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ORTHOMADS: A deterministic MADS instance

with orthogonal directions ∗

Mark A. Abramson † Charles Audet ‡ J.E. Dennis Jr. §

Sébastien Le Digabel ¶
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Abstract

The purpose of this paper is to introduce a new way of choosing directions for

the Mesh Adaptive Direct Search (MADS) class of algorithms. The advantages of

this new ORTHOMADS instantiation of MADS are that the polling directions are

chosen deterministically, ensuring that the results of a given run are repeatable,

and that they are orthogonal to each other, therefore the convex cones of missed

directions at each iteration are minimal in size.

The convergence results for ORTHOMADS follow directly from those already

published for MADS, and they hold deterministically, rather than with probability

one, as for LTMADS, the first MADS instance. The initial numerical results are

quite good for both smooth and nonsmooth, and constrained and unconstrained

problems considered here.

Keywords: Mesh Adaptive Direct Search algorithms (MADS), deterministic, or-

thogonal directions, constrained optimization, nonlinear programming.
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1 Introduction

This paper considers optimization problems of the form

min
x∈Ω

f(x) ,

where f : Ω ⊂ R
n → R ∪ {∞} is typically evaluated through a black-box computer

simulation with no available derivatives, and Ω is a set of feasible points also defined

by black-box nonlinear constraint, or even Boolean, functions. Because no exploitable

information on the nature of f or Ω exists, we consider direct search methods which only

use functions evaluations to drive their search.

Mesh Adaptive Direct Search (MADS) is introduced in [4] as a SEARCH/POLL de-

rivative-free class of methods with strong convergence properties. It extends the Gener-

alized Pattern Search (GPS) method of [18]. The constraints are treated by the extreme

barrier approach, which simply rejects points outside Ω by setting their objective func-

tion value to∞. The first instance of this class of methods is called LTMADS.

LTMADS behaves well in practice, but it has drawbacks that we wish to correct in

this paper. First, there is a probabilistic component to the choice of polling directions.

For each new mesh size, a random direction is chosen to a current mesh point. That

direction is completed somewhat randomly to a positive spanning set of directions from

the current iterate to other current mesh points. The resulting algorithm is shown to

have Clarke stationary point convergence with probability one. However, it has been

observed [10] that this way of choosing polling directions can lead to undesirably large

angles between some of the members of the LTMADS polling set at a given iteration.

The purpose of this paper is to introduce a new variant of MADS, which we call OR-

THOMADS, that uses an orthogonal positive spanning set of polling directions and thus

avoids large angles between polling directions. In Figure 3, we show some experiments

in which the ORTHOMADS directions do seem better distributed than the LTMADS.

We show that ORTHOMADS shares the same theoretical convergence results as LT-

MADS, except that the convergence is not qualified by being of probability one. In the

tests given here, ORTHOMADS performs generally better than LTMADS.

ORTHOMADS is detailed in Section 2, where we show a deterministic way to con-

struct a polling set on the current mesh of orthogonal polling directions (the ORTHO-

MADS directions). Section 2 also gives the convergence results, based on those in [4].

Finally, we present numerical results in Section 3 and some concluding remarks in Sec-

tion 4.

Notation: Throughout the text, ‖ · ‖ denotes the ℓ2 norm, ei ∈ R
n is the ith coordinate

vector, and e ∈ R
n is the vector whose components are all equal to 1. Bε(x) denotes the

open ball of radius ε around x.
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2 The ORTHOMADS algorithm

The ORTHOMADS algorithm is described in this section. We will not give details for the

MADS class of algorithms and its LTMADS instantiation, since they are available in [4].

Each MADS iteration k is separated into two steps, the SEARCH and the POLL, where

the objective function f and the test for feasibility are evaluated at finitely many trial

points. These trial points lie on the mesh Mk defined by

Mk = {x + ∆m
k Dz : x ∈ Vk, z ∈ N

nD} ⊂ R
n ,

where Vk ⊂ R
n is the set of all evaluated points by the start of the iteration, ∆m

k ∈ R+

is the mesh size parameter at iteration k, and D is a matrix in R
n×nD composed of nD

directions in R
n. This paper focuses on the POLL step which is characterized by the set

of trial points

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂ Mk ,

where xk is the POLL center at iteration k and Dk is the set of POLL directions, which

have to form a positive spanning set and to be constructed so that POLL trial points lie

on the mesh Mk. In GPS, a related method, the directions contained in Dk are always

chosen among the columns of D. Therefore, in GPS, there is only the same finite number

of possibilities for selecting the directions in every Dk.

The differences between LTMADS and ORTHOMADS lie in the way to generate the

directions in Dk: With LTMADS, Dk is randomly generated and directions are not nec-

essarily orthogonal, possibly leading to large angles between directions and large unex-

plored convex cones of directions at a given step. However, the union of all normalized

LTMADS directions over all iterations k is dense in the unit sphere with probability one.

ORTHOMADS introduces a new way to generate the POLL directions Dk. This new

method is deterministic and generates orthogonal directions, which together with their

negatives form Dk, and such that the union of all normalized ORTHOMADS directions

over all iterations is dense in the unit sphere. Furthermore, the components of these

directions are integer, so that POLL points lie on the mesh defined with D = [In − In],
where In is the identity matrix in dimension n. The orthogonality of the ORTHOMADS

directions offers a better distribution of the POLL trial points in the search space, and the

advantage of determinism is that numerical results are now easily reproducible. Because

of the random component of LTMADS, we felt that numerical experiments had to be

performed on series of several runs to show the reader the variations in the results.

