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ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS
II. VARIATIONS ON A THEME*

INGRID DAUBECHIES

Abstract. Several variations are given on the construction of orthonormal bases of wavelets with compact
support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling
function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 909-996].
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1. Introduction. This paper concerns the construction of orthonormal bases of
wavelets, i.e., orthonormal bases {$jk; j, kZ} for L2(R), where

(1.1) q%(x) 2-;/2q(2-;x- k)

for some (very particular!) L2(E). The functions (1.1) are wavelets because they
are all generated from one single function by dilations and translations. Note that
wavelets need not be orthogonal or even linearly independent. In fact, the "first"
wavelets were neither [1], [2]. See [3], [4] for discussions of wavelet expansions using
nonindependent wavelets, with continuous [3] or discrete [4] dilation and translation
labels. Even the special case of orthonormal wavelets need not always be of the form
(1.1). Basic dilation factors different from 2 are possible: there exist orthonormal bases
in which this factor is any rational p/q > 1 [5]; in more than one dimension we may
even choose a dilation matrix instead of an isotropic dilation factor. In these more
general cases, it may be necessary to introduce more than one (but always a finite
number). We shall restrict ourselves to one dimension here, and to the dilation factor
2, as in (1.1). Bases with factor 2 are by far the easiest to implement for numerical
computations.

All interesting examples of orthonormal wavelet bases can be constructed via
multiresolution analysis. This is a framework developed by Mallat [6] and Meyer [7],
in which the wavelet coefficients (f, Ojk) for fixed j describe the difference between two
approximations of f, one with resolution 2j-, and one with the coarser resolution 2.
The following succinct review of multiresolution analysis suffices for the understanding
of this paper; for more details, examples, and proofs we refer the reader to [6] and [7].

The successive approximation spaces V in a multiresolution analysis can be
characterized by means of a scaling function ok. More precisely, we assume that the
integer translates of b are an orthonormal basis for the space Vo, which we define to
be the approximation space with resolution 1. The approximation spaces V with
resolution 2 are then defined as the closed linear spans of the bk (k 7/), where

(1.2) dpjk 2-J/adp(2-Jx- k).

To ensure that projections on the V describe successive approximations, we require
Vo c V_l, which implies

(1.3)
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This imposes a restriction on b: since b Vo c V_l=Span{b_lk; k7/}, there must
exist c. such that

(1.4) (x) c,, (2x n).

In order to have a complete description of L2(), we also impose

(1.5) fq V {0}, U L().
jZ jZ

For every multiresolution analysis as described above, there exists a corresponding
ohonormal basis of wavelets defined by

(1.6) (x) Z (-1)"c_,+6(2x- n),

where c, are the coefficients in (1.4). We can prove [6], [7] (see also below) that the
4o, are then an orthonormal basis for the orthogonal complement Wo of Vo in V_I.
This phenomenon repeats itself at every resolution level j. It follows that, for every j,
the (f, qgk) determine the difference in information between the approximations Pf
P-lf at resolutions 2j, 2j-, respectively:

Pj-lf-- Pf+E (f, q’jk)qgk.

Consequently, by (1.3) and (1.5), the (jk’ j, k 7/) constitute an orthonormal basis for
().

One advantage of the "nested" structure of a multiresolution analysis is that it
leads to an efficient tree-structured algorithm for the decomposition and reconstruction
of functions (given either in continuous or sampled form). Instead of computing all
the inner products (f, ltjk directly, we proceed in a hierarchic way:

mcompute (f, (jk) for the finest resolution level j wanted (if the data are given
in a discrete fashion, then these discrete data can just be taken to be (f

--then compute (f q-k) and (f b-k) at the next finest resolution level by
applying (1.4) and (1.7),

1
(f, qg-,k) , (-- 1)"C-,,+2k+l(f 6j,,),

--iterate until the coarsest desired resolution level is attained.
The total complexity of this calculation is lower, despite the computation of the

seemingly unnecessary (f, b2k), than if the (f, q%) were computed directly.
This brief review shows how to construct an orthonormal basis of wavelets from

any "decent" function b satisfying an equation of type (1.4). An example of such a
construction is given by the Battle-Lemari6 wavelets, consisting of spline functions
[8], [9], [10]. In general, constructions starting from a choice of 4 lead to 4, q, which
are not compactly supported (see, e.g., [15], [25] for a more detailed discussion). The
construction can, however, also be viewed differently. The Fourier transform of (1.4)
is

which implies

(1.7) (s:) [= mo(2-Jsc)] (0),
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with mo()= 1/2. c,, e i", so that, up to normalization, b is completely determined by
the c.. Fixing the c., therefore, also defines a multiresolution analysis. The c. have to
satisfy certain conditions. Combining (bok, 4o)= 6k with (1.4) immediately leads to

(1.8) C,,C.-2k 26k0,

where we have assumed, as we shall do in the sequel, that the c. are real. In terms of
too(sO), (1.8) can be rewritten as

(1.9) Imo()l+ Imo(:+ r)l2= 1.

To ensure that b is well defined, the infinite product in (1.7) must converge, which
implies too(0)-- 1 or

(1.10) c=2.

It follows that 4 is uniquely determined by (1.4), up to normalization, which we fix
by requiring dx 4(x)= 1. One can show (see, e.g., [12]) that (1.9) implies that b is
in L-(), but unfortunately (1.8) is not sufficient to guarantee orthonormality of the
bo,. A counterexample is Co=C3 1, all other c,-0, which leads to b(x)=] for
0 <- x < 3, 4(x) 0 otherwise. Such counterexamples are rare, however. IfN N 3,
then the example above, o 3 1, is the only one. For a detailed discussion, see 12],
13], [22].

