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Orthonormal bases for spaces of continuous
and continuously differentiable functions
defined on a subset of 4,

Ann VERDOODT

Abstract

Let K be a non-archimedean valued field which contains Q.
and suppose that K is complete for the valuation | - |, which ex-
tends the p-adic valuation. Vj is the closure of the set {aq"|n =
0,1,2,...} where a and ¢ are two units of %,, ¢ not a root of unity.
C(Vy — K) (resp. C1(V; — K)) is the Banach space of continu-
ous functions (resp. continuously differentiable functions) from Vv,
to K. Our aim is to find orthonormal bases for C(V, — K) and
cYv, — K).

1 Introduction

The main aim of this paper is to find orthonormal bases for the spaces
C(Vq — K) of continuous and C1(Vy — K) of continuously differentiable
functions. Therefore we start by recalling some definitions and some
previous results. Let E be a non-archimedean Banach space over a
non-archimedean valued field L, E equipped with the norm || - {.Let
fi: f2, ... be a finite or infinite sequence of elements of E. We say that
this sequence is orthogonal if ||a; f1 + ... + arfil| = mazi<i<i{llaifil]}
for all k in IV {or for all k that do not exceed the length of the sequence)
and for all vy,...,ak in L. An orthogonal sequence fi, fo,... is called
orthonormal if ||f;|| = 1 for all 2. A sequence fy, fa,... of elements of E
is an orthonormal base of E if the sequence is orthonormal and also a
base. If M is a non-empty compact subset of L whithout isolated points,
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then C(M — L) is the Banach space of continuous functions from M
to L equipped with the supremum norm || - ||c. Let f be a function
from M to L. The first difference quotient ¢;f of the function f is
the function of two variables given by é1f(z,y) = I.(E:Eyﬁﬂl defined on
M x M\ A where A = {(z,z)|x € M}.We say that f is continuously
differentiable at a point b € M (f is C* at b) if lim(z)—p)01f(, ¥)
exists. The function f is called continuously differentiable ( f is a C!
function ) if f is continuously differentiable at b for all b in M. If f
is a function from M to L then f is continuously differentiable if and
only if the function ¢)f can (uniquely) be extended to a continuous
function on M x M. The set of all C; -functions from M to L is denoted
by CY{M = L), and CY{(M - L) C C(M = L). For f : M — L we
set ||flhh = sup{||S]loo, [#1fllc}. The function || - ||; is a norm on
CY{(M — L) making it into an L -Banach algebra. Since M is compact,
lIfll1 < oo if f is an element of C*(M — L) (these results concerning
continuously differentiable functions can be found in [2] or [5], chapter
27).

Let Z, be the ring of p-adic integers, @, the field of p-adic num-
bers, and K is a non-archimedean valued field, K containing @,, and
we suppose that K is complete for the valuation |- |, which extends
the p-adic valuation. IV denotes the set of natural numbers, and Vg
is the set of natural numbers without zero. Let a and ¢ be two units
of Zp, q not a root of unity. We define V; to be the closure of the set
{ag™n = 0,1,2,...}. For a description of the set V, we refer to [7],
section 2 or to (8], section 3. In section 3 our aim is to find orthonor-
mal bases for the Banach space C(V; — K). The results in section 3
can be seen as a sequel to the results in [9] and [8], sections 4,5 and
6. In section 4 we give necessary and sufficient conditions for a func-
tion f in C(V; — K) to be continuously differentiable, and we find an
orthonormal base for the Banach space C'1(V, — K).
Acknowledgement : I want to thank professor Van Hamme for the
advice he gave me during the preparation of this paper.

2 Preliminaries

Let us introduce the following :
[n]! = [nlln - 1]...[1] and [0]! = 1, where [n] = £ if n > 1.
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[glzm%ifnzk,[2]=0ifn<k.

