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Abstract. We are interested in regularizing fields of orthonormal vector sets, using constraint-preserving

anisotropic diffusion PDE’s. Each point of such a field is defined by multiple orthogonal and unitary vectors

and can indeed represent a lot of interesting orientation features such as direction vectors or orthogonal matrices

(among other examples). We first develop a general variational framework that solves this regularization problem,

thanks to a constrained minimization of φ-functionals. This leads to a set of coupled vector-valued PDE’s preserv-

ing the orthonormal constraints. Then, we focus on particular applications of this general framework, including

the restoration of noisy direction fields, noisy chromaticity color images, estimated camera motions and DT-MRI

(Diffusion Tensor MRI) datasets.

Keywords: partial differential equations (PDE), constrained vector-valued regularization, orientation features,

anisotropic diffusion, orthogonal matrices

1. Introduction

In the last decade, the restoration of noisy and blurred

digital data has attracted a growing interest and many

computer algorithms, based on variational or stochas-

tic formulations have tried to solve this ill-posed

inverse problem. The variational methods based on

functional minimization via diffusion PDE’s have par-

ticularly proven their efficiencies in order to regularize

images while preserving important global structures,

such as object contours (that are discontinuities in the

measured signal). Actually, one of the first step has

been crossed ten years ago, with the pioneering work of

Perona and Malik (1990), who proposed an anisotropic

diffusion PDE allowing to smooth grey-valued images

while preserving edges, breaking then the limitations of

classic linear filtering techniques. Since then, many au-

thors have proposed and studied well-posedness PDE’s

that tackle the problem of scalar image regulariza-

tion (particularly within the φ-function framework).

We can cite for instance reference papers from Alvarez

et al. (1992), Charbonnier et al. (1994), Chambolle and

Lions (1997), Strong and Chan (1996a, 1996b), Cohen

(1995), Cottet and Germain (1993), Kornprobst et al.

(1997a, 1997b, 1998), Malladi and Sethian (1996),

Mumford and Shah (1989), Shah (1996), Morel and

Solimini (1988), Nordström (1990), Osher and Rudin

(1994), Proesmans et al. (1994), Caselles et al. (1998),

Sapiro (2001), Weickert (1997, 1998), and You et al.

(1994).

More recently and thanks to the increase of com-

puter performances, the problem of addressing noisy

multivalued datasets has opened a large and active

research area, due to the high number of possible

applications including various computer vision tasks,

such as color image restoration (Blomgren and Chan,

1998; Kimmel et al., 2000; Sapiro and Ringach, 1996;

Sochen et al., 1997; Sternberg, 1991; Tschumperlé

and Deriche, 2001a; Weickert, 1998) and segmenta-

tion (Chan et al., 2000; Koschan, 1995; Paragios and

Deriche, 2002; Sapiro, 1996, 1997), regularization of

optical flows and direction fields (Bertalmio et al.,
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2001; Chan and Shen, 2001a; Kimmel and Sochen,

2002; Nagel and Enkelmann, 1986; Perona, 1998; Tang

et al., 2000; Tschumperlé and Deriche, 2001c; Vese

and Osher, 2002) , image in-painting (Bertalmio et al.,

2000; Chan and Shen, 2000, 2001b), scale space anal-

ysis (Alvarez et al., 2002; Weickert, 1999), etc. A PDE

flow on multi-valued data is not a straightforward gen-

eralization of its scalar counterpart, since it must ex-

plicitly take the coupling between vector components

as well as the local vector geometry into account. In-

deed, the vector data may lie on a constrained and

non-flat manifold, and new theoretical developments

are involved. This generally yields to significant mod-

ifications of the corresponding evolution equations by

adding coupling terms that allow the constraint to be

preserved along the PDE flow.

For instance, this is the case when one wants to re-

store fields of unitary vectors, that lie on the unit sphere

Sn (Chan and Shen, 2001a; Kimmel and Sochen, 2002;

Perona, 1998; Tang et al., 2000; Vese and Osher, 2002)

or on manifolds implicitly defined by level sets func-

tions (Bertalmio et al., 2001).

