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Abstract

The elucidation of orthology relationships is an important step both in gene function prediction as well as towards
understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence
similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an
extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence
similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using
adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes
and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-
grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and
the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.
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Introduction

Detailed knowledge on the history of large gene families is

crucial to the understanding of their patterns of sequence evolution

and their functional interpretation. Throughout this contribution

we use the term ‘‘gene’’ to denote any genomic feature that can be

represented as a sequence interval. No further functional or

structural properties are implied. An important step towards this

goal is the elucidation of orthology relationships. Two genes are

orthologs if they arose via a speciation event from their last

common ancestor in the gene tree. In contrast, paralogs originate

from a gene duplication event [1,2]. The definition of orthology

implies that an event-annotated gene tree is available, and thus a

gene tree and its reconciliation with the underlying species tree

must be known to determine with certainty which pairs of genes

are orthologs. Since ancestral states are in general experimentally

inaccessible, the orthology relation, just like the gene phylogeny,

has to be inferred from extant sequence data.

A large class of orthology detection tools therefore attempts to

explicitly infer gene phylogenies and their reconciliation with

species trees, e.g. Orthology analysis using MCMC [3], Multi-

MSOAR [4], LOFT [5], Ensembl Compara [6], and Synergy [7].

Although this tree-based approach is often considered the most

accurate, it suffers from high computational costs and is hence

limited in practice to a moderate number of species and genes.

Moreover, all practical issues that hamper phylogenetic inference

(e.g. variability of evolutionary rate, mistaken homology, homo-

plasy, and horizontal gene transfer) limit the accuracy of both the

gene and the species trees.

The second class of algorithms bypasses the construction of gene

and species trees by directly deriving orthology assignments from

similarity data. Approaches of this type are COG [8], OrthoMCL

[9,10], OMA [11,12], InParanoid [13], eggNOG [14], Homolo-

Gene [15], Roundup 2.0 [16], or EGM2 [17]. Since orthology is not

a transitive relation, the problem of orthology detection is
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fundamentally different from clustering or partitioning of the input

gene set. In particular, a set A of genes can be orthologous to

another gene x 6[A but the genes within A are not necessarily

orthologous to each other. In this case, the genes in A are called

co-orthologs to gene x [18]. A common feature of most of the

methods mentioned above is that they do not produce an estimate

for the pairwise orthology relations but return orthologous groups

containing genes which are mutually orthologous to the greatest

extent but also comprise co-orthologous genes. We refer to these

groups as orthologous groups in the following. In addition to OMA

and Proteinortho [19], only Synergy, EGM2, and InParanoid

attempt to resolve the orthology relation at the level of gene pairs.

The latter two tools can only be used for the analysis of two species

at a time, while Synergy is not available as standalone tool and

therefore cannot be applied to arbitrary user-defined datasets. The

use of these tools is limited to the species offered through the

databases published by their authors.

The orthology relation can be represented as a graph on the set

of genes. It forms a cograph rather than a partition [20].

Clustering approaches identify dense subgraphs of these cographs

and hence introduce false-positive edges corresponding to recent

paralogs. On the other hand, ancient paralogs are often separated

into different groups of co-orthologs. Despite this theoretical

shortcoming, cluster-based methods have consistently been

reported to yield very good results [21–23]. Since they are much

faster than tree-based algorithms, they can be applied to very large

datasets.

The clustering method and, in many cases, user-defined

parameters determine the granularity of the orthologous groups

and thus the tolerance to false positive orthology assignments.

Some methods are very inclusive [5], but the aim typically is to

remove as many paralogs as possible to approach a one-to-one

orthology relation. These simple relationships are especially useful

for phylogenetic analysis and for exact functional predictions.

Phylogenomic studies typically employ pipelines such as HaMStR

[24] to restrict the data to one-to-one orthologs. When the

phylogenetic range of interest includes duplication events however,

such approaches are bound to fail [25].

Here we focus on an intermediate balance. Our main aim is to

avoid false positive orthology assignments within the phylogenetic

range of the reported orthologous groups, while we tolerate recent

in-paralogs (speciation preceding duplication) as unavoidable

contamination. Clustering approaches for orthology detection

are usually based on the ‘‘best match method’’, which attempts to

find orthologs as the sequence in another genome that is most

similar to the query. It often fails in the presence of paralogs with

comparable similarity to the query. Best match approaches are

nevertheless routinely used to gain insight into relationships of

genes among phylogenetically very diverse organisms. These

approaches are used in particular for gene annotation in newly

sequenced genomes for which a well studied close relative is

lacking. However, the large number of sequencing projects of the

last decade have largely reduced the gaping holes in phylogenetic

coverage and most large-scale comparative studies nowadays focus

on closely related species or even strains [26,27]. As a result, the

evolutionary distances within a phylogeny of interest are often

rather small, hence additional information to resolve evolutionary

relationships between genes can be obtained from genomic

context. Furthermore synteny, i.e., the conservation of gene order

(also referred to as gene context) provides information independent

of sequence similarity, which can help to sort paralogs. Both

Synergy and EGM2 incorporate synteny information to compute

orthology relations. The Synergy algorithm achieves high

accuracy due to the fact that it reconstructs gene family trees

[28]. EGM2 considers synteny by identifying similar genomic

regions to detect orthologs. However, this tool is not suitable for

large datasets due to its restriction to only two genomes at a time.

