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ABSTRACT

A finite implementation of the ridgelet transform is presented. The
transform is invertible, non-redundant and achieved via fast al-
gorithms. Furthermore we show that this transform is orthogonal
hence it allows one to use non-linear approximations for the rep-
resentation of images. Numerical results on different test images
are shown. Those results conform with the theory of the ridgelet
transform in the continuous domain – the obtained representation
can represent efficiently images with linear singularities. Thus it
indicates the potential of the proposed system as a new transform
for coding of images.

1. INTRODUCTION

Many image processing tasks take advantage of sparse represen-
tations of image data where maximum information is packed into
a small number of samples. Typically, these representations are
achieved via non-redundant and invertible transforms. Currently,
the most popular choice for this purpose is wavelet transforms
[1, 2].

The main power of wavelets comes from the fact that they
are well adapted to changes or singularities that are commonly
found in real-life signals. In multidimensional cases, most often
tensor product wavelets or separable schemes are employed. As
a generalization from the case, wavelets in higher dimensions are
well adapted for pointlike phenomena. But this is the only type
of singularities that wavelets can efficiently represent. This prob-
lem was raised recently by Candes and Donoho [3, 4]. Those
authors argued that in higher dimensions, there are many other
kinds of intermittency such as singularities along lines and curves
which wavelets do not deal with efficiently. In order to overcome
this weakness, they have proposed new systems of representations
namely ridgelets which can effectively deal with linelike phenom-
ena in 2-D.

Much of the work in ridgelets has been concentrated in the
continuous R2 space. However for practical applications, discrete-
time space implementations of the ridgelet transform and its recon-
struction on a finite Z2 plane remain an open issue. Due to the ra-
dial nature of ridgelets, straightforward implementations based on
discretization of continuous formulae would require interpolation
in the polar coordinate and thus the resulting transforms would be
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either redundant or can not be perfectly reconstructed. In this pa-
per, we propose one implementation of the ridgelet transform for
digital images that achieves both nonredundant and invertible re-
quirements. Numerical results on non-linear approximation com-
parison with other transforms on various test images are presented.

2. CONTINUOUS RIDGELET TRANSFORM

We start by briefly reviewing the continuous ridgelet transform
(CRT) and draw its connection with the continuous wavelet trans-
form. Given an integrable bivariate function f(x), the CRT in R2

can be defined as follows [3, 4]

RIf(a; b; �) =

Z
R2

 a;b;�(x)f(x)dx; (1)

where the ridgelets  a;b;�(x) in 2-D are defined from a wavelet-
typed function in 1-D  (x) as:

 a;b;�(x) = a�1=2 ((x1 cos � + x2 sin � � b)=a): (2)

In comparison, the (separable) continuous wavelet transform
(CWT) in R2 can be written as:

W
2
f (a1; a2; b1; b2) =

Z
R2

 a1;a2;b1;b2(x)f(x)dx; (3)

where the wavelets in 2-D are tensor products,

 a1;a2;b1;b2 (x) =  a1;b1(x1) a2;b2(x2); (4)

of 1-D wavelets,  a;b(t) = a�1=2 ((t� b)=a) 1.
The CRT appears similar to the 2-D CWT except that

the point parameters (b1; b2) are replaced by the line param-
eters (b; �). In brief, those 2-D transforms are related by:

Wavelets: !  scale; point�position
Ridgelets: !  scale; line�position

The consequence of this is: as wavelet analysis is very ef-
fective at representing objects with isolated point singularities,
ridgelet analysis can be very effective at representing objects with
singularities along lines. In fact, one can loosely view ridgelets
as a way of concatenating 1-D wavelets along lines. Hence the
motivation for using ridgelets in image processing tasks is very

1In practice, however one typically enforces the same dilation scale on
both directions thus leading to three wavelets corresponding to horizontal,
vertical and diagonal directions.



appealing as singularities are often joined together along edges or
contours in images.