Following these previous works, the aim of this ar-

ticle is to propose a variational framework, allowing

to regularize an original type of constrained vector

data: fields of n-D orthonormal vector sets. Indeed,

many interesting informations can be represented by

such datasets. We find of course the expected case of

the unit sphere Sn , when the orthonormal sets are re-

duced to single vectors. But it can also represent more

complex manifolds such as O(n), the space of orthog-

onal matrices. Actually, the orthonormal vector sets

are well adapted to represent orientation features, such

as direction vectors, chromaticity features in color im-

ages, rotation matrices or diffusion tensor orientations.

The idea is then to find a common variational formula-

tion that allows to diffuse directly such structures with

vector-valued PDE’s, avoiding any reparametrization

step (the case of 3D rotations, decomposed in Euler

angles or unit quaternions will be discussed and illus-

trated in Section 6.1).

The paper is organized as follows: We first propose

a mathematical formulation of the orthonormal vec-

tor sets regularization problem (Section 2), then pro-

pose a diffusion PDE-based solution, coming from the

constrained gradient descent of a φ-functional mini-

mization (Section 3). The role of the orthonormal con-

straints will be discussed and particular cases will be

illustrated: In a first part, we are interested in the simple

case where each image feature is a unitary n-D vector

belonging to the unit sphere Sn . This allows us to draw

a direct parallel with previous works on direction dif-

fusion (Chan and Shen, 2001a; Kimmel and Sochen,

2002; Perona, 1998; Tang et al., 2000; Tschumperlé

and Deriche, 2001a; Vese and Osher, 2002) (Section 4).

Then, we go one step further by studying the particular

case of 3 × 3 orthogonal matrices which also fits our

proposed framework (Section 5). The derived equa-

tions are interpreted through a mechanical viewpoint

and suitable numerical schemes are then provided.

Many applications of interest can benefit from this

regularization framework. We will illustrate both par-

ticular cases of direction vectors and orthogonal matri-

ces studied in this paper with applications to the reg-

ularization of direction fields (coming from instance

from optical flows computation) and color images with

chromaticity noise (as proposed in Chan and Shen

(2001a), Kimmel and Sochen (2002), Perona (1998),

Tang et al. (2000), Tschumperlé and Deriche (2001a),

and Vese and Osher (2002)). We also address two orig-

inal and challenging problems: First, the restoration

of noisy camera motion estimations, allowing smooth

re-projections of 3D virtual objects in real movies (Sec-

tion 6.1). Then, the regularization of DT-MRI datasets

(diffusion tensor MRI (Coulon et al., 2001a, 2001b; Le

Bihan, 2000; Poupon et al., 1998; Vemuri et al., 2001)),

leading to the construction of coherent tissues fibers

maps in the white matter of the brain (Section 6.2).

Experimental results are finally presented in the end of

this paper (Section 7).

2. Notations and Context

Vector-valued variables will be referred to by bold let-

ters. Let us consider m vector-valued images

I[k] : � → R
n (1 ≤ k ≤ m, n ∈ N

+)

supposed twice differentiable on a subset � of R
p (usu-

ally p = 1, 2 or 3). We will denote by

I
[k]
i : � → R (1 ≤ k ≤ m, 1 ≤ i ≤ n)

the scalar image, corresponding to the i th vector com-

ponent of I[k]. Then, ∀x ∈ �,

I[k](x) =
(

I
[k]
1 (x), I

[k]
2 (x), . . . , I [k]

n (x)
)T
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We are particularly interested in the set

B =
{

I[k]
∣

∣ 1 ≤ k ≤ m
}

of the m vector-valued images I[k]. It can be seen itself

as a field, where each point is a vector set:

∀x ∈ �, B(x) =
{

I[1](x), I[2](x), . . . , I[m](x)
}

Suppose now that the following orthonormal con-

straints between the vectors I[k] are also verified:

∀x ∈ �, I[k](x) · I[l](x) = δkl =
{

1 if k = l

0 if k 
= l
(1)

where I[k](x) · I[l](x) =
∑n

i=1 I
[k]
i (x) I

[l]
i (x) is the usual

dot product in R
n . Then,

∀x ∈ �, B(x) is an orthonormal vector set

composed of m orthogonal and unit vectors of dimen-

sion n. Note that one particularly interesting case is

reached when m = n, then B is an orthonormal vector

basis in R
n .