Genes with a common ancestry that are functionally linked with

each other frequently show a conservation in local gene order over

long evolutionary distances [29,30]. Thus, synteny is frequently

used to disentangle complex duplication histories, see e.g. [31] and

references therein. The intricacies of conserved synteny and

positional orthology have been reviewed recently [32].

The computational prediction of syntenic regions usually relies

on the detection of genomic neighborhoods that are conserved

between genomes of related species. Proximity relations among

genes, such as adjacencies [33] (two genes encoded adjacent to

each other in several genomes), generalized adjacencies [34] or

conserved intervals [35], are used to assess genomic neighbor-

hoods. Typical methods for the detection of syntenic regions utilize

gene family information, similarity scores or conserved distances to

establish putative homologies and then apply chaining or

clustering algorithms. When paralogous genes are considered,

the underlying computational problems become prohibitive

because many alternative synteny assignments are possible. Exact

algorithms are therefore slow and limited to small datasets. In fact,

the problem of computing the syntenic distance between two

genomes is NP-hard [36,37]. Efficient heuristics are therefore

employed to deal with large datasets.

If gene family information is available, popular synteny tools

such as i-ADHoRe 3.0 [38] and MCScanX [39] can efficiently

detect homologous regions even in large-scale analyses. Otherwise,

using local alignments of sequences, tools such as CYNTENATOR

[40] and DAGchainer [41] allow for detection of syntenic regions

based on pairwise similarity scores of sequence intervals. The

heuristic method FFAdj-MCS [42] has proven to be a good

compromise in terms of both, speed and accuracy, as it takes a

different approach by calculating a matching whose objective

function maximizes towards a balance between adjacencies and

similarity scores of genes.

In this contribution we describe PoFF, an extension of

Proteinortho [19], to include synteny information in a

systematic way. More precisely, a pair of genes (A1, A2) in

genome A is considered syntenous with another pair of genes (B1,

B2) in genome B, if both A1, B1 and A2, B2 are potential

orthologs (as determined by sequence similarity), and both (A1,

A2) as well as (B1, B2) are adjacent gene pairs on their

corresponding chrosomosomal locations. In case other genes are

located between (A1, A2) or (B1, B2), these must not be

orthologous to any other genes in genomes A or B. Protei-

northo applies an adaptive best match method together with

spectral clustering to define (co-)orthologs. Its performance in

terms of accuracy has been shown to be comparable to other

clustering-based methods. At the same time it has modest

requirements in terms of memory and computation time and is

thus suitable for very large datasets. Complementing the

evaluation of pairwise sequence similarities, we incorporate here

the efficient heuristic algorithm FFAdj-MCS that computes

ortholog assignments by maximizing the above synteny measure

between pairs of genomes. Following a recent suggestion [43], true

orthologs among multiple candidates were defined as those that

retained their original genomic context. In the course of this work,

we adapted FFAdj-MCS to include multiple linear chromosomes

within single organisms and extended it for the detection of

duplicated genes and large duplicated genomic regions. We note

that the algorithm may also be applied to circular chromosomes at

the expense of losing synteny information for at most two pairs of

genes at the very ends of the linearized representation. This minor

Combining Clustering and Synteny for Orthology Detection
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shortcoming should have no or only a vanishingly low effect in the

overall process of orthology assignment.

Figure 1 illustrates the idea of the synteny-enhanced version of

Proteinortho. In this example, four genes (A1, A2, B1, B2) in

two species (A and B) are considered. The gene tree in Figure 1a

shows a duplication preceding a speciation event. A1 and B1 as

well as A2 and B2 are orthologous to each other as they derived

from a common ancestor by speciation. Given sufficient similarity,

however, all four genes would be reported as an orthologous group

using regular sequence similarity-based approaches. The gene

order depicted in Figure 1b allows one to distinguish the genes 1

and 2 from each other. The combined approach therefore predicts

the two distinct orthologous groups {A1, B1} and {A2, B2} and

thus avoids false positive orthology assignments.

We argue that the level of granularity achieved in this way is

more useful in most cases than an arbitrary separation of groups

solely based on sequence similarity scores which tend to lack

significance when sequences are closely related. The same holds

compared to inclusive strategies which hardly discriminate

subgroups. Assuming that numerous extant genes have derived

from a limited set of common ancestors by a series of duplication

events, inclusive strategies will include entire gene families, and

hence lead to very large groups with a significant amount of

actually non-orthologous genes. An emphasis on including all

pairwise orthology relations when reporting orthologous groups

thus seems to be of little use.