If we exclude these thin sets of "bad" choices for the c (which can be done by
various means [6], [7], [12] [13], [15]), then we can build orthonormal bases of
wavelets starting from the c,. Once orthonormality of the bOk is established, all the
rest follows easily. Formula (1.6) for q leads immediately to orthogonality of the qOl
and 4Ok,

1
(_l).c_.++,c,._(_,.

1

2
(-1) c_++c,_ 0.

The last equality follows from the substitution n m + 2(k + l) + 1 for the summation
index n. Similar manipulations prove

and

(1.11)
k

It follows that both {b-1,; n ;7} and {(0k, 0k; k Z} are orthonormal bases for V_I.
(In other words, (1.8) ensures that (1.4) and (1.6) describe an orthonormal basis
transformation.) It follows that Wo Span (qOk) is the orthogonal complement of V0
in V_, and hence that the {qgk; J, k 7/} constitute an orthonormal basis for L2(R).

Constructing q from the c, rather than from b has the advantage of allowing
better control over the supports of b and q. If c, 0 for n < N1, n > N2, then support
(b)c [N, N2] (see [lla], [14]). In [15] this method was used to construct orthonormal
bases of wavelets with compact support, and arbitrarily high preassigned regularity
(the size of the support increases linearly with the number of continuous derivatives).
These orthonormal basis functions and the associated multiresolution analysis have
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been tried out for several applications, ranging from image processing to numerical
analysis [16]. For some of these applications, variations on the scheme of [15] were
requested, emphasizing other properties. The goal of this and the next paper is to
present a number of these variations.

The construction in [15] relied on the identity

s (N--l+J)[(cosoz)2rV(sina)2J+(sina)2(cosa)2] 1.(1.12)
j=O j

Since

(1.12) suggests the choice

(1 13) mo()=(l+ei)
1

2
Q(e’)’

where Q is a trigonometric polynomial with real coefficients such that

(1.14) IQ(e’)l--- j=o j 2

By (1.12), any such mo will satisfy (1.9). To determine 0, we have to extract the "square
root" of the right-hand side of (1.5). This can be done by using a lemma of Riesz [17].
Denote the right-hand side of (1.14) by Pc(ei), and extend PN to all of C. We have
PN(Z)--PN() and Pc(z-1) PN(Z). Consequently, the zeros of Pn come either in
real duplets, rk and r{ or in complex quadruplets, Zl l, z-f and -P(z) =4-

\ N- 1 ]z- (z- rk)(Z-- r; 1)

[I (Z-- Zl)(Z- l)(Z-- Z;1)(Z- ;1)

=4- \N-1]
.U

(Z ZI)(Z l)(Z, Z-1)(/-- Z-1)

It follows that PN(e’) [Q(e’t)[, with

(1.15) Q(z)=2-N+I(2N-211/2N-l/ (z-r,) (zZ+lz, lZ-2Zlz, Re z,)

This gives a recipe for the construction of mo:
(1) For given N, determine the zeros of PN;
(2) Choose one zero out of every pair of real zeros r, r[ of PN, and one conjugated

pair out of every quadruplet Zk, Z-
(3) Compute the product Q, and substitute into (1.12).
The result is a polynomial in e of degree 2N 1, corresponding to an orthonormal

basis of wavelets in which the basic wavelet has support width 2N-1. Since (1.6)
can be rewritten as

0(l) ei((/-)+)mo + "rr
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and since (1.13) has a zero of order N at 7r, it follows that qN has N vanishing moments,

dxxld/N(X) =0, =0, 1,..., N- 1,

which is useful for quantum field theory [18] and numerical analysis applications [19].
The regularity of the PN constructed in 15] increases linearly with their support width,
qN C a(N), with limu_ N-la(N) .2075 [23], [24], [25]. Plots of and q for various
values of N can be found in [15], [25].

Depending on the application they had in mind, several scientists (mathematicians
or engineers) have requested possible variations on the construction in [15]. The
following are the most recurrent wish items.

(1) More symmetry: the functions , 0 in [15] are very asymmetric. Complete
symmetry is incompatible with the orthonormal basis condition (see [15, p. 971], or
2 below), but is less asymmetry possible?

(2) Better frequency resolution" orthonormal bases with basic multiplication factor
2 correspond to frequency intervals of 1 octave. Is better possible (e.g., 1/2 octave),
without giving up compact support?

(3) More regularity: is better regularity than in [15] achievable for the same
support width ?

(4) More vanishing moments: for a fixed support width 2N-1, the PN of [15]
have the maximum number of vanishing moments. The functions eu do not satisfy
any moment condition, except dx eN(X)= 1. For numerical analysis applications, it
may be useful to give up some zero moments of 0 in order to obtain zero moments
for , i.e., to have

dx&(x) 1,

(1.16) I dx xlch(x) O, 1,..., L,

dxxl(x) =0, l=0,..., L.

How can such , be constructed? They would have the advantage that inner products
with smooth functions are particularly appealing:

f dx b-jk(x)f(x)-- 2J/2 f dx qb(2J(x-2-Jk))f(x)

2-J/f(2-Yk) + correction terms in f+l
(use the Taylor expansion off around 2-2k; the second through (L+ 1)th terms vanish
because of (1.16)). Moreover, if the (L+ 1)th derivative of f is uniformly bounded,
then the correction terms in this formula are of order 2 -(/’+l/2)j.