- — z—agqt—1 .
i} = (aqﬁfa‘)’()ﬁjkff’;z‘)‘j_(_(aqi"faq,z_l) ifk>1, {2} = 1.
The sequence ({{}) forms an orthomormal base for C(V, — K) ([8],

corollary to lemma 8), analogous to Mahler's base for C(Z, — K) ({4]).
We also have [f] = {{} if z = ag¢™. If z is an element of @, with Henselde-

+oo n—1

velopment z = z a;p’, we then put z, = Z a,-pj (n € N). We
Jj=—oo J=-o0

write m < z, if m is one of the numbers zg, z1,... and we say that "m

is an initial part of x” or "x starts with m” (see |5], section 62). If n
s—1

3
belongs to N, n = Zajpj where a; # 0, then we put n_ = Zajpj.

rd —
We remark that n_ Jq n. Let us now define the sequence of ftjmctions
(ex(z}) in the following way : write ¥ € IV in the form k = i + mj,
0<i<m(i,j € IN). Then e is defined by

ex(z) = eirmi(z) = 1if 2 = ag*=(¢™)** where iy = i,7 9 ag, ex(z) = 0
otherwise.

The functions (ex(x)) form an orthonormal base for C(V; — K) ([9]),
analogous to van der Put’s base for C{Z, — K') (see [3] or [5], section 62).
We remark that {fqa} = ei(ag?) = 0if 7 < i and that {fq‘} = eilag’) = 1.
We shall use this frequently in the sequel. '

We shall construct new orthonormal bases for C(Vy; — K} using the
bases ({¢}) and (ex(z)). Therefore we introduce the following : For each
n € IN, let I, be a subset of the set {0,1,...,n} (In can also be empty

‘or can be equal to {0,1,...,n}). Let p(z) be a continuous function
of the following type p(z) = Z ai{f} + Z ajei(z) where each
i€l i€{0,1,....a\I
a; € K. For example, if I,, = {0,1,...,n}, then p(x) is a polynomial. If
Iy, is the subset of {0,1,...,n} consisting of all the even numbers, and
if a; = 1 for all 4, then p(z) = > {7} + 3 ei(x)
i€{0,1,...,n} i even i€{0,1,...,n},iodd

and one can think of several other examples. For functions of this type
we can prove the following lemmas

Lemma 1. Let p(x) be a continuous function of the type

p(z) = Z ai{f}+ Z aiei(z) (a; € K). Then the following
i€l $€40,1,....n\ I

are equivalent :
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1) Ip(eq™)| =1 and |p(ag®)| < 1 if0 < k < n.
2) lap| =1 and [ax| <1 if0 < k < n.

Proof. ‘
1) = 2) will be shown by induction. If [p(a)] < 1 then |ep] <
1.  Now suppose that |ag} < 1 if 0 < ¥ < n»n — 1. Then

Y al T Y ae(ed)] = lpled*t)] <

i€1aN{0,1,..k+1} {01 kI,
1 and by the induction hypothesis it follows that |ap] < 1
and we can conclude |a;] < 1 for all 0 < ¢ < n.  Since

I el + Y aieiag™)| = Ip(ag™)| = 1 we have |aq| = L.
i€l i€{0,1, N
2) = 1) is obvious.

Lemma 2. Let p(z) be a continuous function of the {type

plx) = Z ai{i} + Z aiei(z) (a;i € K). Then the following
i€l i€{0,1,. n\ Iy

are equivalent :

1) fiplleo < 1.

2) lag| £ 1 for all k with 0 < k < n.

Proof.

1) = 2) can be shown analogous as 1) = 2) of the previous lemma,
2) = 1} is obvious.

Let m be the smallest integer such that ¢™ =1 (mod p) (1 <m < p-—1).
There exists a ko such that ¢™ = 1 (mod p*), g™ # 1 (mod p*+1). If
(p, ko) = (2,1), ie. ¢ =3 (mod 4), then there exists a natural number
Nsuchthat g=14+24+2%, e =eo+e12+622° +...,c0=61=... =
eny—1=1,exy =0. Then we have

Lemma 3.