At each iteration of ORTHOMADS, the main steps for the construction of these di-

rections are as follows. First, the pseudo-random Halton sequence produces one vector

in [0, 1]n (Subsection 2.1). Second, this vector is scaled and rounded to an appropriate

length (Subsection 2.2). The resulting direction is called the adjusted Halton direction.

Third, the Householder transformation is then applied to the adjusted Halton direction,

producing n orthogonal and integer vectors, forming a basis for R
n (Subsection 2.3).
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Finally, the basis is completed to a positive basis formed by 2n ORTHOMADS POLL

directions Dk, by including in Dk the basis and its negatives (Subsection 2.4). Figure 1

summarizes these steps, and will be referred to throughout the section.
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1

scaling and rounding Householder

1

1

1

qt,ℓ

−Ht,ℓe1

−Ht,ℓe2

1

Ht,ℓe1

Ht,ℓe2

POLL directions

1

√
8

(2ut − e)

‖2ut − e‖

Figure 1: Example with n = 2 and (t, ℓ) = (6, 3). The Halton direction is ut =
(3/8, 2/9)T , the adjusted Halton direction qt,ℓ = (−1,−2)T with αt,ℓ = 2 and the set of

POLL directions Dk = [Ht,ℓ − Ht,ℓ] with Ht,ℓe1 = (3,−4)T and Ht,ℓe2 = (−4,−3)T .

Every POLL direction d ∈ Dk satisfies ∆m
k ‖d‖ = 5/64 < ∆p

k = 1/8.

In this section we show that the ORTHOMADS directions meet all the conditions

detailed in [2, 4], so that ORTHOMADS is a valid MADS instance and thus inherits all of

its convergence properties.

2.1 The Halton sequence ut

Halton [11] introduced a deterministic family of sequences that grow dense in the hy-

percube [0, 1]n. We consider the simplest sequence of this family, whose tth element

is

ut = (ut,p1
, ut,p2

, . . . , ut,pn)T ∈ [0, 1]n

where p1 = 2, p2 = 3, p3 = 5 and pj is the jth prime number, and ut,p is the radical-

inverse function in base p. More precisely,

ut,p =
∞

∑

r=0

at,r,p

p1+r
,

3



where the at,r,p ∈ Z+ are the unique coefficients of the base p expansion of t:

t =
∞

∑

r=0

at,r,pp
r .

Table 1 describes the first five elements of ut for n = 4 (for example, u5,3 = 1× 3−2 +
2 × 3−1 = 7

9
). Our specific sequence of ut vectors is from this point addressed as the

sequence of Halton directions.

Table 1: The sequence of Halton directions for n = 4 and t = 0, 1, . . . , 6.

t
t in base ut

2 3 5 7 ut,2 ut,3 ut,5 ut,7

0 0 0 0 0 0 0 0 0
1 1 1 1 1 1/2 1/3 1/5 1/7
2 10 2 2 2 1/4 2/3 2/5 2/7
3 11 10 3 3 3/4 1/9 3/5 3/7
4 100 11 4 4 1/8 4/9 4/5 4/7
5 101 12 10 5 5/8 7/9 1/25 5/7
6 110 20 11 6 3/8 2/9 6/25 6/7

In order to remove the linear correlation of the last columns of ut, it is proposed

in [15] to exclude initial points of the Halton sequence. In the present work, we start the

sequence at t = n + 1.

The following properties will be used in Subsection 2.2:

2ut − e = 0 ⇔ n = t = 1 (1)

|2ut,pi
− 1| = |2ut,pj

− 1| ⇔ t = 0 . (2)

Property (2) follows from the fact that ut,pi
and ut,pj

can be written as reduced fractions

with denominators that are powers of different prime numbers pi and pj .

The next result shows that the union of all the directions in the sequence of Halton

is dense in [0, 1]n, i.e. any direction v ∈ [0, 1]n is an accumulation point of the sequence

{ut}∞t=1.

Proposition 2.1 The Halton sequence {ut}∞t=1 is dense in [0, 1]n.

Proof. It suffices to show that for any vector v ∈ [0, 1]n and any ε > 0, there exists an

integer t such that ‖ut − v‖ < ε. A construction of such an integer t involves solving a

system of n Diophantine equations, and existence of a solution is ensured by the Chinese

Remainder Theorem [8], and by the fact that prime numbers are used in the definition of

ut. We refer the reader to [11] for a detailed proof.

4
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2.2 The adjusted Halton direction qt,ℓ

The directions in Dk used in the POLL step of MADS cannot be arbitrarily chosen, they

must satisfy precise requirements. The Halton directions ut do not satisfy these require-

ments and the first steps toward generating a satisfactory set Dk are to translate, scale

and round ut.

These operations depend on another integer parameter, ℓ, which is related to the

mesh size parameter ∆m
k (this relationship with ∆m

k is unimportant at this point and will

be detailed in Subsection 2.4). The parameter ℓ is used to transform the direction ut

into the adjusted Halton direction qt,ℓ ∈ Z
n, a direction whose norm is close to 2|ℓ|/2.

Furthermore, the normalized direction
qt,ℓ

‖qt,ℓ‖ will be constructed so that it is close to
2ut−e

‖2ut−e‖ . We already observed in (1) that 2ut− e = 0 is possible only if n = 1 and t = 1,

and our algorithm never uses t = 1 (we begin our Halton sequence at t = n + 1, see

Subsection 2.4).