The purpose of this and the next paper is to show how such variations can be,
constructed. In 2 we handle symmetry, in 3 regularity, and in 4 vanishing moments
for . The next paper shows how to obtain better frequency localization.

2. More symmetry. If we restrict our attention to orthonormal bases of compactly
supported wavelets only, then it is impossible to obtain which is either symmetric or
antisymmetric, except for the trivial Haar case (Co 1, Cl =-l, all other c, =0). This
is the content of the following theorem.
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THEOREM 2.1. Let b, dp be defined as in 1, from a finite set of coefficients c,
satisfying (1.9) and (1.11 ), with orthonormalo. If is either symmetric or antisymmetric
around some axis, then is the Haar function.

A proof can be found in [25, Chap. 8].
It is thus a fact of life that symmetric or antisymmetric , however desirable they

might be in applications, are just not possible within a framework of orthonormal
bases of continuous, compactly supported wavelets. On the other hand, b and q do
not really need to be quite as asymmetric as in [15], where the extreme asymmetry of
q, proceeds from choices made in their construction. In practice, the 2(N- 1) zeros
of PN consist of one real pair r, r- and n quadruplets of complex zeros ZI, 1, Z-1

)-1 if N--2no is even, and of no quadruplets if N 2no+ 1 is odd. To construct QN,
we need to select one of the two real zeros, and one pair Zl, out of every quadruplet.
The choice made in 15] is the so-called extremalphase choice: we chose systematically
all zeros with modulus smaller than one. Other choices may lead to less asymmetric. The following argument shows why.

A sequence of real numbers (a,) is said to define a linear phase filter if the
phase of the function a(sc) a ei is a linear function of :, i.e., if, for some ;g/2,

This means that the a, are symmetric around l, a,- Ol21_ If the sequence does not
define a linear phase filter, then the deviation from linearity of the phase of c(:)
reflects the asymmetry of the a,. The Fourier transform of is given by the infinite
product (1.7). If c, were symmetric around l, then we would have mo(:)- eilelmo()l,
hence

(:) =exp il 2-: Imo(2-)11(o)1
j=l j=

so that would be symmetric around as well. As explained above, this is impossible
for c, satisfying (1.8). The closer the phase of mo is to linear phase, the closer the
phase of th will be to linear phase, and the less asymmetric b will be. In our case, mo
is a product of factors of type

(2.1)
z Zl)(z 1 e it ei R1 ei,)( 1 e-u:Rl e-’’)

ei[ei-2Rl cos al+ Ri e-ie],

with possibly an extra factor

(2.2) (a- r) eiU2[eiU2- r eiU2].

The total phase of mo is a sum of the phase contributions of each factor. Apart from
linear phase terms, the phase contributions of (2.1) and (2.2) are, respectively,

( (1- R) sin sc )(2.3) O(:)=arctg (l+R)cos-2RlCOSCl
l+r

(2.4) arctg
\l-r tg).

The valuation of arctg should be chosen so that (I) is continuous in [0,27r], and
ql(0) =0. Since the denominator in (2.3) has two zeros, namely,

2RI )Arc cos l+RCS
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and 2w :, 1(27r) /(0) + e27r, with e + 1. Something similar happens in the
(z-r) case. In order to extract only the nonlinear part of t, we define, therefore,

( (1- R) sin sc ) sc (27r)/(:) arctg
(1 + R) cos :-2R cos al

or

l+r
arctg i r

,I’,(2rr).

In order to obtain mo as close to linear phase as possible, we have to choose the
zeros to retain from every quadruplet or duplet in such a way that ,o,(:)=Y()
is as close to zero as possible. In practice, we have 2 tN/2j choices (and not 2N-i, as
was mistakenly stated in [15]). This number can be reduced by another factor of 2:
for every choice, the complementary choice (choosing all the other zeros) leads to the
complex conjugate mo (up to a phase shift), and, therefore, to the mirror image of b.
For N 2 or 3, there is, therefore, effectively only one pair N, i]/N" For N >-4, we
can compare the 2 [S/2J-1 different choices for o, in order to find the closest to linear
phase. It turns our that the net effect of a change of choice from zt, to z-1, -i is
most significant if RI is close to 1, and if at is close to either zero or 7r. In Fig. 1 we
show the graphs for ot() for N =4 and 10, both for the original construction in
[15] and for the case with flattest tot. The "least asymmetric" b and q, associated
with the flattest possible ,ot, are plotted in Fig. 2 for N =4 and 10. A table for the
corresponding c, can be found in [25, p. 198], as well as figures for N 6, 8.

Remarks.
(1) In this discussion we have restricted ourselves to the case where mo and QI2

are given by (1.13) and (1.14), respectively. This means that the b in Fig. 2 are the
least asymmetric possible, given that N moments of q are zero, and that b has support
width 2N-1. (This is the minimum width for N vanishing moments.) If b may have
larger support width, then it can be made even more symmetric. These wider solutions
correspond to a variation on (1.14), i.e., to

(2.5) IQ(e’e)[2= + R(cos sc)
=o j 2 2

where R is any odd polynomial such that the right-hand side of (2.5) is positive for

.2
.5

0 0

--.5
--.2

-1

N=IO

FiG. 1. Plots of ,o,() for the cases N =4 and 10. In both cases we plot ,o, for the construction in

15], and the much flatter q,o, corresponding to the closest to linear phase choice. The horizontal axis gives

7r, the vertical axis

0 .2 .4 .6 .8 0 .2 .4 .6 ..8
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-.5 I
0 5 10 15
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FIG. 2. Plots of bv, bN closest to linear phase, for the cases N =4 and 10. In every case, support
(bN) [0, 2N- 1], support (rv) [-N + 1, N].

all sc. The functions 4) constructed in {} 4, for instance, are more symmetric than those
in Fig. 2, but they have large support width

(2) We can achieve even more symmetry by going a little beyond the multiresol-
ution scheme explained in 1, and by "mirroring" the filters at every odd step. For
more details, see [25, p. 256].