1) Let q™ = 1 (mod p*), ¢™ # 1 (mod p*o+1) with (p, ko) # (2,1).
Ifz,yeVy, |z —y| < p~*ott) then en(z) = en(y) if 0 < n < mpt.

2) Let g = 3 (mod 4), g = 1 +2+2%, ¢ = g9+ ,2 + 222 + ..,
co=¢€1=...=en-1 =1, en=0. Ifr,y €V, [z —y] £ p~ (V+2+1)
then ep(z) = en(y) f0<n < 2t (£ > 1).

Proo6f. This follows immediately from [8}, lemmas 2 and 3.



Orthonormal bases for spaces of continuous. . . 299

Lemma 4. Suppose p(z) is a continuous function with ||p|lec < 1 of the
following type : p(z) = Z ai{i} + Z: aiei(z) (e € K).

icl, i€{01,.. . n}\I,
1) Let ¢™ =1 (mod p*), ¢™ £ 1 (mod p*t!) with (p, ko) # (2,1). If
T,y EVy lz —yl < p %) then if j € N, 0 < n < mpt : |p(z) —
p(y)’| < 1/p and |27 — 7] < 1/p.
2) Let g = 3 (mod 4j, g = 1 +2+2%, ¢ = eg+ .2 + 222 + ..,
co=¢e1=...=en_1=1, ey =0. Ifz,y € Vy, lz—y| < p~N+2H) then
fieN,0<n< 2 (t>1): |p(x)? —p(y)| € 1/2 and |z¥ — 7| < 1/2.

Proof. It is clear that |as| < 1if0 < s < n (lemma 2). Suppose that z,y
and n are as in 1) (resp. 2)). Then |p(z) ~ p(y)| £ maxser, {las|[{E} —

{¥}} < 1/p (resp. < 1/2} by lemma 3 and {8}, lemmas 11 and 12.
-1

If j > 1 then |p(z)! — p(y)’| = [p(z) — p(y) IIZP(I Pply) 1Y < 1/p
(resp. < 1/2). So the lemma holds for j 6 N (the case j = 0 is
trivial). Further, if j > 1 then |2/ — 7| < | — y||2:c3y-7 1-8) < 1/p
(resp. < 1/2) so |7 — 7| < 1/p (resp. < 1/2) for all_;' € N.

Let for each n € IN J,, be a subset of the set {0,1,...,n}. Then we can
prove '

Lemma 5. Let p(z) and g(z) be continuous functions with ||p|lec < 1
and ||g|loc £ 1 of the form

p)= 3 aff} + Y aieilz), (0 € K)

icl i€{0,1,..n}\ 1
9(z) = Z bi{F} + > biei(z), (b; € K).
i€Jn ic{0,1,...,.n}\Jn

1) Let ¢™ = 1 (mod p*), ¢™ # 1 (mod p*oT1) with (p,ko) #(2,1). If
x,y €V, lz—y| < p kott) then ifi i € IN,0 < n < mpt : Jg(z)ip(z) -
q(y)p(y)’| < 1/p and [2'p(z)? — yip(x)i| < 1/p.

2) Let g = 3 (mod {), q = 14+242%, e = ep+ 12+ 222 +
cgo=¢€1=...=ey1=1,ey=0. Ifz,y €V, jx —y| < p~ (N+2+1)
then if i, € N, 0 < n < 2! (t > 1) : |g(z)p(z)! — ¢(y)’p(v)| < 1/2
and |a*p(z) — y'p(z)’| < 1/2.

