞(H) : S ≤ φ(Q) and S ⊥ φ(Q1)} and this set
is equal to {S ∈ P∞(H) : S ≤ φ(R) and S ⊥ φ(R1)}. It follows easily that
φ(Q)− φ(R) = φ(Q1)− φ(R1) also in this case.

Finally, let Q,Q1, R, R1 ∈ P∞(H) be any projections with P = Q − R =
Q1 − R1 ∈ P1(H). We choose inductively a sequence of orthonormal vectors
{ej , fj , gj , hj : j = 1, 2, . . .} with {ej , fj : j = 1, 2, . . .} ⊂ R(R) and {gj , hj :
j = 1, 2, . . .} ⊂ R(R1). We denote by R2 and R3 the orthogonal projections
on the closed linear spans of {ej : j = 1, 2, . . .} and {gj : j = 1, 2, . . .},
respectively. The range space of the projection R2 +R3 has infinite codimen-
sion because the orthonormal set {fj : j = 1, 2, . . .} is contained in the null
space of R2 + R3. Set Qj = Rj + P , j = 2, 3. By the previous two steps we
have φ(Q) − φ(R) = φ(Q2) − φ(R2), φ(Q1) − φ(R1) = φ(Q3) − φ(R3), and
φ(Q2) − φ(R2) = φ(Q3) − φ(R3). Hence, φ(Q) − φ(R) = φ(Q1) − φ(R1), as
desired. This completes the proof. �
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