(3) In [21] the construction of orthonormal bases of wavelets is genera.lized to
"biorthogonal bases," i.e., to two dual unconditional bases { {ljk; j, k 7/} and { Illjk; j, k
7/}. The construction in [21] corresponds to a decomposition+reconstruction scheme
in which the reconstruction filters differ from the decomposition filters. In this more
general framework, complete symmetry can be achieved. Orthonormality is then lost,
however, which is less desirable for some applications.

3. More regularity. The regularity of the wavelets g,, constructed in 15] increases
linearly with their support width, 0N C(N), lim N-la(N)=.2075. The technique
used in [15] to control the regularity of bN, $N involved constructing mo(:) so that
it contained the factor 1/2(1 + ei) with as high multiplicity as possible,

(3 1) mo()=(
N

\ 2

where QN is a polynomial in ei oforder N- 1 (see I). Since l-I=o (I + exp (i2-sc))/2
eie(sin so/so), we find (use (1.7))

N() e’Ne/2[ sin so/2" N

s/2 II Q,,,(2-).
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T,ogether with control on the infinite product of QN (see [15]), this leads to decay for
thN as I:[ - c, hence to regularity for bs, N.

In this argument, imposing high order divisibility of mo by 1/2(1 + e i) is used as a
technical tool to obtain regularity. On the other hand, regularity for b implies that mo
is of type (3.1). More precisely, if b is compactly supported and th C L, then mo must
be divisible by [1/2(1 + ei)]L; see [22], [21]. Since bN C’N for large N, with /z-.2,
this means that at least 1/2 of the factors (1 + e) in mo,N are necessary. Can the others
be dispensed with, allowing even shorter support for the same regularity, or higher
regularity for the same support width? The answer is yes.

In [1 lb], an alternative way was used to determine the regularity of functions b
satisfying an equation of type (1.4). Unlike the methods in [15], the method of [llb]
does not use the Fourier transform. Instead, two N-dimensional matrices To, T are
defined, To)d ce__, T). c_, 1 <= i, j <= N, where we assume c, 0 for n < 0
or n > N. Divisibility of m0 by (1 + e i) with multiplicity L is equivalent to

N

(3.2) c,,(-1)"n 1=0, /=0,...,L-1.
n=0

In terms of the matrices To, T1, this implies that there exists a flag of subspaces
U1 c... c Ut of u, with dim U =j, such that

U is left-invariant under both To, T1.
The left restrictions of To, T to U have the j eigenvalues 1, 1/2,..., 2 -j+l.

Let V be the subspace forN orthogonal to UL; V is right invariant for To, T.
If, for some A < 1, C > 0, and for all rn

(3.3) Td,’’" Tdmlv,ll--<-- CA"2-"-’) (dj 1 or 0),

then (3.2) implies that b C L, and that its Lth derivative bt) is H61der continuous
with exponent ]log2 AI; if )t is best possible in (3.3), then [log2 A[ is the best possible
H61der exponent for b L). In principle (3.3) involves infinitely many inequalities; in
practice we substitute finitely many conditions sufficient to ensure that (3.3) holds for
all m [llb, Prop. 3.11]. The value of b and its derivatives at any point x in support
(4’) is governed by the behavior of the infinite product Td,(x)Ta)" Td,(x)..., where
d(x) are the digits in the binary expansion of x, x Ix] +Y=I d(x)2-. Special, "local"
inequalities of type (3.3), valid only for certain sequences (d),, can, therefore, be
translated into local regularity estimates, leading, in many examples, to a hierarchy of
fractal sets corresponding to different local H61der exponents. For more details, see
[llb].

This approach can be used to study the regularity of compactly supported basis
wavelets, which all correspond to an equation of type (1.4) with finitely many
coefficients. For the examples of [15], this analysis was carried out in [11b] for
N 2, 3, 4 (for higher N, checking (3.3) becomes very complicated). In these three
cases, the best possible H/Slder exponent for the highest order well-defined derivative
of bN was determined; these results were significantly better than what had been
obtained in [15] via Fourier analysis. Table 1 compares the regularity results of [15]
and 1 lb].

The optimal estimates obtained in [11] illustrate again that some of the factors
(1 + ei) of mo, or, equivalently, some of the sum rules (3.2), which we impose in order
to obtain regularity, are "wasted" in the final construction. N sum rules can deliver
up to N-1 continuous derivatives if everything else cooperates; because of the other
constraints on the cn (i.e., (1.8)), wavelets do not achieve this optimal number. We
can, therefore, drop some of the sum rules, and use the additional degrees offreedom
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TABLE
The regularity of the wavelets of [15], as obtained via Fourier methods (middle

column) or via the matrix method of b] (right column). The integer part of the
entry is the number of times ck is continuously differentiable; the decimal part is the
H6Ider exponent of the highest order well-defined derivative.