Since in 2-D, points and lines are related via the Radon trans-
form, thus the wavelet and ridgelet transforms are linked via the
Radon transform. More precisely, denote the Radon transform as

RAf (�; t) =

Z
R2

f(x)�(x1 cos � + x2 sin � � t)dx; (5)

then the ridgelet transform is precisely the application of a 1-D
wavelet transform to the slices of the Radon transform,

RIf(a; b; �) =

Z
R

 a;b(t)RAf(�; t)dt: (6)

It is interesting to note that if in (6) instead of taking 1-D
wavelet transform, the application of 1-D Fourier transform on t
would result in the 2-D Fourier transform, or:

F 2
f (� cos �; � sin �) =

Z
R

e�j�tRAf(�; t)dt: (7)

This is the famous projection-slice theorem and is used often
in image reconstruction from projection methods [5].

3. FINITE RADON TRANSFORM

As suggested from the previous section, a discrete-time ridgelet
transform can be obtained using a discrete-time Radon transform.
Numerous discretization of the Radon transforms have been de-
vised to approximate the continuous formula [5]. However to our
knowledge, none of them were designed to be as invertible trans-
forms for digital images. On the other hand, the finite Radon trans-
form theory [6, 7, 8] in combinatorics provides an interesting al-
ternative.

The finite Radon transform (FRAT) is defined in a finite geom-
etry in the same way as the continuous Radon transform is defined
in the Euclidean geometry. Denote Zp = f0; 1; : : : ; p�1g, where
p is a prime number. The FRAT of a real function f on the finite
lattice Z2

p is defined as:

r(k; l) = FRATf(k; l) =
1p
p

X
(i;j)2Lk;l

f(i; j): (8)

Here Lk;l denotes the collection of points that make up a line
on the lattice Z2

p or more specifically,

Lk;l = f(i; j) : j = ki+ l (mod p); i 2 Zpg; k 2 Zp;
Lp;l = f(l; j) : j 2 Zpg: (9)

In the FRAT domain, the energy is best compacted if the mean
is subtracted from the image f(i; j) previous to taking the trans-
form given in (8) and we assume that in the sequel. The factor 1p

p

is introduced to normalize the l2-norm.
So as in the Euclidean geometry, a line Lk;l on the affine plane

Z2
p is uniquely represented by its slope or direction k (k = p cor-

responds to infinite slope or vertical lines) and its intercept l. It can
be seen that there are p2 + p lines defined in this way and every
line contains p points. Moreover, any two distinct points on Z2p
are in just one line. Also, two lines of different slopes intersect at

exactly one point. For any given slope, there are p parallel lines
that provide a complete cover of the plane Z2p . That means,

p�1X
l=0

r(k; l) =
1p
p

X
(i;j)2Z2

p

f(i; j) = 0 8k; 0 � k � p: (10)

Eq. (10) explicitly reveal the redundancy of the FRAT. In each
direction, there is only (p � 1) independent FRAT coefficients.
Those coefficients at p+1 directions together with the mean value
make up totally of (p+1)(p�1)+1 = p2 independent coefficients
in the finite Radon domain (as expected!).

In analogy with the continuous case, the finite back-projection
(FBP) operator is defined as the sum of Radon coefficients of all
the lines that go through a given point, i.e.

FBPr(i; j) =
1p
p

X
(k;l)2Pi;j

r(k; l); (i; j) 2 Z2
p ; (11)

where Pi;j denotes the set of indexes for lines that go through the
point (i; j). From (9) we have,

Pi;j = f(k; l) : l = j � ki (mod p); k 2 Zpg + f(p; i)g

From the properties of the finite geometry that every two
points lie in exactly one line and there are (p + 1) lines that go
through each point, substitute (8) into (11) leads to:

FBPr(i; j) =
1

p

0
@ X

(i0;j0)2Z2
p

f(i0; j0) + pf(i; j)

1
A = f(i; j):

So the back-projection operator defined in (11) indeed com-
putes the inverse FRAT. It is worth to note that the transform ma-
trices for the operators FRAT and FBP are transposed of each
other.