We evaluated PoFF using several sets of simulated protein-

coding genes. Each set was derived from event-annotated gene

trees. Thus, for each pair of genes, the true relationship regarding

orthology is unambiguously defined and used to validate the

predictions. Our results reveal a significant improvement with

respect to true negative and false positive predictions at the

expense of only a marginal decrease of the true positive rate.

Materials and Methods

Conceptual Outline
Our starting point for orthology detection is a directed graph C

whose vertices are all the genes of all input genomes. A directed

edge x?y is introduced if (i) x and y are taken from two different

genomes (A and B) and (ii) the similarity s(x, y) is not much smaller

than the gene z in B that is most similar to x, i.e., if

s(x,y)§f | maxz[B s(x,z) for some stringency parameter f#1.

Since any true ortholog of x[A in genome B should be among the

most similar sequences that can be found in B, C should have few

false negatives (i.e. missing true edges) as long as the stringency is

not set to a value that is too restrictive. The idea is, therefore, to

remove edges from the graph C that are likely false positives. Since

orthology is a symmetric relation, we only retain edges x?y if

y?x is also contained in C.

Synteny information determined by FFAdj-MCS provides an

additional filter for the edge set of C. By construction, the

subgraph C ½A|B� induced by the genes in A and B is bipartite.

Synteny is modeled as the relative order of edges along both

genomes. Synteny as a filter reduces the edge set of C ½A|B� to a

matching that maximizes a trade-off between the total number of

edges and the number of conserved adjacencies. Among similar

paralogs, this strategy favors the one with the best-conserved local

gene order as representative of the orthologous group. In the final

step, a clustering algorithm [19] is employed to extract groups of

co-orthologs from C, which contains all subgraphs C ½A|B� for all

pairs of genomes.

Implementation
Proteinortho uses the blast bit score to determine potential

homologs in another species and to measure sequence similarity.

The definition of the edge set above makes it possible to construct

C directly from pairwise comparisons. Thus, this initial state can

be trivially parallelized and does not require the storage of

genome-wide blast comparison data in memory. As the FFAdj-

MCS algorithm applies to pairs of genomes A and B, it can be

added to the workflow without breaking these advantageous

properties. The algorithm requires information on gene order and

pairwise gene similarity for two genomes and determines a

matching that maximizes a weighted sum of edge weights and

weights of conserved adjacencies. To this end FFAdj-MCS matches

genes in regions with conserved gene order that locally maximize

the objective of FF-Adjacencies [42]. These regions are called

maximum common substrings (MCSs). Since the blast scores s(x,

y) are not symmetric, they are symmetrized (taking the average of

both scores) for use in FFAdj-MCS. The combination PoFF of

Proteinortho and FFAdj-MCS yields, for each pair of genomes,

a pruned set of edges that is highly enriched in true orthologous

pairs. The workflow of our extension is illustrated in Figure 2.

Figure 1. Synteny-enhanced orthology prediction. Four genes (A1, A2, B1, B2) in two species (A and B). a) The gene tree with a duplication
(filled double circle) and a speciation event (empty circle). b) Gene order in the genomic context of both genes. Genes A’x and B’x are orthologous to
each other. Lines depict suggested partners based on sequence similarity of which the dashed were neglected by the gene order algorithm.
doi:10.1371/journal.pone.0105015.g001
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We added three extensions to the FFAdj-MCS program as

presented in [42]. Firstly, it was adapted to allow for more than

one chromosome per genome. Secondly, the detection of

duplicated genes and large duplicated regions was implemented:

The heuristic was adapted to repeat a user-defined number of

complete matchings, where edges selected by preceding matchings

are removed before each subsequent matching. Thirdly, FFAdj-

MCS allows to filter the size of MCSs obtained from subsequent

matchings by means of a user-defined minimal size b [ ½2 . . . n�
that defines the minimum number of gene pairs in each MCS.

Finally, we relaxed the criteria for very similar neighboring

genes: If two adjacent genes x and y in A both have their best

alignment to the same gene z [ B, we include both edges {x, y}

and {y, z} in C, since x and y are likely in-paralogs and a decision

for one of the two edges based on a small score difference is not

reasonable from a biological perspective. Even though this makes

PoFF more inclusive, we argue that this behavior is more

reasonable because such in-paralogs can be quite easily detected

in a post-processing step if required for a particular application.

PoFF has several parameters that can be set by the user – in

particular score thresholds and coverage requirements of the

blast searches. We used the default settings throughout. The

stringency parameter f defines the fraction of the bit score of the

best blast hit that must be reached by an alternative candidate

ortholog. Proteinortho’s default value, f = 0.95, has been shown

to work also in conjunction with the synteny filter. The FFAdj-

MCS algorithm provides an adjustable parameter a [ ½0 . . . 1� that

controls the relative importance of edge weights and the weights of

adjacencies. Benchmarking PoFF did not reveal a strong

dependency of the results on this parameter, likely because

nucleotide sequences and order of genes evolve in parallel and

with comparable speeds. We therefore used the default value

a~0:5 throughout. By default, we perform one matching iteration

with b~3 to cover the detection of large duplicated regions. If

multiple copies of a region are expected in a dataset, this number

of iterative matchings can be increased further. Practical

experience with Proteinortho also led to the decision to increase

the default E-value threshold from 10210 to 1025 in order to

improve coverage of less conserved orthologs.