In this paper, we propose a general way to regular-

ize any datasets that can be modeled as a field B of

orthonormal vector sets, using coupled anisotropic dif-

fusion PDE’s. This idea is motivated by the fact that

orthonormal vector sets are well designed to represent

data orientation features, including:

• Unitary vectors: When the set B is restricted to a

single vector image B = {I} (i.e. m = 1), the or-

thonormal constraints (1) reduce to

∀x ∈ �, ‖I(x)‖ = 1

which characterizes fields of unitary vectors

(Fig. 1(a)).

• Orthogonal matrices: The columns of an orthogonal

matrix R ∈ O(n) are unit vectors that form an or-

thonormal vector basis. Then, R can be equivalently

represented by an orthonormal vector set B (with

m = n, the matrix dimension) (Fig. 1(b)). Note that

O(n) is a kind of bi-dimensional extension of Sn , and

have the same non-flat vector structure (due to the

orthonormal constraints).

These two particular cases will be more particularly

studied in Sections 4 and 5. First of all, let us develop

Figure 1. Examples of 2D fields of orthogonal vector sets (p = 2).

(a) Field of 2D Direction vectors (m = 1, n = 2). (b) Field of 3D

Orthogonal matrices (m = 3, n = 3).

a variational formulation to address the case of general

orthonormal vector sets (m, n ∈ N
+).

3. A Variational Formulation

We consider an initial “noisy” image B0 of orthonor-

mal vector sets (verifying constraints (1))

∀x ∈ �, B0(x) =
{

I[1](x)0, I[2](x)0, . . . , I[m](x)0

}

that we want to regularize using variational flows pre-

serving the orthonormal structure of these vector sets

(Fig. 2).

3.1. Unconstrained Regularization

We propose to find B as the solution of an energy min-

imization, following the well know idea of φ-function

diffusion, used to restore scalar images (see for in-

stance Charbonnier et al. (1994), Kornprobst et al.

(1997b, 1998), and Perona and Malik (1990)), and

more recently, vector fields (Blomgren and Chan, 1998;

Kimmel et al., 2000; Sochen et al., 1997). We quickly

remind the idea: Each vector image I
[k]
0 of the set B0 can

Figure 2. How to regularize a field B of orthonormal vector sets?
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be anisotropically smoothed (denoising with preserva-

tion of discontinuities), by minimizing the following

φ-functional

E
(

I[k]
)

=
∫

�

(

α

2

∥

∥I[k] − I
[k]
0

∥

∥

2 + φ
(∥

∥∇I[k]
∥

∥

)

)

d�

(2)

where ‖∇I[k]‖ =
√

∑n
i=1 ‖∇ I

[k]
i ‖2 is defined as the

vector gradient norm and measures a global vector

variation both in norm and orientation. The fixed pa-

rameter α ∈ R prevents the final solution from being

too different from the initial given field I
[k]
0 . The func-

tion φ : R → R is a diffusion function, which con-

trols the regularization behavior. A lot of different φ-

functions have already been proposed in the literature

related to scalar image restoration: Minimal surfaces

(Charbonnier et al., 1994) Geman and McClure (1985),

Perona and Malik (1990), Total variation (Rudin et al.,

1992), Tikhonov (1963) (choosing the right φ-function

depends on the desired regularization behavior, we re-

fer the interested reader to Charbonnier et al. (1994)

and Kornprobst et al. (1997b, 1998)).

One way of minimizing the functional E(I[k]), is to

compute the corresponding vector Lagrangian L[k] ∈
R

n which is in this case (using a component by com-

ponent writing style):

L
[k]
i = α

(

I
[k]
i − I

[k]
i0

)

− div

(

φ′(
∥

∥∇I[k]
∥

∥

)

∥

∥∇I[k]
∥

∥

∇ I
[k]
i

)

Then, one uses m vector gradient descents until steady

state: ∂I[k]

∂t
= −L[k], i.e. the m × n following scalar

PDE’s:











I
[k]
(t=0) = I

[k]
0

∂ I
[k]
i

∂t
= α

(

I
[k]
i0

− I
[k]
i

)

+ div

(

φ′(
∥

∥∇I[k]
∥

∥

)

∥

∥∇I[k]
∥

∥

∇ I
[k]
i

)

(1 ≤ i ≤ n and 1 ≤ k ≤ m). (3)

For our purpose of orthonormal vector set regulariza-

tion, one could naively use such diffusion PDE’s (3)

on each vector I
[k]
0 of the orthonormal vector set B0,

then reconstruct the final vector set image B with the

resulting smoothed vectors. A result of this method is

illustrated on Fig. 3. Two regularizing PDE’s (3) were

applied on each vector of 2D orthonormal vector bases

B = {I[1], I[2]} (mixture of direct and indirect bases),

using the Tikhonov function φ(s) = s2.