For any set A, write �A for the characteristic function of
A. Then we can write the basis functions for the FRAT as
p�1=2�Lk;l

; 0 � k � p; 0 � l < p. The previously mentioned
properties of lines in finite geometry leads to:

h�Lk;l
; �Lk0;l0

i =
8<
:

p if k = k0; l = l0

0 if k = k0; l 6= l0

1 if k 6= k0
(12)

Hence the minimum angle between any basis functions of the
FRAT is: mink;l;k0;l0 \(�Lk;l

; �Lk0;l0
) = cos�1(1=p), which ap-

proaches the right angle for large p. So we can say that the finite
Radon basis is “almost” orthogonal.

4. ORTHONORMAL FINITE RIDGELET TRANSFORM

Now with an invertible FRAT, applying (6) we can obtain
an invertible discrete ridgelet transform by taking the discrete
wavelet transform (DWT) on each vector, also called a projection,
fr(k; l); l 2 Zpg of Radon coefficients where the direction k is
fixed 2. The result can be called as finite ridgelet transform (FRIT).
Due to periodicity of the FRAT coefficients for each direction, the
periodic wavelet transforms are chosen and assumed in the sequel.

2If p is not dyadic, a special border handling is required.



Note that the FRAT is redundant and not orthogonal. Next we
will show that by taking the 1-D DWT on the projections of the
FRAT in a special way, we can remove this redundancy and have
an orthonormal FRIT.

Assume that the DWT is implemented by an orthogonal tree-
structured filterbank with J states where G0 and G1 are low
and high pass synthesis filters, respectively. Then the fam-
ily of functions fg(j)1 (n � 2jm); g

(J)
0 (n � 2Jm)g; j =

1; : : : ; J; and n;m 2 Z is the orthogonal basis of the discrete-
time wavelet series [1]. HereG(j) are the equivalent filters at level
j. The basis functions from g

(J)
0 are called the scaling functions

where the others are called wavelet functions. Normally the filter
G1 is designed to satisfy the high pass condition, G1(z)jz=1 = 0,
so each wavelet basis function has zero sum.

For a general setting, let’s assume that we have a collection
of 1-D orthonormal transforms (which can be the same) for each
projection k of FRAT, that have bases as:

fw(k)
m (:); m 2 Zpg; 0 � k � p: (13)

The only condition we require for each of these bases that it
has a mean function, i.e. w(k)

0 (l) = 1=
p
p; 8l 2 Zp. By the

orthogonality condition, this means all other basis functions must
have zero sum. As shown before, this requirement is satisfied for
the wavelet bases where the DWT is carried to the maximum num-
ber of stages (i.e. when only one scaling coefficient is left).

The FRIT is can now be written as:

FRITf(k;m) = hFRATf(k; :); w(k)
m (:)i

=
X
l2Zp

w(k)
m (l) hf; p�1=2�Lk(l)

i: (14)

Hence we can write the basis functions for the FRIT as:

�k;m =
1p
p

X
l2Zp

w(k)
m (l) �Lk(l): (15)

Consider the inner products between any two FRIT basis func-
tions:

h�k;m; �k0;m0i = 1

p

X
l;l02Zp

w(k)
m (l) w

(k0)

m0 (l0) h�Lk;l
; �Lk0;l0

i:

Using (12), when the two FRIT basis functions have the same
direction, k = k0, then

h�k;m; �k;m0i =
X
l2Zp

w(k)
m (l) w

(k)

m0 (l) = �[m�m0]:

So the orthogonality of these FRIT basis functions comes from
the orthogonality of the basis fw(k)

m (:); m 2 Zpg. Next for the
case when the two FRIT basis have different directions, k 6= k0,
again using (12) leads to

h�k;m; �k0;m0 i =
1

p

X
l;l02Zp

w(k)
m (l) w

(k0)

m0
(l0)

=
1

p

0
@X

l2Zp

w(k)
m (l)

1
A
0
@X

l02Zp

w
(k0)

m0
(l0)

1
A :

In this case, if either m or m0 is non-zero, e.g. m 6= 0 then by
the zero sum property of the bases,

P
l2Zp

w
(k)
m (l) = 0, it leads

to h�k;m; �k0;m0 i = 0.