Benchmarking
Since implementations of competing tools that generate fully

resolved orthology relations are not publicly available, we cannot

employ the usual evaluation strategy of comparing all tools on

series of benchmarking datasets of our choice. Instead we apply

both Proteinortho and PoFF to several reference datasets that

either comprise simulated data for which the underlying gene trees

are known, or real data which defines orthologous groups and/or

pairwise orthologous relationships by extensive analysis, often

including manual curation. Results are then compared to the

published performance of alternative tools.

For Proteinortho and PoFF we used standard parameters,

including an E-value threshold of 1025. However, the more recent

blastp+ software [44] instead of the original blastp implemen-

tation [45] was applied to find the initial matches. This can be set

by a parameter in Proteinortho.

The generation of simulated data is described below. As some of

these sets were sufficiently small, we also applied OrthoMCL, OMA

and InParanoid in order to evaluate the results. Again, standard

parameters were used, including an E-value threshold of 1025 for

OrthoMCL. Real life data was taken from various sources also

described hereafter. The YGOB dataset [46], was used in a previous

study to evaluate the Synergy approach [7]. Hence, we took the

opportunity to include the available results to the benchmark.

Simulated data. In the absence of extensive gold standard

datasets comprising sequence and synteny data as well as the

underlying gene trees that could be used for benchmarking our

orthology prediction method, we simulated sequence evolution

and genomic rearrangements on a single chromosome for three

example datasets comprising 50, 80 and 100 gene families

(proteins) in 20 species (named hereafter F50, F80d and F100,

respectively). All test sets feature duplications of both individual

genes and gene clusters. The set F80d in addition includes whole

genome duplications. Table 1 gives a closer look to the

composition of all three datasets as well as to their average

breakpoint distances determined by PoFF. The simulation pipeline

is available in the Online Supplemental Material.

Species trees were simulated according to the Age Model [47].

These trees are balanced and edge lengths are normalized so that

the total length of the path from the root to each leaf is 1. For each

species tree S, we then simulated gene trees using the following

rules:

1. The root of S contains an ordered list of ancestral genes one for

each gene family. The number of families is a user-defined

parameter.

2. S is traversed in a depth first order. All changes to the genome

are simulated independently for each edge of S with constant

rates.

Figure 2. Workflow of PoFF. Similar gene sequences are determined by an all-against-all blast search. Top reciprocal matches are ordered by their
positions in the respective genomes. The FFAdj-MCS algorithm is applied to determine the maximum matching with respect to sequence similarity
and gene order. As a result the orthology graph C only contains the remaining edges from pairwise comparisons. Finally, orthologous groups are
extracted by clustering.
doi:10.1371/journal.pone.0105015.g002
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3. At each internal node of S, the ordered gene list received from

its parental edge is copied without change to both offspring

edges.

4. Along each edge of S a number of events is sampled from a

Poisson Process Pl,l , where the parameter l [ ½0,1� is the

probability of the event to happen and l is the branch length.

The process may generate none, one, or several events of the

following types: gene duplication, cluster duplication, genome

duplication, and gene loss. Here we used the parameters

l~0:9 for gene duplication, l~0:5 for cluster duplication,

l~0:5 for gene loss. For the dataset F80d we consider genome

duplications with l~0:03 instead.

5. A special rule applies to recently duplicated genes to account

for the deletion of redundant gene copies before they can be

stabilized by sufficient functional divergence or subfunctiona-

lization [48,49]. We model this by a probability of 0.3.

6. To obtain an order of the generated genes, rearrangements are

carried out for each edge of S using translocation and inversion

operations on the ordered list of genes that ‘‘survived’’ until the

next speciation. Rearrangements are picked randomly and the

number of inversion operations is chosen uniformly propor-

tional to the branch length [50].

The result of this simulation is a gene tree Gi for each family i
together with a true reconciliation map to the species tree S. All

gene lineages terminating in a deletion event are pruned from the

gene tree so that we retain a gene tree Gi in which only extant

genes appear as its leaves. The known reconciliation furthermore

provides us with a labeling of the internal nodes of Gi with

duplication or speciation events, see Figure 3 for an example. This

in turn determines the true orthology relation for all genes received

in the leaves of S. In addition, the gene orders within their

respective genomes are obtained. The simulations were performed

using a simulation environment for large gene families [51].

Since large-scale orthology analysis are usually performed for

protein sequences, we use indel-Seq-Gen [52] to generate

simulated amino acid (aa) sequences for the gene trees Gi. For each

gene family a random seed sequence is initiated with a length

between 100 and 1,000 aa. Then, to define the offspring genes,

indel-Seq-Gen introduces substitutions according to PAM sub-

stitution matrix and insertions and deletions with a Zipfian

probability distribution [53] with maximal length between 1% to

10% of the sequence length. For the gene trees a branch scale

factor of 0.5 was used. This is the frequency of a single amino acid

to be substituted. Hence, approximately half of the amino acids

are changed during the simulation on the path from the root to the

leaf.