N Best estimate in [15] Optimal result, obtained in [1 b]

2 .5 e .5500...
3 .915 1.0878...
4 1.275 1.5179...

to obtain better A in (3.3), i.e., better regularity than in Table 1. We present here the
cases of wavelets with support width 3 and 5.

For Isupport b 3, there is a one-parameter family of choices cn satisfying (1.8)
and (1.10) (see [15, p. 946]), namely,

u(u- 1) (1- u) (u+ 1) u(u+ 1)
Co= (v2+ 1) Cl--(/,2-{ 1)’ c2=(v+ 1)’ c3= (v+ 1)

These cn satisfy c,(-1)" =0; imposing a second sum rule leads to v +3 -/2, which
corresponds to the "standard" case N 2. The matrices To and T are 3 3-matrices;
since we have one sum rule, we can restrict our attention to the reduced matrices

1 (v(v-1) 0 ) TI] 1 (v(v+l) v(v-1))TOlVl-v+l 1-v2 v(v+l) v, v2+l 0 1-v2

We restrict our attention to v-> 0. (A change of sign v-v corresponds to c,- c3_,

i.e., to mirroring b with respect to .) Since (3.3) has to hold, in particular when all
the d are identical, d-= 0 or d- 1, the constant Z is bounded below by the spectral
radii p(T[v,) of Tlv,, j 0 or 1. It follows that (3.3) can only be satisfied if v<l. For

M-v -> 1/x/, we can find M so that both MTIv, ,j 0, 1, are symmetric; consequently,

A_<max (]]MT]v,M-11]; j--O, 1) max (p(mTjlvm-1); j--0, 1)

=max (p(Tlv,)" j=0, 1)=
v(v+ 1)
1+/,2

This is, moreover, the best possible h. If v<l/x/, then Tolv, and Tl[v, are not
simultaneously "symmetrizable," and we have to do some more work. In every case

(3.4) A_-->max
l+v2 1+

For v=.25, e.g., the tricks of Proposition 3.11 in [llb] suffice to show that equality
holds in (3.4), and

1-1/16
A .88235

1+1/16

The lowest value for the right-hand side of (3.4), and, therefore, the best candidate
for the "most regular possible" b, occurs for v=.5. In this case, T1]v, has only one
(degenerate) eigenvalue, .6, and the matrix is not diagonalizable. Since (3.3) has to
hold for dj 1, it follows that we can at best hope to establish A .6(1 + e).
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In fact, we cannot achieve even this much. It turns out that [p(To, T12)] 1/13
.659676... >.6, meaning that we can certainly not hope for a smaller h than .659..-.
Using all the tricks in Proposition 3.11 in 1 lb], and checking a collection of building
blocks with up to 17 factors, we find h <= .666. More work leads to smaller upper bounds
for A; presumably the best value is the .659 obtained above.

Figure 3 shows the function 4’ for a few choices of u (, .75, .5 and .25). In each
case 4, is continuous, and we can compute its H61der exponent from our estimate for
A. Even with our less than optimal estimate h =<.666, the case , .5 leads to a better
H61der exponent than the "standard" example , 1/x/. This might be surprising: the
graph of d for ,- .5 seems more jagged than for u- 1/x/. However, the peaks in the
, .5 example are "less sharp"" the steepest slope of the peak around x 1, e.g., is

(a)
2

-1

(b)
1.5

-.5

(c)

v .25

0 2 3

I’ /
It

V .5 t
0 .2 3

.5

v .75

-.5 I,
,0 2 3

FIG. 3. The functions ck defined by Co ’( u + 1)/(1 + ,2), c] , + 1)/( u + 1), c2 (1 ,)/(,+ 1), c3
,( ,- 1)/(,2+ 1), for different values of u. As outlined in the text we can prove that the H61der exponents of
these functions are at least (a) .180572, (b) .5864, (c) .251539. For a, c these numbers are sharp: for b the
true H61der exponent is conjectured to be .60017.
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less steep than its counterpart for v 1/x/, and this steepness is what is really expressed
by alow H6lder exponent.

For [support bl 5 we have no analytical expression for all the possible choices
of the c,. Since the "standard" example, with its 3 sum rules, achieves C 1-regularity
(see Table 1), for which at least 2 sum rules are necessary, we can drop at most one
sum rule. We explore what this extra degree of freedom can give us by perturbing
around the standard example. More precisely, we have

(3.5)
2

Q()’

with

(3.6)

(3.7)
a

P(x)=2-x+-(1-x) 2,
4

where a can be chosen freely, subject to the constraint that the right-hand side of (3.6)
is nonnegative for all . The example of [15] with support width 5 corresponds to mo
with a zero of order 3 at sc =r, hence to P with a zero at x =-1, which gives a 3.
If we impose that P has a zero close to x =-1, e.g., at x =-1- 6 (where a _-> 0, since
otherwise the positivity constraint would be violated), then a 4(a + 3)! (a + 1 )(a + 2) 2,
and P(x)=(x+ 1 + a)/(a+ 1)(a+2)2[x2(a+3)-x(a+3)2+2(a+2)2]. The other two
roots of P are, therefore, given by x+=1/2(a+3)+1/2[(a+3)z-8(a+2)2/(a+3)] /2. Each
of the three roots of P(x), namely, Xo -1-a, and x+, corresponds to two roots in
z=e of P(cossc) (use 1/2(z+z-)=x==>z=x+x/x2-1). This leads to the candi-
dates Q(sc) N(ee + a + 1 + ex/a(a + 2)) (ee- z+(a)) (ee- z_(a)), where z+(a)
x+(a)-x/x+(a)2-1 and e=+l. The choice e=+l corresponds to choosing all the
zeros of Q inside the unit circle; the choice e---1 gives one (real) zero outside, and
two complex conjugate zeros inside the unit circle. For e +1, the choice a 0 (i.e.,
the example of [15]) minimizes max (p(To[v), p(Tlv)) (where p denotes the spectral
radius), so that a 0 leads to the most regular 4. For e =-1, the situation is different.
We find a minimum for max (p( Tol v2), (p(Tlv)) at a .07645485... (value determined
numerically). As in the case where Isupport bl=2, this minimum for the spectral