Proof. Let x,y,n,i and j be as in 1} (resp. 2)) then
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lg(zYp(z) — a(¥)'p(v)| < max{|q(z)’p(z) — a(z)'p(¥)|; la(x)'p () -
aw)'r(¥)’l} _ _ _ _ _

< maz{|q(z)!|lp(=} ~ p(yV}, [p(¥)’|1e(z)* — ¢(¥)*}

< 1/p (resp. < 1/2) by lemma 5 and analogous

lz*p(z)’ — y*p(y)’] < maz{|z’p(z)? — 2’p(y)’], |='p(y)’ — ¥'p(W)[}

< maz{|z*{lp(z)’ — p)|, Ip(¥)’|l=* — ¥'[}

< 1/p (resp. < 1/2) by lemma 5

We shall need lemmas 6 and 7 for the construction of an orthonormal
base for C1(V, — K):

Lemmanﬁ.
G =3 flg oot
5=0
Proof. This follows immediately from [8], lemma 10 by putting first
s = n — k and then interchanging ¢ and j.

Definition. We define the sequence (pn) s follows :
pn= (") " -1lifn=im+;,0<j<mandi>0, p,=1ifn<m.

Lemma 7.
lenl = minica<n{le® — 11}, (n € INy).

Proof. This follows immediately from [8], lemmas 2 and 3.

3 Orthonormal bases for C(V, — K)

Using the lemmas 1-5 in section 2, we can make orthonormal bases for
C(Vq — K) with the aid of the following theorem :

Theorem 1. Let (pn(z)) and {gn(z)) be sequences of continuous func-
tions of the following form :

for each n pp(z) is of the form pup(z) = Zan,l{‘f} +
iGIn
Z angei(z) with lann] = 1 and with |eni] < 1

i€{0,1,..n N\
if 0 < i < n (ani € &), and for each n we have

gn(z) = zbn,i{:?} + Z bn,iei(x) with lgn(ag™)} = 1 and
i€Jn i€{0,1,...n\Jn
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bngl S 1if0 < i < n(bns € Q). If (jn) is a sequence in IN and
if (kn) is a sequence in Ny, then the sequences (gn(z)pn(z)*r) and
(z7mpp(z)*») form orthonormal bases for C(Vy — K).

Proof. This proof is analogous to the proof of (8], theorem 5. We remark
that for all n we have ||pnilec < 1 and ||gn||sc < 1 (lemma 2), and that
pn(z) and gn(z) are elements of C(V; — @,). By [1], 3.4.1 or {6}, p.
123-133 it suffices to prove that (gn(z)™pn(z)**) and (z¥p,(z)**) form
orthonormal bases for C(V, — @) and by [1] proposition 3.1.5 p. 82 it

suffices to prove that (gn(z)ipy(z)*) and (zf»pp(z)*=) form vectorial
bases for C(Vy — Fp) (where f(x) stands for the canonical projection
on C(Vg — Fp), if fis in C(V; — @,) with ||f|}ec < 1). We distinguish

two cases.

1) Let ¢™ = 1 (mod p*0), ¢™ # 1 {mod p***!) with (p, ko) # (2,1), define
C; the space of the functions from V; toF, constant on balls of the type
{z€Z :lz—al < p(kott)} o € V. Since C(Vy — Fy) = U<oCy ([8],
lemma 4 and its proof) it suffices to prove that (gn(z)7rpp(z)*=|n < mp?)
and (x7rpn(z)¥=|n < mp'} form bases for C;. By the proof of {8], lemma
4, we can write V,; as the union of mp? disjoint balls with radius p‘(k""‘t)
and with centers ag"(g™)*, 0 < r <m — 1, 0 < n < p’. Let x; be the
characteristic function of the ball with center ag®. Using lemma 5, we
have

mp*—1

an(z)Ppa(z)» = Y xi(z)an(aq)pn(agi)s
i=0
mp*—1

= z Xi(x)'?n(aqi)jnpn(aqi)k"

i=n
since |gn(ag®)*pn(eg?)*| < 1ifi < n (lemma 1) and hence the transition
matrix from (xn|n < mp?) to (gn(z)*pp(z)*=|n < mp') is triangular
since |gn(ag™)"pn(ag™)*n| = 1 (lemma 1), 50 (gn(z)"pa(@)F|n < mp')
forms a base for C;. The proof for (z7»p,(x)*») is analogous.