We remark that the Artificial Life Framework (ALF) [54] for

simulating sequence evolution could in principle have been used

for simulating test data. However, in its current version, this tool

does not support genome-wide duplications and selective loss of

recently duplicated genes. We therefore opted to construct our

own simulation framework.

Real life data. COG: We used proteome data from the COG-

database, which provides manually curated orthology relations

(ftp://ftp.ncbi.nih.gov/pub/COG/COG/, 2009/10/15), for the

following set of 16 species covering three bacterial groups: Bacillus
halodurans, Bacillus subtilis, Lactococcus lactis, Listeria innocua,

Streptococcus pneumoniae TIGR4, Streptococcus pyogenes M1

GAS from the Gram-positive bacilli class, Buchnera sp. APS,

Escherichia coli K12, Pasteurella multocida, Salmonella typhimur-
ium LT2, Vibrio cholerae, Yersinia pestis from the gamma

proteobacteria class and Brucella melitensis, Caulobacter vi-
brioides, Mesorhizobium loti, Rickettsia prowazekii from the alpha

proteobacteria class. According to PoFF, the average breakpoint

distance of this set is 642.

To obtain the gene orders we retrieved the genomes from

the NCBI-database (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/,

2012/12/13, see supplement). When several strains were avail-

able, we picked the one with the smallest uid as they represent the

older genomes preferentially included in secondary databases. All

genes were then located in the genomes using tblastn+ with an

E-value threshold of 1028. The best match was considered to be

the gene of interest. A small minority of genes (98 out of 53,264)

could not be located unambiguously and was thus removed from

the dataset.

As we used an extract of the COG-database (16 out of 66 species),

only COG-groups covering at least eight proteins within the set of

the chosen 16 species were considered to estimate the orthology

matrix as described below (see Evaluation). Otherwise, their

classification might have been based on species not in the dataset

used here, which would make a comparison of approaches

unreasonable.

OrthoBench: We also used the reference annotation Ortho-

Bench [23]. Manually curated orthologous groups were down-

loaded from http://eggnog.embl.de/orthobench/ at 2013/01/05.

The set comprises 12 metazoan proteomes and is based on the

Ensembl v60 genome annotation [55] which was downloaded

from ftp://ftp.ensembl.org/pub/release-60/ at 2013/01/11. Ac-

cording to PoFF, the average breakpoint distance of this set is

5,433. 124 out of 1,692 proteins stated in OrthoBench could not

be located in the v60 set and were excluded from the analysis.

YGOB: From this dataset we obtained orthology assignments of

five ascomycete fungi Ashbya gossypii, Saccharomyces cerevisiae,

Candida glabrata, Kluyveromyces lactis, and Kluyveromyces waltii
that have been used in the evaluation of Synergy in the original

study [7]. According to PoFF, the average breakpoint distance of

this set is 2, 697. The data provided by the authors included

pairwise blast results with an E-value threshold of 1025, which

we directly used in our analysis, omitting the blast step. In this

way, the initial blast data on which Synergy, Proteinortho, and

PoFF operated was assured to be identical. We then compared

Table 1. Composition of simulated datasets.

Dataset Families Proteins ø Family size ø Breakpoint distance

F50 50 8,363 167 proteins 13

F80d 80 15,296 191 proteins 19

F100 100 27,258 273 proteins 14

The simulated datasets differ by the number of gene families present in the species as well as by the size of these families. The larger the families the more diversity
among the set of species can be considered. Set F80d additionally comprises whole genome duplications.
doi:10.1371/journal.pone.0105015.t001
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orthologs predicted by the three approaches to orthologs from the

YGOB dataset (v1, 2005) [46]. We excluded genes from the

predictions that were not contained in the YGOB dataset (6, 218, 6,

076 and 6, 817 out of 23, 134 for Proteinortho, PoFF and

Synergy, respectively). In this way, we avoid to bias our

evaluation with data that is not present in the reference dataset.

Evaluation. For each gene family/orthologous group in the

reference sets, we compared the pairwise orthologous relationships

between its members to the predictions, counting true positives

(tp), false positives (fp), true negatives (tn) and false negatives (fn) as

well as the number of orthology relations between reference

groups. These data were then used for statistics as follows:

Precision ~
tp

tpzfp
, recall ~

tp

tpzfn
,

accuracy ~
tpztn

tpztnzfpzfn

and tn rate ~
tn

tnzfp
:

For evaluation of PoFF and Proteinortho, we used the

orthology graph returned in addition to orthologous groups which

contains information on pairwise orthology relations. OMA returns

this graph equivalently in the PairwiseOrthologs output. InPar-

anoid was applied to all pairs of species successively. After

merging the results, this resulted in pairwise orthology relations for

the whole dataset as well. OrthoMCL on the other hand, does not

return the orthology graph directly. We extracted the information

on pairwise orthology relations from the MCL clustering output file.