In order to define qt,ℓ, we first introduce the following sequence of functions:

qt(α) = round

(

α
2ut − e

‖2ut − e‖

)

∈ Z
n ∩

[

−α− 1

2
, α +

1

2

]n

where α ∈ R+ is a scaling factor, and ut is the tth Halton direction. The function qt(·) is

a monotone non-decreasing step function on R+. Let αt,ℓ be a scalar such that ‖qt(αt,ℓ)‖
is as close as possible to 2|ℓ|/2, without exceeding it:

αt,ℓ ∈ argmax
α∈R+

‖qt(α)‖

s.t. ‖qt(α)‖ ≤ 2|ℓ|/2 .
(3)

Problem (3) can easily be solved using a bisection method. The adjusted Halton direction

qt,ℓ is defined to be equal to qt(αt,ℓ), and the following Lemma ensures that qt,ℓ is a

nonzero integer vector:

Lemma 2.2 If t 6= 0, the adjusted Halton direction satisfies ‖qt,ℓ‖ ≥ 1.

Proof. From (2), if t 6= 0 and α = ‖2ut−e‖
2‖2ut−e‖∞ , then ‖qt(α)‖ = 1 ≤ 2|ℓ|/2 for all ℓ.

The following lemma gives a lower bound on the value of αt,ℓ. It will be used later

to justify that αt,ℓ grows large with ℓ.

Lemma 2.3 The optimal solution of Problem (3) satisfies αt,ℓ ≥
2|ℓ|/2

√
n
− 1

2
.

Proof. Let αt,ℓ be an optimal solution of Problem (3) and set qt,ℓ = qt(αt,ℓ). Then every

5
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feasible solution α to Problem (3) satisfies

‖qt(α)‖2 =

∥

∥

∥

∥

round

(

α(2ut − e)

‖2ut − e‖

)∥

∥

∥

∥

2

=
n

∑

i=1

round

(

α(2ui
t − 1)

‖2ut − e‖

)2

≤
n

∑

i=1

(

α +
1

2

)2

= n

(

α +
1

2

)2

.

Define β = 2|ℓ|/2√
n
− 1

2
. Then β is feasible for Problem (3), since ‖qt(β)‖2 ≤ n(β + 1

2
)2 =

2|ℓ|; therefore, αt,ℓ ≥ β.

Table 2 shows elements of the sequences ut and qt,ℓ for n = 4 and eight pairs (t, ℓ)
whose values are compatible with the ORTHOMADS algorithm presented in Subsec-

tion 2.4. The values of αt,ℓ and the square norm ‖qt,ℓ‖2 are also reported. One can

also notice that αt,ℓ often differs from 2|ℓ|/2. In the example illustrated in Figure 1,

(t, ℓ) = (6, 3) and qt(α) = round
(

α√
481

(−9,−20)T
)

. An optimal solution of (3) is

αt,ℓ = 2 and satisfies ‖qt,ℓ‖ =
√

5 <
√

8 = 2|ℓ|/2 < ‖qt(2
|ℓ|/2)‖ = ‖(−1,−3)T‖ =

√
10.

Table 2: The sequence of Halton directions ut and the adjusted Halton directions qt,ℓ for

n = 4 and eight pairs (t, ℓ).

(t, ℓ)
ut αt,ℓ qt,ℓ ‖qt,ℓ‖2ut,2 ut,3 ut,5 ut,7

(5, 0) 5/8 7/9 1/25 5/7 1.0 0 0 −1 0 1
(6, 1) 3/8 2/9 6/25 6/7 1.0 0 −1 0 1 2
(7, 2) 7/8 5/9 11/25 1/49 1.0 1 0 0 −1 2
(8, 3) 1/16 8/9 16/25 8/49 2.5 −2 1 1 −1 7
(9, 4) 9/16 1/27 21/25 15/49 4.0 0 −3 2 −1 14

(10, 5) 5/16 10/27 2/25 22/49 5.5 −2 −1 −5 −1 31
(11, 6) 13/16 19/27 7/25 29/49 7.7 5 4 −4 2 61
(12, 7) 3/16 4/27 12/25 36/49 11.0 −7 −7 0 5 123

The following proposition gives a property of the scaling and rounding operations,

which transform a vector v into q = round (αv/‖u‖). The property states that the

directions v/‖v‖ and q/‖q‖ are arbitrarily close for sufficient large values of α:

6
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Proposition 2.4 Let v 6= 0 be a vector in R
n. For any ε > 0, if α >

2
√

n

ε
+

√
n

2
and

q = round

(

α
v

‖v‖

)

6= 0, then

∥

∥

∥

∥

q

‖q‖ −
v

‖v‖

∥

∥

∥

∥

<
ε

2
.

Proof. Consider ε > 0 and α > 2
√

n/ε +
√

n/2. The vector q may be expressed as

q = α
v

‖v‖ + δ, where δ = (δ1, δ2, . . . , δn)T and |δi| < 1/2 for all i = 1, 2, . . . , n. It

follows that
∥

∥

∥

∥

q

‖q‖ −
v

‖v‖

∥

∥

∥

∥

=

∥

∥

∥

∥

(

α

‖q‖ − 1

)

v

‖v‖ +
δ

‖q‖

∥

∥

∥

∥

≤
∥

∥

∥

∥

(

α

‖q‖ − 1

)

v

‖v‖

∥

∥

∥

∥

+

∥

∥

∥

∥

δ

‖q‖

∥

∥

∥

∥

=
|α− ‖q‖|
‖q‖ +

‖δ‖
‖q‖ .

The norm of q can be bounded with α
‖v‖
‖v‖ − ‖δ‖ ≤ ‖q‖ ≤ α

‖v‖
‖v‖ + ‖δ‖ and therefore

|α− ‖q‖| ≤ ‖δ‖. Furthermore, α > 2
√

n/ε +
√

n/2 >
√

n/2 and ‖δ‖ <
√

n/2 implies

that α satisfies 0 < α− ‖δ‖. It follows that

∥

∥

∥

∥

q

‖q‖ −
v

‖v‖

∥

∥

∥

∥

≤ 2‖δ‖
‖q‖ ≤

2‖δ‖
α− ‖δ‖ <

√
n

α−√n/2
<

ε

2
.