(a) (b)

.5 .5

-5
0 2 4

-5
0 2 4

FIG. 4. Two examples of ch with Isupportchl=5. (a) Corresponds to the construction in [15], (b) is the
"most regular" qb constructed here. In both cases ch C 1" the H61der exponent of qb’ is .0878 for (a), and at

least .40198 for (b) (it is conjectured to be .41762 for (b)).
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radii p(T[v2) corresponds to a degenerate largest eigenvalue of Tllv2, and we find
again that T[v is not diagonalizable. Consequently, we can only hope to establish

h <_- 2(1 + e) max (p( Tol v), p( T[ v2)) (1 + e).74865....

In order to obtain e <.01, we already have to consider a large number of building
blocks Ta,’’" Ta,,, the longest of which has dj 1 for j 1,..., m, and m->_ 700! It
seems likely that arbitrarily small e can be attained by more work. Figure 4 shows
both the standard example of [15] and the most regular b obtained here for
[support b -5. It is apparent that the present example is much more regular; both
functions are C (even though the function of [15] seems to have peaks, these peaks
are not really sharp--see [llb]), but the H61der exponent of b’ is significantly better
in the example constructed here.

4. Vanishing moments for tb. In this subsection we want to construct b, q with
compact support,

and such that

Isupp 4,[ Isupp 4’1 2M- 1

dx c(x)= 1,

(4.1) f dx xtch(x) 0 for 1,..., L- 1,

dxxlp(x) =0 for l--0,..., L-1.

The need for orthonormal bases with this property first came up in the application of
wavelet bases to numerical analysis in the work of Beylkin, Coifman, and Rokhlin
[19]. The desirability of vanishing moments for b is explained in the introduction" if
(4.1) is satisfied, then the inner product of 4jk with a smooth function f only depends
on f(2Jk) and derivatives off of order =>L. (In a later version of their work, Beylkin,
Coifman, and Rokhlin did not require (4.1), however.) Imposing such vanishing
moments on b also increases its symmetry. Because these orthonormal wavelet bases
with vanishing moments for both b and p were requested by Coifman, I have named
these wavelets coiflets. Condition (4.1) corresponds to a coiflet of order L.

The Fourier transforms of b, q are given by (sc)=I-I= mo(2-sc) q(sc)
m(/2)(/2), with

N

mo() Cn ein, ml()= (-1)nc-n+l ein=-eimo(+).
=N

Note that the lower limit N in the sum over n will in general not be zero in this
subsection: we have lost our freedom to translate by integers because (4.1) is not
invariant under such translations (the conditions on are translation-invariant, but
the conditions on are not). The conditions (4.1) are equivalent to

(0)=1, (0)=0 forl=l,...,L-1,

(d)(0)=0 for/=O,...,L-1.
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In terms of mo, these become

(4.2) mol)(+.a-) =0 for/=0,..., L- 1,

(4.3) too(0) 1, mol)(o)= 0 for l= 1,..., L- 1.

By (4.2), mo has a zero of order L in : r. Consequently, mo has to be of the form

(4.4) too(,) (1 + ei)
L

2
Q(ei)’

where

(4.5) IQ(e’e)l: + R(cos )
j=o j 2 2

and R is an odd polynomial [15]. On the other hand (4.3) implies

(4.6) mo() 1 +(1-ei)LS(e’).

Together, (4.4) and (4.6) lead to L independent linear constraints on the coefficients
of S. Imposing that Q be of the form (4.5), with R an odd polynomial, leads to further
quadratic constraints. For small values of L, the whole collection of constraint equations
can be solved more or less by hand; for values of L larger than 6, the situation becomes
untractable. We propose, therefore, an approach which from the start satisfies (4.2)
and (4.3) (the linear constraints on S are built in), and we tackle (4.5) afterwards.

For the sake of convenience, we restrict ourselves to L even, L 2K. A similar
analysis can be carried out for L odd. We impose that mo be of the form

r (K-l+ k K

Since cos /2= e-e(1 +ee), this clearly has a zero of order 2K at = . On the
other hand, (4.7) can be rewritten as (use (1.13))

mo() 1 + sin
k

cs
k =0

+ cOS2

This clearly satisfies (4.3). It remains, therefore, to tailor f so that m0 satisfies (1.10).
For the sake of convenience we shall use f such that

K’

(4.8) f()= f.e ’’,
n=0

i.e., f, 0 for all n < 0. This is by no means the only choice possible; we could also
decide to distribute the f, as symmetrically around zero as possible, so that the suppo
of would be more symmetrical around x =0. It turns out, however, that this
symmetrical choice can lead to larger suppo widths for than (4.8) (this happens,
e.g., for K 3). From (4.5) we obtain

(K-l+k)(ksin) ( )rk=
+ sin2 f()

(4.9)
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where R is an odd polynomial. Rewriting (4.9) leads to

(4.10)

2-l (2K l +J )s2+ sK R(cos ,),+ slf(,)[
j=o J

where s2 denotes sin2 (:/2). We shall determine the f, by identifying coefficients of s.
Both f()+f() and If(#)l= can be written as polynomials in cos :, hence in s2.