Figure 3. Decoupled diffusion of orthonormal vector sets: Or-

thonormal constraints are broken. (a) Original test field B0. (b) “Reg-

ularized” field B with (3).

Unfortunately, this decoupled regularization method

breaks the orthonormal properties: vector norms and

orthogonal angles are not intrinsically preserved by (3).

We must explicitly introduce orthonormal constraints,

in the minimization process. Note that conversely to

regularization methods acting on Sn that led to PDE’s

with coupling terms between vector components, our

problem is more general since the equations must also

consider an additional orthogonal coupling between the

different vectors themselves.

3.2. A Way of Preserving the Orthonormal

Constraints

In order to regularize the field of orthonormal vector

sets B0 while preserving the orthonormal proper-

ties (1), we propose a constrained minimization of the

following functional:

E(B) =
m

∑

k=1

E
(

I[k]
)

which also writes:

E(B) =
∫

�

m
∑

k=1

(

α

2

∥

∥I[k] − I
[k]
0

∥

∥

2 + φ
(∥

∥∇I[k]
∥

∥

)

)

d�

(4)

with respect to the m vector images I[k], subject to the

orthonormal constraints:

∀x ∈ �, I[p](x) · I[q](x) = δpq =
{

1 if p = q

0 if p 
= q
(1)

Note that the m Lagrangian vectors L[k] of the energy
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E(B) are obviously the same than in Section 3.1, i.e

L
[k]
i = α

(

I
[k]
i − I

[k]
i0

)

− div

(

φ′(
∥

∥∇I[k]
∥

∥

)

∥

∥∇I[k]
∥

∥

∇ I
[k]
i

)

It is then equivalent to associate at each vector I[k] an

energy functional E(I[k]) as defined in (2).

The orthonormal constraints are then introduced by

adding m2 Lagrange multipliers λpq : � → R (where

p, q ∈ [1, m]) to the functional E(B), where each λpq

is associated with the constraint:

∀x ∈ �, I[p](x) · I[q](x) = δpq

It leads to the unconstrained minimization of the fol-

lowing functional, with respect to I[k] and λpq :

E∗(B, λ)

= E(B) +
∫

�

∑

(p,q)∈[1,m]

λpq

(

I[p] · I[q] − δpq

)

d�

In fact, as the dot product and δpq are symmetric, the

constraints I[p] · I[q] = δpq and I[q] · I[p] = δqp are the

same, and the two corresponding Lagrange multipliers

λpq and λqp are then equal.

When the constrained minimum is reached, the

Euler-Lagrange equations corresponding to E∗(B, λ)

with respect to I[k] are: ∀k ∈ [1, m],

L
[k] +

∑

(p,q)

λpq

∂I[p]

∂I[k]
· I[q] +

∑

(p,q)

λqp

∂I[q]

∂I[k]
· I[p]

= L
[k] +

m
∑

q=1

λkqI[q] +
m

∑

p=1

λpkI[p]

= L
[k] + 2

m
∑

l=1

λklI
[l] = 0

and the final set of Euler-Lagrange equations of

E∗(B, λ) with respect to I[k] and λpq writes:

{

L[k] + 2
∑m

l=1 λklI
[l] = 0 (a)

I[p] · I[q] = δpq (k, p, q ∈ [1, m]) (b)
(5)

Finding formally the λkl reached at the minimum is

performed as follows: we take the dot product of the

lth Eq. of (5(a)) with the vector I[k]:

L
[l] · I[k] + 2

m
∑

p=1

λplI
[p] · I[k] = 0

then simplify it using the orthonormal relations (5(b)):

λkl = −
L[l] · I[k]

2

Finally, replacing the λkl in (5(a)) gives the vector gra-

dient descent that minimizes (4) while preserving the

orthonormal constraints (1):

∂I[k]

∂t
= −L

[k] +
m

∑

l=1

(

L
[l] · I[k]

)

I[l] (6)

where

L
[k]
i = α

(

I
[k]
i − I

[k]
i0

)

− div

(

φ′(
∥

∥∇I[k]
∥

∥

)

∥

∥∇I[k]
∥

∥

∇ I
[k]
i

)

(7)

The obtained Eq. (6) is a set of m coupled vector PDE’s

(i.e m × n scalar PDE’s where the coupling between

vectors and vector components is clearly present),

which allows to regularize any field of orthonormal

vector sets, preserving the orthonormal structure of the

vectors during the PDE evolution.