2.3 Construction of an orthogonal integer basis

This subsection gives a way to transform a sequence of directions into a sequence of

orthogonal bases. Given an integer nonzero vector q ∈ Z
n, we apply the (symmetric)

scaled Householder transformation [12] to construct an orthogonal basis for R
n com-

posed of integer vectors:

H = ‖q‖2(In − 2vvT ), where v =
q

‖q‖ . (4)

Proposition 2.5 The columns of H form an integer orthogonal basis for R
n.

Proof. First, the columns of H are mutually orthogonal, since vT v = 1 and

HT H = ‖q‖4(In − 2vvT )T (In − 2vvT )

= ‖q‖4(In − 2vvT − 2vvT + 4vvT vvT ) = ‖q‖4In.

7
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Second, by dividing the previous equation by ‖q‖4 and applying symmetry, we reveal

the inverse of H as H−1 = 1
‖q‖4 H . Since H−1 exists, the columns of H form a basis in

R
n. Finally, the entries of

H = ‖q‖2In − 2‖q‖2 q

‖q‖
qT

‖q‖ = ‖q‖2In − 2qqT

are integer, since q and ‖q‖2 are integer.

The next proposition shows that the Householder transformation applied to a dense

set of normalized directions produces a dense set of normalized directions:

Proposition 2.6 For t = 1, 2, . . ., let vt = qt

‖qt‖ and Ht = ‖qt‖2(In − 2vtv
T
t ). If {vt}∞t=1

is dense on the unit sphere, then the normalized sequence composed of the ith columns

of Ht,
{

Htei

‖Htei‖

}∞

t=1
is dense on the unit sphere.

Proof. Let w ∈ R
n with ‖w‖ = 1 be an arbitrarily unit vector, ε > 0 be some small

positive number, and i ∈ {1, 2, . . . , n} be the index of a column. For n > 1 (n = 1 is

trivial), we need to show that there exists an index t ∈ N such that the ith column of Ht,

Htei, satisfies
∥

∥

∥

∥

Htei

‖Htei‖
− w

∥

∥

∥

∥

< ε.

First, observe that ‖Htei‖ =
√

eT
i HT

t Htei = ‖qt‖2, and therefore Htei

‖Htei‖ = ei− 2vtv
T
t ei.

Now, define the vector

d =

{

1√
2(1−wi)

(ei − w) if wi < 1,

ei+1 (the sum i + 1 is modulo n) otherwise.

Observe that if wi = 1 then the vector d satisfies ‖d‖ = 1 and 2did = 0 = ei−w, and if

wi < 1 then

‖d‖ =
√

dT d =

√

1

2(1− wi)
(ei − w)T (ei − w) = 1,

2did =
1

(1− wi)
(ei − w)i(ei − w) = ei − w.

By assumption, {vt}∞t=1 is dense on the unit sphere, and therefore there exists some

index t such that vt = d+δ, where δ ∈ R
n is small enough to satisfy ‖δi(d+δ)+diδ‖ <

8
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ε/2. The proof may be completed as follows:

∥

∥

∥

∥

Htei

‖Htei‖
− w

∥

∥

∥

∥

=
∥

∥ei − 2vtv
T
t ei − w

∥

∥

=
∥

∥ei − 2(d + δ)(d + δ)T ei − w
∥

∥

= ‖ei − 2(di + δi)(d + δ)− w‖
= ‖ei − 2did− w − 2(δi(d + δ) + diδ)‖
= ‖ei − (ei − w)− w − 2(δi(d + δ) + diδ)‖
= 2 ‖δi(d + δ) + diδ‖ < ε.

In Figure 1, the Householder transformation is applied to qt,ℓ = (−1,−2)T and

produces the integer orthogonal basis Ht,ℓ =

[

3 −4
−4 −3

]

.

2.4 The ORTHOMADS instance of MADS

The new ORTHOMADS instance of MADS can be now defined by combining the com-

ponents introduced in Subsections 2.1–2.3. The POLL set Pk used by ORTHOMADS at

iteration k is entirely determined by the values of the pair tk and ℓk. The tthk element of

the Halton sequence utk is used to create the adjusted Halton direction qtk,ℓk
whose norm

is as close as possible to 2|ℓk|/2. The Householder transformation on qtk,ℓk
produces an

orthogonal integer basis Htk,ℓk
, and the norm of each column is close to 2|ℓk|.

The LTMADS and ORTHOMADS algorithms are identical except for the construction

of the set Pk and the POLL directions Dk. The set of directions D = [In − In] defining

the mesh Mk and the mesh update parameters τ = 4, w− = −1 and w+ = 1 are the same

for both algorithms. The mesh size parameter ∆m
k and the POLL size parameter ∆p

k are

still defined with the integer ℓk, except that it is allowed to be negative. This extension is

not specific to ORTHOMADS and can be applied in LTMADS as well: at each iteration

k, the POLL and mesh size parameters are entirely defined by the value of ℓk:

∆p
k = 2−ℓk and ∆m

k =

{

4−ℓk if ℓk > 0
1 otherwise.

(5)

At iteration k = 0, ℓk is set to 1 and ∆m
0 = ∆p

0 = 1. The mesh and POLL size parameters

always satisfy ∆m
k ≤ ∆p

k and ∆m
k 2|ℓk| = ∆p

k.