Connected components in there are used by OrthoMCL to

determine orthologous groups, making this output file similar to

the orthology graph returned by PoFF/Proteinortho. We note

however, that the file was not meant to be used as orthology graph.

Given the mode of calculation applied by OrthoMCL, it contains

numerous orthology relations for paralogs of the same species

which cannot occur using PoFF/Proteinortho. For Synergy

and YGOB, pairwise orthology relations were present. For COG and

OrthoBench, however, only data on orthologous groups was

provided. The pairwise orthology relations had to be estimated.

We did this by assuming each protein of an orthologous group to

be orthologous to each other protein in the same group, except

when both proteins belong to the same species. We emphasize that

this strategy strictly overestimates the number of orthologous

relationships in the dataset. Nonetheless, this method makes it

possible to compare the results on a pairwise level.

The simulated data also provides gene trees. These were used to

acquire pairwise orthology relations. Two genes of a simulated

gene family are orthologous to each other, if and only if their most

recent common ancestor event was a speciation.

Results and Discussion

In order to estimate how PoFF performs with respect to closely

related species and compared to the original Proteinortho

implementation, we simulated and subsequently evaluated three

datasets (F50, F80d, F100), for which the gene histories and hence

the true orthology relations are defined. The datasets differ in

number and size of gene families, thus representing increasing

levels of diversity among closely related species. The results are

summarized in Table 2. Proteinortho already performs very

efficiently. However, as the number of paralogs with similar

sequences increases, the basic algorithm becomes less effective in

precisely predicting the correct orthology relations within these

gene families, a trend that exacerbates with increasing size of gene

families. The use of the synteny information provided by the

FFAdj-MCS algorithm efficiently counteracts this tendency and

substantially improves the precision. Other performance statistics

Figure 3. A reconciled tree for gene families. The gene tree is embedded in the species tree. Internal nodes represent either gene duplication
(filled double circle) or speciation events (empty circles). Gene loss is depicted by 6.
doi:10.1371/journal.pone.0105015.g003
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as well as the runtime remain nearly unchanged, which indicates a

significant advantage of PoFF over the original Proteinortho

tool.

It would be desirable to include several other orthology

detection tools to directly compare the results achieved using the

simulated datasets. To our knowledge, only OrthoMCL, OMA,

InParanoid and Roundup 2.0 are available as standalone tools

that can be used for large input datasets. Since Roundup 2.0

largely relies on a commercial implementation of blast, we were

only able to include the first two tools in the benchmark. We

observed that OrthoMCL is very inclusive. It returns huge

orthologous groups comprising whole gene families but, according

to the results, does not reflect pairwise orthology to a reasonable

extent. This results in a large number of false positive predictions.

It also requires extensive computational resources: We terminated

the analysis of the biggest dataset (F100) after 31 days of runtime

without obtaining a result (using an Intel core i7 quad core CPU at

2.9 GHz). OMA and InParanoid required even more computa-

tional resources. We also had to terminate the analysis of the

biggest dataset without obtaining a result from these tools. The

results obtained for the two other datasets, however, were superior

to those obtained from OrthoMCL. InParanoid reports the

smallest amount of orthology relations (only ,1–5% recall) and

exhibits the longest runtime. The results however hardly include

any false positives.

Since FFAdj-MCS acts as an efficient filter against false

orthology predictions, we tested whether we could rely entirely

on the synteny information. After all, this information is also

derived from the alignment scores determined by blast, hence

low-scoring edges are unlikely to enter the final matching and

would thus be dismissed either way. We therefore removed

Proteinortho’s filter for near-optimal alignment scores by

setting f = 0, which includes all reciprocal alignments above the

given E-value threshold. We observed that this did not improve

the quality of the predictions but increased the CPU time by a

factor of 20 to 40 on the simulated datasets. A cutoff value of f
close to 1 thus not only saves computational resources but also

contributes to the identification of the correct edges in C

independent of FFAdj-MCS. This observation justifies the design

decision to run the gene order filter only on the nearly optimal

orthology candidates.

In addition to simulated data, we performed benchmarks using

estimated orthology relationships from several real life datasets.

The COG-database [8] was used as complete reference annotation

for a set of 16 prokaryotes. All proteins present in this set are

assigned to some group. OrthoBench [23] and YGOB [46]

provided a partial annotation for a number of reference proteins

in twelve metazoan and five fungal species, respectively. The YGOB

dataset was used in a previous study to evaluate the tool Synergy

[7]. While the latter is not publicly available, the results of its

application to YGOB have been published, which allowed us to

compare Synergy and PoFF on this dataset (see Table 3 and

discussion below).

For real life datasets, PoFF predicts 4 to 57% fewer pairwise

orthology relations than Proteinortho. This tendency is even

more pronounced for the very similar simulated datasets (23 to

77%, data not shown). The reduced number of pairwise orthology

relations allows separating the orthologous groups in a more fine-

grained way and reduces the number of false positive assignments.