It follows that only the first term in the left-hand side of (4.10), which is independent
off, contains terms in s withj -< K 1. Founately, these terms cancel the correspond-
ing terms in s in the right-hand side of (4.10) because of the identity

(4.11) Z
k=O k K- k K

(See [26, (5.27) ].)
We next concern ourselves with the terms in s, j K,..., 2K- 1. Only the first

two terms in the left-hand side of (4.10) contribute, leading to linear constraints in the
f. Define g by

K’

(4.12) f()+f(= 2 g,s.
n=0

Using s2=- e-e(1- ee)2, we find that the f, and g, are related through

4-g,

(4.13)

f=(-1) 4-g fork0.

In practice we will determine the g and then calculate the f and f via (4.13).
Identification of the terms in s, j K,..., 2K 1 on both sides of (4.10) gives

=_+ k j-k

’,- j-l-kg=+
kj-K-k] j

Using (4.11) again, and substituting j K + l, =0,..., K- 1, we can reduce this to

(4.14) 2 g_ =2
=,(o,-, m =o k k K + l- k

This is a system of K linear equations in rain (K, K’+ 1) unknowns. It has no solutions
if K’+ 1 < K. If K’ K 1, then the inveibility of the triangular matrix

Mq= (K-l+i-J)i_j K-lijO

immediately leads to

2K-l+k)gt=2
K + k

k=0,...,K-1.
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(4.15)

It remains to determine the gK,..., gK,. They are given by the constraint that

k=0 ,=0 k
gl+’s+’+]f()

should be an odd polynomial in cos . Since (4.15) can be rewritten as a polynomial
of degree K’ in cos sc, this results in [(K’+ 1)/21 equations for K’-K + 1 unknowns.
It follows that K’>= 2K 1 (no miraculous cancellations occur). In the examples worked
out here, K’= 2K- 1. In these examples a solution has to be found for a system of
K quadratic equations in K unknowns; every such solution corresponds to a coiflet
of order 2K, with support width 3K- 1.

The system of K equations to be solved can be written out a little more explicitly.
Writing x,,, m =0,..., K- 1 for the K unknown gK+m, we have

with

(4.16)

(4.17)

2K-1 min(2K-1,2K-l-I)

I=--(2K --1) k=max (0,-1)

f (1 1/26o)(- 1) 2 k/4-k rI

+ 4-m-Kxm
,,=o m+K-k]

fk=(_l)k 2m+2K
,,,=,_ m + K k]

4-’-U"x" K <_k<=2K-1.

2K --2
il(_ 4-

2j O, K 1 m
X e 1) X X x,,.

/=--(2K--2) J=l/I J + m=max(O,j-K+l) j- m

The K equations in the unknowns Xo,..., x:-i are, therefore,

(4.18) fkf2r+, + 4- 2j 0,-1) K 1 +j- m
x 0,

=o j=2 + 2r m=max(O,j--K+l) j-- m

where r=0,..., K-1, and where (4.16), (4.17) have to be substituted for the f.
As a quadratic system (4.18) can have many solutions or no solutions at all. The

following heuristic argument suggests that (4.18) will have solutions for sufficiently
large K. We can rewrite (4.7) as

(e +em()=2+2-4+K K =o2k+l K+k
(4.19)

Let us concentrate on the first two terms in (4.19). For large K, the coecient of
e(+e tends to

2k+ 1 k K+k + (2k+ 1)’

2K-2, min(j,K-1)(K-l+j-m)I; s 2 x
j=0 m=max(O,j--K+l) J m

O<=k<=K-1

On the other hand, the first term in (4.15) can be rewritten as
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which is exactly the Fourier coefficient of the characteristic function X(:)= 1 for

I:1 -<- 7r/2, 0 for Iscl _-> 7r/2,

1 1 i(2k+1): -i(2k+l):).X(sc)=+ (-1) g (e +e
,--o zr(2k+ 1)

This is, in fact, a perfectly legitimate choice for mo" mo=X leads to (sc) 1 for
Isc[_-< zr, 0 otherwise, or b(x)=sin 7rx/Trx. The corresponding wavelet basis is C,
satisfies (4.1) for arbitrarily large L, but has rather slow decay at . Our ansatz (4.7)
or (4.19) for mo can, therefore, be viewed as a truncation to finite length of X, consistent
with the restrictions (4.2), (4.3), and where an additional f has to be introduced to fit
(1.9). Since for K-, X itself already satisfies all the conditions (1.9), (4.2), (4.3), it
seems reasonable to hope that for large K, a slight perturbation of X might satisfy
(1.9), (4.2), (4.3).

Based on this perturbation argument, we can look for a solution to (4.18) "close
to" Xm=O. For K 1,2,3,4, and 5 we have (1) determined the system (4.18) with
the symbolic manipulation package MACSYMA, (2) found a solution by Newton’s
method, starting from the initial point x,,- 0, m 0,..., K- 1. The resulting mo are
tabulated in Table 2. For K 5 the coefficients are given with less precision than for
K =< 4 because the roundoff error, even with double precision, was sufficient to perturb
decimals beyond the 10th decimal. Note that Table 2 corrects a mistake in the first
entry in the corresponding Table 8.1 in [25]. Graphs for the corresponding b, q can
be found in [25, Fig. 8.3].