In the update step of iteration k, if no new incumbent is found, the iteration is said

to be unsuccessful and ℓk+1 ← ℓk + 1. Otherwise, the iteration is a success and ℓk+1 ←
ℓk − 1. The MADS algorithm generates POLL trial points at a distance of order ∆p

k from

the POLL center, on a mesh Mk of size ∆m
k . At an unsuccessful iteration, ∆m

k is reduced

9
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[0] Initializations
x0 ∈ Ω, ℓ0 ← 0, k ← 0

[1] Iteration k
SEARCH (optional)

evaluate f on Sk ⊂Mk

POLL (optional is the SEARCH was successful)

if the POLL size is the smallest one so far

(i.e., if ∆p
k = min{∆p

j : j = 0, 1, . . . , k})
tk ← ℓk + n + 1

else (i.e., smaller POLL sizes were considered)

tk ← max{tj : j = 0, 1, . . . , k − 1}
compute utk , qtk,ℓk

, Htk,ℓk
, and Dk = [Htk,ℓk

−Htk,ℓk
]

evaluate f on Pk ⊂Mk

[2] Updates
if the iteration is successful

xk+1 ← xs ∈ Sk or xp ∈ Pk

ℓk+1 ← ℓk − 1
else (iteration failure)

xk+1 ← xk

ℓk+1 ← ℓk + 1
k ← k + 1
goto [1] if no stopping condition is met

Figure 2: The ORTHOMADS algorithm.

faster than ∆p
k and the number of possible POLL trial points increases, allowing more

flexibility in the choice of the POLL directions Dk.

Figure 2 describes our algorithm. The POLL directions Dk depend entirely on the

two integers tk and ℓk. These integers are chosen to ensure that there will be a sequence

of unsuccessful iterations for which the mesh size parameter goes to zero, and such that

the directions used in that subsequence will be the tail of the entire Halton sequence.

In order to accomplish that goal, we keep track of the value of the smallest POLL size

parameter visited so far. At every iteration where ∆p
k is equal to that value, we set

tk = ℓk + n + 1. A consequence of this way of fixing tk is that the set of ordered indices

U := {k1, k2, . . .} = {k : iteration k is unsuccessful, and ∆p
k ≤ ∆p

j ∀j = 0, 1, . . . k}

satisfies (tk1
, ℓk1

) = (n+1, 0), (tk2
, ℓk2

) = (n+2, 1), . . . , (tki
, ℓki

) = (n+ i, i− 1), and

the set of Halton directions {utk}k∈U is precisely {ut}∞t=n+1.

At the other iterations, those for which smaller POLL sizes were previously consid-

ered, we just keep increasing tk so that a new Halton direction is used. Examples of
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Table 3: Example of ORTHOMADS iterations for n = 4. Iterations k ∈ {4, 5, 8} cor-

respond to failed iterations with consecutive Halton elements tk = 5, 6 and 7 satisfying

tk = ℓk + n + 1.

k Succ/Fail (tk , ℓk) ∆m
k ∆p

k ‖Dkei‖
0 S (5 , 0) 1 1 1
1 S (6 , −1) 1 2 2
2 F (7 , −2) 1 4 4
3 F (8 , −1) 1 2 2
4 F (5 , 0) 1 1 1
5 F (6 , 1) 1/4 1/2 2
6 S (7 , 2) 1/16 1/4 4
7 F (9 , 1) 1/4 1/2 2
8 F (7 , 2) 1/16 1/4 5
9 S (8 , 3) 1/64 1/8 8

pairs (tk, ℓk) can be seen in Table 3. The boldface entries are those where the POLL size

parameter is the smallest one so far. In this example, the first three indices of U would

be {4, 5, 8}.
As in LTMADS, the basis Htk,ℓk

is completed to a maximal positive basis composed

of 2n directions,

Dk = [Htk,ℓk
−Htk,ℓk

],

the set of POLL directions. A minimal positive basis with n + 1 directions is not con-

sidered in order to keep orthogonal directions. Table 4 illustrates ORTHOMADS bases

Htk,ℓk
, with possible pairs (tk, ℓk).

Notice that any direction Dkei (1 ≤ i ≤ 2n) satisfies ‖Dkei‖ = ‖qt,ℓ‖2 ≤ (2|ℓ|/2)2 =
2|ℓ| and ‖Dkei‖ ≤ 2|ℓ|. Therefore, the POLL trial point xk + ∆m

k Dkei is at an euclidean

distance of at most ∆m
k 2|ℓ| = ∆p

k from the POLL center. This distance is comparable to

that used in LTMADS, where the POLL trial points are exactly at a distance ∆p
k (using

the ℓ∞ norm) from the POLL center.

We conclude this section with the following propositions that show that ORTHOMADS

has the same convergence properties as in [4] with no need for a probabilistic argument.

Proposition 2.7 The set of normalized directions
{

qt,ℓ

‖qt,ℓ‖

}∞

t=1
with ℓ = t−n−1 is dense

in the unit sphere.

Proof. Let ε > 0 and d ∈ R
n with ‖d‖ = 1. Proposition 2.1 states that the Halton

sequence {ut}∞t=1 is dense in the unit cube [0, 1]n. Therefore, there exists an index t such

that 2|t−n−1|/2√
n
− 1

2
> 2

√
n

ε
+

√
n

2
and

∥

∥

∥

2ut−e
‖2ut−e‖ − d

∥

∥

∥
≤ ε

2
.
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Table 4: A sequence of ORTHOMADS bases corresponding to seven consecutive failed

iterations. Pairs (tk, ℓk) correspond to consecutive Halton elements t = 5, 6, . . . , 12 with

tk = ℓk + n + 1.