In turn, however, the number of true positive assignments is

reduced as well. For the real life datasets, which comprise far more

distant species than the simulated data, this results in reduced

recall and sometimes also reduced accuracy (Table 3).

We emphasize that neither the COG nor the OrthoBench data

are ideal benchmarking sets for fine-grained orthology predictions.

Both provide orthologous groups rather than pairwise orthology

relations which, in turn, had to be estimated for evaluation (see

Materials and Methods). Moreover, many of these groups are

rather large as they contain numerous paralogs, which were – as

we would argue – correctly clustered into subgroups by PoFF and/

or Proteinortho. The COG-database was originally constructed

using 13 Archaea, three Eukarya and 50 Bacteria. For evaluation,

we used a bacterial subset of 16 species. This in turn makes

duplications specific to the chosen subset harder to detect. The

combination of these issues leads to artifacts in the reference

datasets that might have a negative impact on recall and accuracy.

Table 2. Comparison using simulated data.

Dataset Method Precision Recall Accuracy tn rate Runtime

OrthoMCL 3.06% 7.26% 86.18% 89.71% 7 h, 22 min

OMA 38.64% 9.62% 95.49% 99.32% 1 day, 14 h

F50

InParanoid 98.01% 5.02% 95.94% 99.99% 2 days, 2 h

Proteinortho 80.63% 23.11% 97.62% 99.83% 0 h, 36 min

PoFF 96.15% 24.18% 97.53% 99.96% 0 h, 36 min

OrthoMCL 0.92% 0.88% 87.44% 93.43% 15 h, 46 min

OMA 43.97% 5.25% 93.51% 99.54% 3 days, 23 h

F80d

InParanoid 97.67% 0.89% 93.65% 99.99% 8 days, 23 h

Proteinortho 79.36% 16.64% 97.68% 99.88% 1 h, 29 min

PoFF 93.98% 15.52% 97.30% 99.96% 1 h, 30 min

OrthoMCL/OMA/InParanoid - - - - .31 daysF100

Proteinortho 23.99% 20.48% 99.37% 99.71% 6 h, 39 min

PoFF 90.16% 18.17% 99.62% 99.99% 6 h, 44 min

Comparison of computational results with orthology relations derived from simulated datasets with different gene family sizes. Statistical values are explained in
Materials and Methods. tn rate refers to true negative rate. Running time was measured on a quad core CPU (Intel core i7 at 2.9 GHz) with eight threads.
doi:10.1371/journal.pone.0105015.t002
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Both, PoFF and Proteinortho tend to split the groups annotated

in the reference sets into smaller subgroups. This effect of

subdividing is more pronounced for PoFF. OrthoBench groups

contain on average 23.5 genes while comprising only up to 12

species. On average these groups are divided into 3.8 subgroups by

Proteinortho and 5.4 groups using PoFF. COG groups contain

18.4 genes on average. These groups are divided into 3.0 and 3.1

subgroups, respectively (see File S1).

Only the YGOB dataset offers pairwise orthology data and can

thus be regarded as more exact than the other two sets. Here, the

results of Proteinortho and PoFF are quite similar. Again we

find the slight decrease in recall observed already for the simulated

dataset. Increased phylogenetic distance decreases the positive

impact on precision, which was found for the more closely related

simulated datasets. The predictions for this dataset achieved by

Synergy are slightly better than those of Proteinortho and

PoFF. However, the algorithm relies on genome-wide reconstruc-

tion of phylogenetic gene trees and is thus far more time-

consuming. Moreover, a standalone tool that applies the algorithm

is currently not available.

The strategy pursued by PoFF is particularly useful to separate

large orthologous groups with many co-orthologs into smaller

subgroups. Typically, there is one major group for each gene

family in each simulated dataset that spans all species of the

original group but includes only one or a small number of genes

from each species. In addition, we observe one or more ‘‘minor’’

groups of duplicates that contain diverged and/or largely

rearranged paralogs. Using the real life dataset OrthoBench we

see this trend in particular for Otoferlin, Dilute myosin heavy

chain, GPS domain-containing GPCRs and S-adenosylmethio-

nine synthetase isoform families. This type of subdivision appears

useful and desirable in most practical applications of automatic

orthology detectors.

The increase in runtime introduced by FFAdj-MCS is marginal

for small genomes (e.g. Bacteria). For simulated data as well as the

COG set we observed an increase by 1–3%. For large genomes as

present in the OrthoBench set the increase was 5–10% and thus

more notable. For example, the analysis of Rattus norvegicus and

Pan troglodytes took 12.5h using Proteinortho and 13.5 h using

PoFF applying a single thread. The memory requirements

remained unchanged.