Remarks.
(1) The functions 4 and q corresponding to Table 2 are almost symmetric. For

some of these examples, there exists a pair of biorthogonal bases very close to the
orthonormal basis (their graphs are almost indistinguishable), which have, moreover,
the advantage of corresponding to rational c, (see [21]).

(2) The approach given above has the merit of giving a method for the construction
of coiflets of any order L (modulo the solution of a system of L!2 quadratic equations
in L/2 variables). It does not necessarily give the smoothest coiflet of order L, however!
For small L, everything can be worked out more or less by hand, and we find some
solutions different from the coiflets given above.

For L 2, the smoothest coiflet is found by substituting

f() a e i + b e2i,
rather than (4.8) into (4.7), leading to a less symmetric coiflet with support width 5;
in this case support b [-1, 4]. The system of quadratic equations reduces to a single
equation, so that everything can be solved explicitly. We find

a=(s-1)/2, b=(-s+3)/2, withs=+x/T.

The choice s =-x/] gives the most regular coiflet of order 2. The corresponding b is
plotted in Fig. 5. This b is continuously differentiable; using the methods of [11] we
find that its derivative has HSlder exponent .191814

For L 4, we find, unlike the L 2 case, that the best regularity for b is achieved
by distributing its support as symmetrically as possible. This corresponds to choosing

f(() a e -i# 4;- b + c e’ + d e2’.

The resulting set of equations reduces to two linear and two quadratic equations. All
this can be reduced to one equation for a of degree 4, which has 2 real and 2 complex
solutions. One of the real roots leads to a twice continuously differentiable 4,
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TABLE 2
The coefficients for coiflets of order 2K, K or 5. Note" In this table, the coefficients are

normalized so that their sum is 1.

n 1/2c. n 1/2c.

K= -2 -.051429484095 K= 4
-1 .238929728471
0 .602859456942

.272140543058
2 -.051429972847
3 -.011070271529

K=2

K=3

K=4

-4 .011587596739
-3 -.029320137980
-2 -.047639590310
-1 .273021046535
0 .574682393857

.294867193696
2 -.054085607092
3 -.042026480461
4 .016744410163
5 .003967883613
6 -1001289203356
7 -.000509505399

-6 -.002682418671
-5 .005503126709
-4 .016583560479
-3 -.046507764479
-2 -.043220763560
-1 .286503335274
0 .561285256870

.302983571773
2 -.050770140755
3 -.058196250762
4 .024434094321
5 .011229240962
6 -.006369601011
7 -.001820458916
8 .000790205101
9 .000329665174
10 -.000050192775
11 -.000024465734

-8 .000630961046
-7 -.001152224852
-6 -.005194524026
-5 .011362459244
-4 .018867235378
-3 -.057464234429
-2 -.039652648517
-1 .293667390895

K=5

0 .553126452562
.307157326198

2 -.047112738865
3 -.068038127051
4 .027813640153
5 .017735837438
6 -.010756318517
7 -.004001012886
8 .002652665946
9 .000895594529
10 -.000416500571
11 -.000183829769
12 .000044080354
13 .000022082857
14 -.000002304942
15 -.000001262175

-10 -.0001499638
-9 .0002535612
-8 .0015402457
-7 -.0029411108
-6 -.0071637819
-5 .0165520664
-4 .0199178043
-3 -.0649972628
-2 -.0368000736
-1 .2980923235
0 .5475054294

.3097068490
2 -.0438660508
3 -.0746522389
4 .0291958795
5 .0231107770
6 -.0139736879
7 -.0064800900
8 .0047830014
9 .0017206547
10 -.0011758222
11 -.0004512270
12 .0002137298
13 .0000993776
14 -.0000292321
15 -.0000150720
16 .0000026408
17 .0000014593
18 -.0000001184
19 -.0000000673
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|.5

.5

-1 0 2 3 4

FIG. 5. Plot of d for the coiflet of order 2 with the highest regularity.

corresponding to

c_5 -.008089728693,
c_4 -.001473073456,
c_ .027620978693,

c_2 .000661782050,

C_l -.029586627843,

Co .168333606358,

Cl .503931298301,

c2 .443259223184,

c3 .010862015621,

c4 -.136801026363,

c5 -.004737936078,

c6 .026019488227.

As in Table 2, these c, are normalized so that their sum equals 1. We have plotted the
corresponding b in Fig. 6.

For L 6 explicit computation of all the solutions is more complicated, but still
feasible. There exists no solution so that support (b)= [-8, 9]. For the ansatz

f() a e-i + b + c e + d e + e e3 +fe4,
corresponding to support (b)= [-7, 10], there are two solutions. The most regular of
these solutions is twice differentiable; it is given by

c_7 -.000152916987,
c_6 .000315249697,

c_5= .001443474332,

C_a -.001358589300,

c-3 -.007915890196,

c_ .006194347829,

c-1 .025745731466,

Co -.039961569717,

ca -.049807716931,

c2 .269094527854,

c3 .558133106629,

c4 .322997271647,

c -.040303265359,

c6 -.069655118535,

c7 .015323777973,

c8 .013570199856,

c9 -.002466300927,

Clo -.001196319329.
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1.5

--.5
-5 0 5
FIG. 6. Plot of qb for the most regular coiflet of order 4.

1.5

-.5
-5 0 5 10

FIG. 7. Plot of c for the most regular coiflet of order 6, with support b [-7, 11 ].

The function b is plotted in Fig. 7. The coiflets used in 19] for L 2, 4, 6 correspond
to the scaling functions b in Figs. 5, 6, and 7.
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