(tk, ℓk) Htk,ℓk
(tk, ℓk) Htk,ℓk

‖Htk,ℓk
ei‖ ‖Htk,ℓk

ei‖

(5, 0)

1













1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1













(9, 4)

14













14 0 0 0

0 −4 12 −6

0 12 6 4

0 −6 4 12













(6, 1)

2













2 0 0 0

0 0 0 2

0 0 2 0

0 2 0 0













(10, 5)

31













23 −4 −20 −4

−4 29 −10 −2

−20 −10 −19 −10

−4 −2 −10 29













(7, 2)

2













0 0 0 2

0 2 0 0

0 0 2 0

2 0 0 0













(11, 6)

61













11 −40 40 −20

−40 29 32 −16

40 32 29 16

−20 −16 16 53













(8, 3)

7













−1 4 4 −4

4 5 −2 2

4 −2 5 2

−4 2 2 5













(12, 7)

123













25 −98 0 70

−98 25 0 70

0 0 123 0

70 70 0 73













12



Lemma 2.3 ensures that that αt,ℓ ≥ 2|ℓ|/2√
n
− 1

2
> 2

√
n

ε
+

√
n

2
. Combining this last

inequality with Proposition 2.4 gives

∥

∥

∥

∥

qt,ℓ

‖qt,ℓ‖
− d

∥

∥

∥

∥

≤
∥

∥

∥

∥

qt,ℓ

‖qt,ℓ‖
− 2ut − e

‖2ut − e‖

∥

∥

∥

∥

+

∥

∥

∥

∥

2ut − e

‖2ut − e‖ − d

∥

∥

∥

∥

<
ε

2
+

ε

2
= ε .

This allows us to state our main result:

Theorem 2.8 ORTHOMADS is a valid MADS instance.

Proof. In order to show that ORTHOMADS is a valid MADS instance we need to show

that the POLL directions satisfy the following four properties [2, 4]:

• Any direction Dkei (1 ≤ i ≤ 2n) can be written as a non-negative integer combi-

nation of the directions of D: This is the case by construction.

• The distance from the POLL center xk to a POLL trial point (in ℓ∞ norm) has to be

bounded above by ∆p
k: This is also the case by construction because we ensured

that ‖Dkei‖ ≤ 2|ℓk| for all i in {1, 2, ..., 2n} and ‖∆m
k Dkei‖∞ ≤ ‖∆m

k Dkei‖ ≤
∆m

k 2|ℓk| = ∆p
k.

• Limits (as defined in [7]) of convergent subsequences of the normalized sets Dk =
{d/‖d‖ : d ∈ Dk} are positive spanning sets. This can be shown the same way as

in [2] where the proof for LTMADS is detailed, since, for ORTHOMADS and with

Htk,ℓk
= {d/‖d‖ : d ∈ Htk,ℓk

}, det
(

Htk,ℓk

)

= −1.

• The set of normalized directions used over all failed iterations is dense in the unit

sphere: The strategy chosen for the values of tk and ℓk ensures that there exists a

sequence of failed iterations corresponding to consecutive values of tk. These iter-

ations k ∈ U can be chosen to correspond to large values of ℓk because, from [4],

lim
k∈U
k→∞

∆m
k = 0, and ∆m

k = 4−ℓk for ℓk ≥ 0. For k ∈ U , the sets of directions

{Dk}k∈U are constructed from consecutive directions qtk,ℓk
, which are dense in

the unit sphere after normalization (Proposition 2.7). Then, from Proposition 2.6

and since Dk = [Htk,ℓk
−Htk,ℓk

], the set of normalized directions
{

Dkei

‖Dkei‖

}

k∈U
is

also dense in the unit sphere for all i = 1, 2, . . . , 2n.

13
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3 Numerical Tests

In this section, ORTHOMADS is compared to its predecessor LTMADS [4] and to the

GPS method [18], on 45 problems from the literature. In the MADS algorithms, the

theory supports handling constraints by the extreme barrier approach: Points outside Ω
are simply ignored and f is not evaluated. For GPS, the extreme barrier approach is

supported by the theory only for a finite number of linear constraints [13]. Still, for

comparison, we apply two different approaches: the extreme barrier (GPS-EB), and the

filter method described in [3] (GPS-FILTER), which has stronger theoretical support.

Because of its random behavior, 30 instances of LTMADS are performed for each

problem. GPS and ORTHOMADS are scored by comparing them against the 30 LTMADS

instances. A score of s for GPS or ORTHOMADS means that this instance gave a value

of f at least as good as s of the 30 LTMADS instances, with a relative precision of 1%.

The worst score is 0 and the perfect score corresponds to 30. We consider that a bad

instance has a score less than 10, an acceptable instance is between 10 and 19, and a

good instance has a score greater than or equal to 20.

The integer ℓk (see (5)), defining the mesh and POLL size parameters ∆m
k and ∆p

k

at iteration k, is allowed to be negative for both LTMADS and ORTHOMADS. Maxi-

mal positive bases (2n directions) are used in the three methods, as is the opportunistic

strategy (the POLL is interrupted at the first success), and the optimist strategy: after a

successful point has been found, a SEARCH point is generated further along the same

direction. No other SEARCH is performed. The stopping criteria is satisfied when the

POLL size parameter ∆p
k drops below 1E-12 or when the number of function evaluations

reaches 1000n.

The methods are tested on 45 problems divided into 4 groups: our choice of smooth

and nonsmooth unconstrained problems is the same as in [10] and [9], respectively, with

21 smooth problems from the CUTEr test set [16] and 13 nonsmooth problems from [14],

which is a compilation of nonsmooth problems from the literature. We also tested on 9

constrained problems from [5, 6, 14], and in addition, we added two problems from [1]

that correspond to real applications.