Note. The kth Lagrangian vector L[k] of the uncon-

strained functional E(B) can be seen as a pure diffusion

force, acting on the vector I[k] (a physical interpreta-

tion of this vector is provided in Section 5.2). Actu-

ally, one can note the clear separation in the PDE (6)

between the unconstrained lagrangians L[k] that are

responsible for the regularization behavior and the cou-

pling term
∑m

l=1(L[l] · I[k])I[l] that allows the orthonor-

mal constraints to be preserved.

This opens interesting possibilities: We may for in-

stance replace the simpleφ-function lagrangian term by

more complex enhancement terms adapted to specific

regularization problems, even if it doesn’t come from

variational principles (as for instance those proposed in

Osher and Rudin (1990), Sapiro and Ringach (1996),

Tschumperlé and Deriche (2001a, 2002), Weickert

(1998), and Weickert and Schnörr (2001)). On can also

think to use this general equation (6) to solve other or-

thonormal constraints related problems (image match-

ing, edge enhancement).

From now on, we will study some particular cases of

orthonormal vector sets, and the corresponding equa-

tions and applications.

4. Direction Diffusion

Vector direction diffusion has already been studied

in Bertalmio et al. (2001), Chan and Shen (2001a),
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Perona (1998), Tang et al. (2000), Tschumperlé and

Deriche (2001a), and Vese and Osher (2002). It con-

sists of regularizing fields I of unit vectors I(x) ∈ Sn .

Actually, this problem can be seen as a particular case of

our orthonormal vector set framework, where the vector

sets B(x) are restricted to a single vector B(x) = {I(x)}.
Indeed, as mentioned in Section 2, the orthonormal

constraints (1) are reduced to the unitary norm con-

straint: ∀x ∈ �, ‖I(x)‖ = 1.

The corresponding functional (4) also reduces to:

E(B) = E(I) =
∫

�

(α‖I − I0‖2 + φ(‖∇I‖)) d�

and the resulting constraint-preserving PDE (6) writes

in this case:

∂I

∂t
= −L + (L · I) I (8)

where Li = α(Ii − Ii0
) − div(

φ′(‖∇I‖)

‖∇I‖ ∇ Ii ).

Note that the velocity in (8) is simply the projec-

tion of the vector −L into the space orthogonal to I.

This equation can be highly simplified: From the spatial

derivations of ‖I(x)‖2 = 1, we find:

∀a ∈ [1, p], I ·
∂I

∂xa

= 0 and 
I · I = −‖∇I‖2

(9)

Developing the divergence in each Li :

div(A∇ Ii ) = A
Ii + ∇ A · ∇ Ii

where A = φ′(‖∇I‖)

‖∇I‖ . If we note by d the vector defined

by di = div(A∇ Ii ), with i = 1 . . . n:

d · I = A
I · I +
n

∑

i=1

p
∑

a=1

∂ A

∂xa

∂ Ii

∂xa

Ii

= A
I · I +
p

∑

a=1

∂ A

∂xa

∂I

∂xa

· I

The Eq. (9) allow the simplification:

d · I = −φ′(‖∇I‖)‖∇I‖

Then, the diffusion PDE (8) becomes:

∂ Ii

∂t
= div

(

φ′(‖∇I‖)

‖∇I‖
∇ Ii

)

+ φ′(‖∇I‖)‖∇I‖Ii

+ α(Ii0
− (I0 · I)Ii ) (10)

This PDE regularizes unit vector fields, using gen-

eral φ-functionals. Note that the PDE’s proposed in

Bertalmio et al. (2001), Chan and Shen (2001a), and

Tang et al. (2000) are a restriction of (10) to

α = 0 and φ(s) = sr (r = 1, 2)

Our orthonormal vector sets framework allows to

include previous works on unit vector diffusion

(Bertalmio et al., 2001; Chan and Shen, 2001a; Perona,

1998; Tang et al., 2000), in a more general framework

of orientation regularization.