2) Let g =3 (mod 4), g=1+2+2%, e =ep+12+2222 + ..., e0=
g1 =...=€enN_1 = 1, ey = 0, define C; te space of the functions from
V, to Fz constant on balls of the type {x € Z2: |z — af < 2~ (N+2+t)}
@ € Vy. Since C(Vy — F2) = Up1Ct ([8], lemma 5 and its proof) it
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suffices to prove that (gn(z)inpn(z)*rln < 2¢) and (zinpn(z)*=in < 2%)
form bases for C;. By the proof of [8], lemma 5, we can write V, as the
union of 2¢ disjoint balls with radius 2-(V+2+%) and with centers ag®,
0 < n < 2. From now on the proof is analogous to the proof of 1).

Some examples.

1) If (pn(z)) is a sequence of polynomials with coefficients in @, such
that for all n we have that the degree of p, is n, |pn(ag™)| = 1 and
Ipn(ag®)] < 1if0 < i < n, and if (ky,) is a sequence in N, then (pn(x)*~)
forms an orthonormal base for C(Vy — K). This follows immediately
from lemma 1 and theorem 1, by putting j, = 0 and I, = {0,1,...n}
and this for all n. The case kp, = 1 for all » can also be found in [§],
theorem 4. ' '

2) If (ky) is a sequence in INg, then ({Z}*) forms an orthonormal base
for C(V; — K). Put therefore p(z) = {5} in 1). If f is an element
of C(Vy — K), and if s is a natural number different from zero, there

o0
exists a uniformly convergent expansion f(z) = z B){2}° and we are
n=0
able to give an expression for the coefliecients ﬁsf). This can be found
in [8], proposition 1.
3) If (pn(z)) is a sequence in C(Vy — @,) such that for all n we have
n

pn(z) = Zan,ge,‘(x) with {pn(ag™)] = 1 and [pp(ag’)] < 1if 0 < i < =,
i=0 )

and if (kn) is a sequence in INg, then (pp(z)*) forms an orthonormal

base for C{Vy — K). This follows immediately from lemma 1 and theo-

rem 1, by putting j, = 0 and by putting I, equal to the empty set. The

case k,, = 1 for all n can also be found in [9], theorem 2.

Remark. We can make an analogous result for the space C(Zp — K) :
if we replace the polynomials ({¥}) by ((F)) ( Mahler’s base )} and the
functions (e;{z)) by van der Put’s base, then we can prove the following
{we shall denote van der Put’s base by (gi(z)) :

Let (pn(z)) and (gn{z)) be sequences of continuous functions on
Z, of the following form: for each n pnp(z) is of the form
pn(z) = Zan,,-(ff) + Z: anigi(z) with |ann| = 1 and with

icly i€{0,1,....n}\In
lanil < 1if 0 < i < n (en; € @,), and for each n we have
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gn{z) = z bni(F) + Z  bpgi(z) with |gp(n)] = 1 and |bn ;| <
i€n i€ {01, m}\Jn

1if 0 < i <n (bni € @) If (4r) is & sequence in IV and if (ky) is a se-

quence in IV, then the sequence (gn(z ) pn(z)**) forms an orthonormal

base for C(%, — K).