Conclusions

Dissecting large gene families from many genomes into clusters

of orthologs is not a well-posed problem. Orthology, as defined by

Fitch [1,2], is a binary relation of the set of genes. Gene

duplication events typically appear in many different locations of

the underlying phylogenetic tree and give rise to a complex

structure of co-orthologs and paralogs at different levels. The

resulting cograph nevertheless contains dense clusters that can be

meaningfully associated with orthologous groups. Clustering-based

orthology detection is therefore a useful pragmatic way to easily

and correctly identify orthologous groups, provided duplications

are absent within the phylogenetic range of the input data. It is a

common feature of orthology methods, in particular those geared

towards large datasets, that the orthology is approximated by a

partition of the genes into groups of co-orthologs. The tool PoFF

described here also follows this paradigm but provides pairwise

orthology predictions in addition.

Several orthology prediction methods that avoid the explicit use

of gene and species trees have been described in the literature.

Most of them can be applied to large datasets only at high

performance computing facilities. Their pre-computed results are

usually available in databases, whereas the software itself is not

available for public use or restricted in practice to small datasets.

This limits their usefulness since poorly studied or newly

sequenced organisms that are not (yet) available in the pre-

computed results cannot easily be included in large-scale studies.

PoFF is specifically designed to overcome these limitations and

provides users a tool for compiling large-scale orthology datasets

with moderate computational resources. Here we have shown that

the combination of the fast, clustering-based orthology heuristic,

Proteinortho, with the equally efficient heuristic for large-scale

synteny assessment, FFAdj-MCS, leads to a substantial improve-

ment of the data quality for related species without loss of

performance. Synteny information proves to be a highly efficient

filter against false-positive orthology assignments without a huge

increase of the false negative rate. The extended approach, PoFF,

is capable of boosting large-scale comparative studies which focus

on closely related species or even strains.

Orthologous groups can provide a convenient starting point for

more detailed analyses of the history of entire gene families. To

this end, it is necessary to reduce in particular false positive

orthology assignments. Figure 4 illustrates that the filtering and

clustering strategy can have a strong influence on both the false

positive and false negative rates of orthology assignments.

Orthology is only defined as a pairwise relationship which is not

transitive. Hence, reducing the false positive rate within ortholo-

gous groups will ultimately lead to a reduction of true positive rates

when the pairwise definition is applied, as we did here (see

Figure 4, e.g., separating the paralogs B1 and B2 into two distinct

Table 3. Comparison using real data.

Dataset Method Precision Recall Accuracy tn rate

COG Proteinortho 99.50% 23.80% 29.12% 98.45%

PoFF 99.52% 22.50% 27.93% 98.47%

Synergy 61.36% 42.82% 99.64% 99.89%YGOB

Proteinortho 59.10% 38.35% 99.62% 99.89%

PoFF 59.07% 36.97% 99.62% 99.89%

OrthoBench Proteinortho 100% 17.68% 24.71% 100%

PoFF 100% 9.72% 17.44% 90.27%

Comparison of tools on the basis of estimated orthology relations from real data sets. Statistical values are explained in Materials and Methods. tn rate refers to true
negative rate.
doi:10.1371/journal.pone.0105015.t003
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orthologous groups requires to discard the true orthology relation

to A1 for one of them, otherwise both genes would be connected

via A1). Given this, we had expected PoFF to perform much worse

regarding true positives, which was, however, not the case.

While conserved synteny is a powerful feature to support the

confidence in orthology predictions [56], gene orders evolve faster

than protein sequences [57]. This fact is reflected by the

benchmark results of the closely related simulated datasets

compared to the real-life sets including more distantly related

species, where the advantage of PoFF regarding pairwise orthology

prediction was clearly reduced (see Tables 2 and 3). However,

PoFF yields orthologous groups that are more fine-grained and

contain fewer paralogs. We argue that this is a practical

improvement for subsequent analyses, such as gene function

prediction, genome annotation, marker development and phylo-

genetics. There, the presence of many-to-many relations in

orthologous groups due to co-orthologs may lead to inconclusive

results. In turn, these groups are often omitted and single-copy

orthologs (a single gene per species) are used only [58–60]. This

fact could make an application of PoFF desirable, even for more

distant species.

The extension of Proteinortho by FFAdj-MCS leads to a very

moderate increase in runtime and does not increase the hardware

requirements, making this combined method applicable to very

large datasets further on. The current approach of combining

sequence similarity, conserved synteny and clustering entails a

significant improvement when comparing closely related species.

As gene orders generally evolve faster than protein sequences [57],

the improvement decreases with growing phylogenetic distance of

species in the set, which may even compromise precision. Future

extensions of the approach could thus aim at deciding on a case-

by-case basis if the FFAdj-MCS algorithm should be used as

additional filter for the comparison of two species, e.g., based on

the respective breakpoint distance. Alternatively, a less restrictive

synteny measure (e.g. common intervals instead of adjacencies)

could be applied.

Supporting Information

File S1 Table S1: Accuracy of separation of Proteinortho and

PoFF evaluated in reference dataset Orthobench. Table S2:

Accuracy of separation of Proteinortho and PoFF evaluated in

reference dataset COG.

(PDF)
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