All results and problem descriptions are summarized in Tables 5–9, where f(x∗)
corresponds to the best known minimal value of f , value to the final value of f for each

method, and evals to the number of function evaluations that each method performed.

Tables 5 and 6 show results on the 21 unconstrained smooth problems from CUTEr.

ORTHOMADS has a perfect score on 17 of these problems. Table 7 displays results on

the 13 unconstrained nonsmooth problems, where ORTHOMADS achieves good scores

on 7 problems. Table 8 shows results for the 9 constrained problems. The same number

of problems (4) is considered good and bad for ORTHOMADS. Finally, Table 9 presents

results for the two real applications, and ORTHOMADS has perfect scores on both of

them.

Table 10 summarizes the results. The first observation is that both MADS instances

14



Table 5: CUTEr unconstrained smooth problems (1 of 2). A score of s for a method

indicates that the final f value is at least as good as s of the 30 LTMADS runs (with a

relative error of 1%).

Problem
LTMADS×30

GPS ORTHOMADS
worst best

n f(x∗) evals evals evals
score

evals
score

value value value value

ARWHEAD 6128 650 1039
30

660
30

10 0.00 0.00 0.00 0.00 0.00
ARWHEAD 20000 1285 2079

30
1320

30
20 0.00 0.00 0.00 0.00 0.00
BDQRTIC 6320 4497 3510

30
5763

30
10 11.9 18.3 18.3 18.3 18.3
BDQRTIC 20000 17884 17074

30
20000

30
20 35.4 58.3 58.3 58.3 58.3
BIGGS6 831 570 764

30
713

30
6 0.00 2.06 2.06 2.06 2.06

BROWNAL10 10000 10000 10000
1

10000
3

10 0.00 0.07 0.00 0.06 0.04
BROWNAL20 20000 20000 20000

3
20000

20
20 0.00 0.34 0.00 0.16 0.01
PENALTY1 10000 10000 10000

0
10000

30
10 7.09E-5 7.09E-5 7.09E-5 8.82E-5 7.09E-5
PENALTY1 20000 20000 20000

0
20000

30
20 1.58E-4 1.58E-4 1.58E-4 1.88E-4 1.58E-4
PENALTY2 10000 10000 10000

30
10000

30
10 0.294E-3 1.280E-3 1.241E-3 1.243E-3 1.250E-3
PENALTY2 20000 20000 20000

0
20000

30
20 0.829E-2 1.080E-2 1.078E-2 1.152E-2 1.079E-2

. . . continued on Table 6
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Table 6: CUTEr unconstrained smooth problems (2 of 2). A score of s for a method

indicates that the final f value is at least as good as s of the 30 LTMADS runs (with a

relative error of 1%).

Problem
LTMADS×30

GPS ORTHOMADS
worst best

n f(x∗) evals evals evals
score

evals
score

value value value value

POWELLSG 12000 12000 10093
30

12000
30

12 0.00 0.00 0.00 0.00 0.00
POWELLSG 20000 20000 20000

30
20000

30
20 0.00 0.00 0.00 0.00 0.00
SROSENBR 10000 10000 10000

30
10000

25
10 0.00 6.31 0.00 0.00 0.06
SROSENBR 20000 20000 20000

30
1958

30
20 0.00 16.52 0.48 0.00 0.00
TRIDIA 10000 7591 9317

30
10000

30
10 0.00 0.00 0.00 0.00 0.00
TRIDIA 20000 20000 20000

30
20000

30
20 0.00 0.00 0.00 0.00 0.00
VARDIM 1000 8163 10000

0
10000

30
10 0.00 0.00 0.00 4.01 0.00
VARDIM 20000 20000 20000

0
20000

0
20 0.00 0.00 0.00 110.59 110.84
WOODS 10951 7327 8433

30
9479

30
12 0.00 104.91 104.91 104.91 104.91
WOODS 20000 19181 20000

30
20000

30
20 0.00 174.84 174.84 174.84 174.84

average scores 20.2 26.6
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Table 7: Results for unconstrained nonsmooth problems from [14]. A score of s for a

method indicates that the final f value is at least as good as s of the 30 LTMADS runs

(with a relative error of 1%).

Problem
LTMADS×30

GPS ORTHOMADS
worst best

n f(x∗) evals evals evals
score

evals
score

value value value value

ELATTAR 456 1795 2392
16

3984
20

6 0.560 8.021 0.563 1.714 1.504
EVD61 490 3280 920

5
4224

22
6 0.0349 1.6001 0.0417 0.5443 0.0709

FILTER 1293 1761 1132
7

1332
9

9 0.00619 0.00971 0.00797 0.00950 0.00935
GOFFIN 50000 50000 24097

30
16842

30
50 0.00 1.10 0.06 0.00 0.00
HS78 403 1026 819

13
405

13
5 −2.92 10.00 −2.88 0.00 0.00

L1HILB 17953 50000 8738
0

50000
14

50 0.00 1.84 0.04 3.95 0.22
MXHILB 11523 20377 9384

0
20755

3
50 0.00 0.280 0.003 0.976 0.197
OSBORNE2 2046 5414 1660

0
4555

20
11 0.0480 0.1703 0.0549 0.2799 0.1089
PBC1 1211 1127 677

2
1291

17
5 0.0223 0.4146 0.0343 0.3845 0.1602

POLAK2 1449 1742 1327
30

949
30

10 54.6 54.6 54.6 54.6 54.6
SHOR 1345 882 787

0
1087

30
5 22.6 22.9 22.6 23.5 22.8

WONG1 1161 2109 1100
30

1823
30

7 681 699 693 697 693
WONG2 5403 5403 1871

0
4977

0
10 24.3 31.4 24.8 47.4 32.8

average scores 10.2 18.3
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Table 8: Results for constrained problems. A score of s for a method indicates that the

final f value is at least as good as s of the 30 LTMADS runs (with a relative error of 1%).