4 Continuously differentiable functions on V,

In this section we give necessary and sufficient conditions for a contin-
uous function defined on Vj to be continuously differentiable, and we
find an orthonormal base for the space C1(V, — K). The result we'll
find is analogous to the result for continuously differentiable functions
on Z, ([5], theorem 53.5) where we replace Mahler’s base by the base
({¥}). We remark that there is a one-to-one correspondence between
(u,v) € Vg x Vg and (= 2} with (x,y) € Vg x Vg (see (7], section 2).
We shall use thlS several times in this section. Let p, be as defined in
section 2, then we can prove the following :

Proposition 1. Let f be an element of C(Vy — K) with uniformly
convergent ezpansion f(z) = ian{ﬁ}. If limp_oolan(pn) 1| = 0, then
f is an element of C1(V; — 50

Proof. Let f be in C(V; — K) with uniformly convergent ex-
pansion f(z)= ian{f,}. Anslogous to [5}, theorems 53.4 and

53.5, we want to find an expression for ¢1f(u,v) for special val-
ues for u and v. Therefore, let z,y be in {ag"n = 0,1,2,...},
z = a¢', ¥y = a¢’ and suppose y # a (ie i # 0). Then

pf(22) = o1, ) = {50 - 2 5 (1= (D)
—Z

4 —(n—s)(—i+s)
-_ Z aq (qj 1) Z[ -—-3][3]
since - 1[“'_,,] = m["_a_ ], we find, by putting n = s+ k + 1, that

1(3

aq“(q:l (Z[J—a}[alq_(n s)(—it+s) _ [1]) (by lemma 6)
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yz Oktor1g *F

8115 ) ZZ%%r—ﬂmﬁ
@ k=03s=0 ¢ (q )

and replacing y by yq this gives us for all z,y in {aq"|n=0,1,2,...}

01 ) = zz“:igg,‘;f )k{f}{k} *)

k=0 §=0
Now supk+_.,+1=n{£ﬁ_t1{—1| = |an|max15k5n]ﬁ| = |an(pn)_}| (lemma

7), so if limposoo|an(ra)7l] = 0, then tz'mk+_,__,°°|§f—;£f{il| = 0 and it
is clear that (*) can be extended to a continuous function ([5], exercise
23.B). So we conclude : if limp_g0lan(rn) 71| = 0, then f € CL(V, — K).
This finishes the proof.

Remark. It is easy to prove that the functions (z¥{Z}{¥}) are orthonor-
mal in C(Vy x Vg — K).

Let A be the subset of C(V, — K) defined as follows : if f is an element

of C(Vy; — K) with uniformly convergent expansion f(z} = Z an{Z},
' n=0

then f is an element of A if and only if limp_colan(pn) ™| = 0.

Proposition 2. The set A satisfies the following properties :
1) A is ¢ subset of C'(V, — K) containing the polynomiais 2) A is
closed for ||+ |]1 8) A is o subalgebra of C*(V, = K)

Proof.

1) From proposition 1 it follows that A is a subset of C}(Vy — K). It is

clear that A contains the polynomials.

2) Suppose f = limp oo fn for the norm || - ||; where fn, € A for all n.

Then f is clearly continuous. So there exists the following uniformly
o0

o0
convergent expansions : f(z) = Zak{i}, falz) = Zaﬂ,k{i}, with

limp_oo | 0k |= 0, img_ oo | ank |= 0 for all n, limg_,o | ank(pk) ! |=
0 for all n. Suppose that limg_.o0lar(px) 1| # 0. This will lead to a con-
tradiction. Since limyg_,oo | ax(pr) ! |# 0 there exists an € > 0 such that
for all 7 € IV, there exists an n > 7 such that |a,(pn) 7! > €. Let I be
the set defined as follows : 7 = {k € INg : [ax{px) !| > €}. Then I is infi-
nite. Let ¢ be as above. Then there exists a J € IV, such that for all n >
J we have |{f — fall1 < e. In particular, sup,4, {l(f f")(’:)_(‘f f,;)(y)l} <

e, -and from the calculations in proposition 1 it ilz)llows that
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_ s(k+1)
ol = I 2 = 133 (“"’*"“kﬂ“(jﬁii‘f’f) 2 EHI <
k=0s=0

e for all z,y in {aq"’|n = 0,1,2,...}. From this it is easy to see that
[aﬁ’%@#ﬂ{ < ¢ for all k and s, so 3upk‘3-[-|2‘%ﬂfmil} < e and
thus supn{|(en—ain)(pn) '} < e. Then, ifn € I wehave |ajn(on) " =
{asn— an)(pn)~ 1+ an(pn) 1| > ¢, and from this it follows that limg—co
| ajk(pk) ! |# O since [ is infinite. This is impossible and we conclude
that A is closed.