Evolution of norm constrained vector fields has ap-

plication for denoising chromaticity features in color

images. Remind that a color image I = (R, G, B)T can

be decomposed into a chromaticity vector field u = I
‖I‖

and a brightness (scalar) image ‖I‖. Regularizing these

two attributes with two different PDE’s gives better

control on the color image restoration. In Section 7, we

present some chromaticity denoising results using our

constrained equation (10).

5. 3D Orthogonal Matrices Diffusion

We are now interested in another particular case of

orthonormal vector sets: 3D orthonormal matrices. We

consider then orthonormal vector bases fields (m =
n = 3) and for simplicity reasons, we denote the three

basis vectors by:

I = I[1], J = I[2] and K = I[3] then

B = {I, J, K}

As mentioned in Section 2, such datasets can repre-

sent fields of orthogonal matrices R ∈ O(3), since the

columns of these matrices form an orthonormal vector

basis B (Fig. 4). Note also that the sign of the deter-

minant det(R) is an information that can be retrieved

from the orthonormal vector basis B, which is direct

(then det(R) = +1) or indirect (then det(R) = −1).

Figure 4. Field of 3D orthonormal vector bases.
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5.1. Evolution Equations

In order to regularize B while preserving discontinu-

ities, we minimize the functional (4), with m = n = 3:

E(B) =
∫

�

α

2
(‖I − I0‖2 + ‖J − J0‖2 + ‖K − K0‖2)

+ φ(‖∇I‖) + φ(‖∇J‖) + φ(‖∇K‖) d�

Using the general solution (6), we can write the corre-

sponding constrained set of 3D vector diffusion PDE’s:











It = LI − (LI · I)I − (LJ · I)J − (LK · I)K

Jt = LJ − (LI · J)I − (LJ · J)J − (LK · J)K

Kt = LK − (LI · K)I − (LJ · K)J − (LK · K)K

(11)

where LI, LJ, LK are the unconstrained functional La-

grangian vectors, associated to the vectors I, J, K and

defined by (7). Note that this equation can be equiva-

lently written with a matrix PDE flow:

∂R

∂t
= L − RLT

R (12)

where the matrices R and L are defined column by

column:

R = (I | J | K) and L = (LI|LJ|LK)

The Eq. (12) corresponds then to an orthogonal matrix-

preserving regularizing PDE. Note that its extension to

higher matrix dimensions O(n) is also valid. Develop-

ing (12) with

R =
(

I[1]
∣

∣ · · ·
∣

∣I[n]
)

and L =
(

L
[1]

∣

∣ · · ·
∣

∣L
[n]

)

gives the expression of the general orthonormal vec-

tor sets evolution (6) for m = n. (see also (Chefd’hotel

et al., 2002) for interesting developments on other

matrix-valued flows).

5.2. A Physical Interpretation

B(x) = {I(x), J(x), K(x)} can be seen as a solid ob-

ject composed of three orthogonal rigid stems of unit

length, fixed at the same point x, and submitted to forces

fI, fJ and fK respectively (Fig. 5).

A rotation around x is obviously the only motion

that can perform B. Actually, each force fI, fJ and fK

Figure 5. A solid object B, submitted to forces.

induces a mechanic momentum on this object:

ωI = I × fI, ωJ = J × fJ, and ωK = K × fK

Where × designates the usual cross product in R
3.

Then, the total momentum applied to the object B is

given by:

ω = ωI + ωJ + ωK

i.e

ω = (I × fI) + (J × fJ) + (K × fK) (13)

If we suppose that B has an unit moment of inertia, we

can express the velocities vI, vJ and vK at each free ex-

tremity of the stems, corresponding to the constrained

motion of the solid:











vI = ω × I

vJ = ω × J

vK = ω × K

Developing these expressions, using the double vector

product formula u × (v × w) = (u.w)v − (u.v)w and

the orthogonal properties I[k] · I[l] = δkl , leads to:











vI = fI − (fI.I)I − (fJ.I)J − (fK.I)K

vJ = fJ − (fI.J)I − (fJ.J)J − (fK.J)K

vK = fK − (fI.K)I − (fJ.K)J − (fK.K)K

A velocity is an infinitesimal variation of a vector dur-

ing the time ∂t :

∂I

∂t
= vI,

∂J

∂t
= vJ,

∂K

∂t
= vK
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If we choose the forces fI, fJ, fK to be defined by (7),

we find the expected regularization PDE (12) that pre-

serves the orthogonal constraints: the functional (4)

can then be seen as a mechanic energy associated to a

rigid object B, submitted to three pure diffusion forces

f I, fJ, fK. The obtained PDE’s are the expression of the

instant rotations applied to B in order to minimize this

energy.