Problem
LTMADS×30

GPS-FILTER GPS-EB ORTHOMADS
worst best

n m f(x∗) evals evals evals
score

evals
score

evals
score

value value value value value

CRESCENT10 [5] 1279 4473 2152
0

1172
0

5497
30

10 2 −9.00 −8.26 −8.95 −6.19 −2.32 −8.97
DISK10 [5] 1909 2626 2322

0
1143

0
2359

30
10 1 −17.3 −17.2 −17.3 −13.0 −10.0 −17.2
B250 [6] 60000 60000 15412

0
27773

0
60000

0
60 1 7.95 15.41 7.99 1142.01 1116.03 16.92
B500 [6] 16705 15359 11189

0
18912

0
29858

6
60 1 104 557 104 1235 1254 277
G2 [6] 3880 6461 2056

4
2689

29
5414

22
10 2 −0.728 −0.181 −0.728 −0.221 −0.706 −0.561
G2 [6] 10877 15722 6376

3
6551

29
20000

29
20 2 −0.804 −0.203 −0.736 −0.241 −0.721 −0.711
HS114 [14] 1506 2135 1756

0
1756

0
1661

4
9 6 −1769 −1012 −1312 −968 −968 −1016

MAD6 [14] 1122 1542 1378
22

1378
22

1671
7

5 7 0.102 0.113 0.102 0.103 0.103 0.108
PENTAGON [14] 859 2525 601

0
601

0
980

19
6 15 −1.86 −1.60 −1.86 0.00 0.00 −1.81

average scores 3.2 8.9 16.3
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Table 9: Results for real applications. A score of s for a method indicates that the final

f value is at least as good as s of the 30 LTMADS runs (with a relative error of 1%).

Displayed z values for problem STY are divided by 107.

Problem
LTMADS×30

GPS-FILTER GPS-EB ORTHOMADS
worst best

n m f(x∗) evals evals evals
score

evals
score

evals
score

value value value value value

MDO [1] 1767 15 2719
0

2048
0

1212
30

10 10 −3964 −2530 −3964 −1386 −1386 −3964
STY [1] 1590 1189 2073

22
2113

0
1214

30
8 11 −3.35 −2.88 −3.29 −3.11 −2.82 −3.27

average scores 11.0 0.0 30.0

outperform GPS. For 25 problems out of 45, ORTHOMADS found the same solution as

the best of 30 LTMADS runs. The new method solved 32 problems out of 45 problems

efficiently enough that, for these problems, the single run of ORTHOMADS was better

than two thirds of the 30 LTMADS runs. For 4 problems, the two methods performed

equally well, and for 9 problems, at least two thirds of the LTMADS runs gave a better

solution than the one produced by ORTHOMADS.

Table 10: Summary for the GPS and ORTHOMADS performances. F, E and O correspond

respectively to GPS-FILTER, GPS-EB, and ORTHOMADS. A bad instance has a score

between 0 and 9, an acceptable (acc.) instance a score between 10 and 19, a good

instance a score higher than 20 and a perfect (perf.) instance has a score of 30.

problems
average # of # of bad # of acc. # of good # of perf.

scores (on 30) problems instances instances instances instances

F E O F E O F E O F E O F E O

smooth 20.2 20.2 26.6 21 7 7 2 0 0 0 14 14 19 14 14 17
nonsmooth 10.2 10.2 18.3 13 8 8 3 2 2 3 3 3 7 3 3 4
constrained 3.2 8.9 16.3 9 8 6 4 0 0 1 1 3 4 0 0 2

real appli. 11.0 0.0 30.0 2 1 2 0 0 0 0 1 0 2 0 0 2

total or avg 13.5 14.2 22.3 45 24 23 9 2 2 4 19 20 32 17 17 25

19

I I I I I I I I 



Figure 3 illustrates the spread of the directions for both LTMADS and ORTHOMADS.

Rosenbrock’s function [17] with n = 2 and n = 3 was used with 2000 and 3000 eval-

uations, respectively. In the two-dimensional case, all the normalized directions used to

generate POLL trial points are directly represented on the top two subfigures. It is clear

that ORTHOMADS directions are well distributed on the unit circle. This is not the case

with LTMADS because half the directions correspond to either ±e1 or ±e2. For n = 3,

the two plots on the bottom represent the standard angles of the normalized directions

in spherical coordinates. There again it can be seen that ORTHOMADS directions have

a better distribution than those of LTMADS, since at least two thirds of the LTMADS

directions possess some null coordinates. On the subfigure using LTMADS with n = 3,

the horizontal bar at Φ = π/2 corresponds to the set of directions where z = 0. The

vertical bars at θ = ±π/2 correspond to directions with x = 0, and the one at θ = 0 and

θ = π correspond to directions with y = 0.
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Figure 3: LTMADS and ORTHOMADS normalized POLL directions on the Rosenbrock

function with n = 2 and n = 3.
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4 Discussion

This paper introduced ORTHOMADS, an alternative instantiation of the MADS class of

algorithms. The advantages of ORTHOMADS over the original LTMADS are that the

MADS directions are chosen deterministically, and that those directions are orthogonal

to each other. Moreover, ORTHOMADS inherits all of the MADS convergence properties,

without probabilistic arguments, and without additional parameters.

Intensive tests on 45 problems from the literature showed that both MADS instances

outperform the GPS algorithm, and that ORTHOMADS is at least as competitive as LT-

MADS, with a better distribution of the POLL directions.
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