3)If f,g € A, k,j € K, then we immediately have that kf + jg € A,
and if r and u are polynomials (€ A) then ru is a polynomial and also
an element of A. From the Weierstrass-theorem for C''-functions ([2],
theorem 1.4) it follows that for each f,g € A we have fg € A since A is
closed.

Theorem 2. Let f be an element of C(Vy — K) with uniformly conver-
0
gent ezpansion f(z) = E an{Z}. Then f is an element of C1(V, — K)

n=0
if and only if Iimn_,mlan(pn)"” = 0.
If f is an element of C' (Vg — K) then ||f|1 = mazn>0{lan(pn) |}
and the functions (pn{Z}) form an orthonormal base for C1(V, — K).

Proof. From proposition 2 and the Weierstrass-Stone theorem for C*-

functions ([2], theorem 2.10) it follows that A = C1(V; — K). So f is

an element of A = CY{V, — K) if and only if

limp—oolan{pn) 1| = 0. Let us first remark the following : since

limp_oolan(pn)™ = 0, we have supp>i{lan(pn)”l]} =
- . Qs -

maanl{'“n(Pn) ll} and since squ,SZO{laﬁhl'flﬂ} = SUPnZI{lan(Pn) ll}

with k + s + 1 = n, we have

mazks50l| LI} = supk el ZHEL} = mazn>:{lan(pn) ). From

(*) it follows that for all z,y in {aq"|n =0,12,...}

qyzr Ghts+19 7 —o(kt+ oF P
¢1f(--—-— z) = Z Z FH(gFTT = ) {H}} and by continuity it then
k=0s=

follows that for all z,y In Vq w1th y different from agq

qym Bk4s+19 7 19~
451)'( ’:Z%Z k+11H(- Et1 1) k{m}{k}
—0 9—=0

Then we immediately have [¢; f(ZZ, z)| < ma:ck,,;_»o{isﬂf—"_’—ﬂ} for all

-1 we have
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z,y in V, with y # ag™! and so we have |{¢1f||oo < mawk,szg{lgﬁf—'ﬁﬂ.
Ifmasr:k‘_.,zo{ﬁ-k"—ﬁ’{lﬁ} = 0 it is clear that ||¢1f} e = mamklszg{I;—l"—;‘:ﬁf—il}.
If mazk,szo{fgﬁtf-flﬂ} > 0, then put I = {(i,j) € IN x N

|§,‘ﬁ%| = mﬂIk,szo{lgﬁtfj_%l}}- Now let § = min{i € IN: there
exists a j € IN such that (3,5) € I} and T = min{t € IN :
(S,t) € I} them it is easy to see that |¢1f(§aqsaqT,aqs)| =

I%Tq?f—'_’%l = maz§,320{|§£$i’—“j|} and so we conclude |[¢1flloc =
mazksof |} = maznai{len(en) '} Simce |Iffh =
mez{||f|le. [|#1fllcc} = ma-’c{mamnzo{lan!},mamnzl{lan(Pn)"ll}}

and since |(pn)”!] > 1 for all n we conclude that [[f|l;y =
mazn>0{fan(pn)~1|}. From this it follows that |[{Z}|]; = |(pn)}| so
0 [e.0]

ller{R}li = 1. Furthermore, f(x)= Ean{fz} = Z?Pn{i} with
n=0 n=0

[1£ll1 = mezn>oflan(en) |} = maxnzo{H%gpn{ﬁ}Hl} so the functions

(pn{%}) form an orthonormal base for C1(V; — K). This finishes the

proof.
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