Finally note that
S
l Lk(l) = Z2

p ; for all direction k (see
(10)). Therefore all of the FRIT basis functions �k;0 correspond
to the mean of the input image so we only need to keep one of
them (at any direction) and denote it as �0. So we just proved the
following result.

Theorem 1 Given p+1 orthonormal bases in l2(Zp) (which can
be the same): fw(k)

m (:); m 2 Zpg withw(k)
0 = const, 0 � k � p

then

f�k;m : k = 0; : : : ; p; m = 1; : : : ; p� 1g [ f�0 = constg
is a orthonormal basis in l2(Z2

p), where �k;m are defined in (15).

Remarks

1. We prove the above result for the general setting where dif-
ferent transforms can be applied on different FRAT pro-
jections. This could be useful for example when one uses
wavelet packets or adaptive bases on each projection. Fur-
thermore, due to the “wrap around” effect of the FRAT, its
projections could have strong periodicity components so for
some projection one could use a Fourier-type transform like
DCT. Note [7] that if we apply the 1-D Fourier transform
on all of the FRAT projections then we would obtain the
2-D Fourier transform.

2. All of these results also hold for any other affine planes
rather than Z2

p . Especially using Galois planes constructed
by finite field GF (pr) we can build orthogonal FRIT’s for
images of size N � N where N is a power of a prime,
N = pr.

5. NUMERICAL RESULTS

Figure 1 displays some basis images for the 7 � 7 FRIT using
1-D Haar wavelets. As can be seen from the figure, FRIT basis
images have elongated linear structure which closely resemble the
continuous ridge functions.
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Fig. 1. Examples of 7 � 7 FRIT basis functions using Haar
wavelets. Black, grey and white pixels corresponding respectively
to negative, zero and positive values. Notice the “wrap-around”
effect due to periodization of FRAT.

Following the study of the efficiency of the ridgelet transform
in the continuous domain on the half-plane truncated Gaussian
function, f(x1; x2) = 1fx2>0ge

�x2
1
�x2

2 ; x 2 R
2 [4], we first

perform a numerical comparison on the 127 � 127 discrete im-
age of the same function using four competitive transforms: DCT,
DWT, FRAT and FRIT. The comparison is measured by the non-
linear approximation power, i.e. the ability of reconstructing the
original image (measured in term of signal-to-noise ratios) using
the N largest magnitude transform coefficients. Fig. 2 plots the
results. Clearly that the FRIT achieves the best performance, as
expected from the continuous theory.
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Fig. 2. Comparison of non-linear approximations on the 127 �
127 half-plane truncated Gaussian image.

Our next test is a real image of size 127 � 127 with linear
discontinuities. Figure 3 displays the image together with its FRIT.
In the FRIT image, each column corresponds to one direction.
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Fig. 3. Example of FRIT of a image.

To have an insight of the FRIT, Figure 4 plot the top five FRAT
projections that contain most of the energy. Those correspond to
the directions that have discontinuities, plus the horizontal (k = 0)
and vertical (k = 127) directions. So we see that at first the FRAT
compact most of the energy of the image into a few projections,
where the linear discontinuities create “jumps”. Next by applying
1-D DWT on those projections that are mainly smooth, energy is
further compacted into a few FRIT coefficients.
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Fig. 4. Top five FRAT projections that contain most of the energy.

Finally, Figure 5 shows the images obtained from non-linear
approximations using FRIT.

First 8 coefficient First 32 coefficients

First 128 coefficients First 512 coefficients

Fig. 5. Non-linear approximations using FRIT on the 127 � 127
test image in Figure 3.

6. DISCUSSION AND FURTHER WORK

The FRIT presented in this paper is our first step in achieving a new
scheme which can deal efficiently with natural images that are typ-
ical piecewise smooth away from singularities along edges. Since
ridgelets are specially adapted only to straight singularities, a more
practical transform would first utilize a quad-tree division of im-
ages into localized pieces where edges looks straight and then ap-
ply FRIT to each piece. Furthermore, for bit-level compression ap-
plications, one need to code the position of the significant ridgelet
coefficient in an efficient way, probably via some embedded tree-
structured significant maps. These topics are under investigation;
we plan to report the results in forthcoming paper.
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