5.3. 3D Implementation Issue

The PDE flows (6), (10), (12) acting on orthonormal

vector sets have this particular form:

∂I[k]

∂t
= β [k] with

{

β [k]⊥I[k]

∥

∥I[k]
∥

∥ = 1

Indeed, if we use the general expression (6) of orthonor-

mal vector sets evolution for β [k]:

β [k].I[k] =

(

− L
[k] +

m
∑

l=1

(

L
[l].I[k]

)

I[l]

)

.I[k]

= −L
[k].I[k] + L

[k].I[k]

= 0

The PDE velocity β [k] is then anytime orthogonal to

the corresponding vector I[k] (It is generally the case

for vector PDE’s acting on orientation features, as in

Chan and Shen (2001a), Kimmel and Sochen (2002),

Perona (1998), Tang et al. (2000), Tschumperlé and

Deriche (2001a) and Vese and Osher (2002).

This means that the vector I[k](x) should theoreti-

cally perform a rotation motion around x, preserving

its norm. But using classic explicit schemes as

I
[k]
(t+dt) = I

[k]
(t) + dt β [k] where 0 < dt ≪ 1

leads to numerical errors since the underlying manifold

is non-flat and the unit norms of the vectors I[k] are not

preserved (Fig. 6).

In Bertalmio et al. (2001) and Tang et al. (2000)

for direction vector diffusion purposes, this problem is

avoided thanks to a re-normalization step of the vector

I[k] after few PDE iterations (see also recent devel-

opments in Vese and Osher (2002) for an interesting

alternative solution). Anyway, this method cannot be

applied when dealing with orthonormal vector sets, be-

cause the orthogonal angles between vectors may not

be preserved by this way.

Figure 6. Numerical errors with classic explicit schemes.

The mechanical interpretation of the 3D case

(Section 5.2) provides us a simple and accurate solution

to this re-normalization problem: we apply at each time

step the instant rotation corresponding to the evolution

equation (12) on the orthonormal 3D basis B. This ro-

tation is the same for all the vectors I, J, K (Section 5.2)

and is given by the rotation vector ω, defined by the

mechanic momentum:

ω = (I × L
I) + (J × L

J) + (K × L
K)

where the L are defined by (7) and are discretized with

classic finite-difference schemes (Kornprobst et al.,

1998) (their discretizations will be independent of

the constraints preservation). The infinitesimal rota-

tion matrix Ŵ corresponding to the instant rotation ω

is computed thanks to the Rodrigues’ formula [23]:

Ŵ = eHdt = II +
sin ‖ωdt‖

‖ωdt‖
Hdt

+
1 − cos ‖ωdt‖

‖ωdt‖2
H 2dt2

where dt > 0 is the time step and H is the skew-

symmetric matrix representing the cross-product with

the rotation vector ω:

H =







0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0







The evolution scheme for the matrix-valued PDE (12)

in the 3D case is then simply:

R(t+dt) = ŴR(t)
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where

R = (I | J | K)

It provides a numerical way to preserve the unitary

norm, as well as the orthogonal angles (the column

vectors I, J, K of R perform the same infinitesimal ro-

tation Ŵ at each time step t). The numerical error, due to

(dt 
= 0), is only present in the rotation angle ‖ω‖, but

doesn’t affect the orthonormal vector bases configura-

tion. Note also that this scheme naturally preserves the

determinants of the corresponding orthogonal matrices

R, during the flow. Indeed,

det
(

R(t+dt)

)

= det
(

ŴR(t)

)

= det (Ŵ) det
(

R(t)

)

(14)

= det
(

R(t)

)

since by construction Ŵ ∈ SO(3) and then det(Ŵ) =
+1. More particularly, it means that a rotation R ∈
SO(3) cannot be transformed to a rotoinversion dur-

ing the orthogonal PDE flow (12). Note that extensions

of these schemes for m = n > 3 has been recently pro-

posed in Chefd’hotel et al. (2002), generalizing the use

of exponential maps to build general matrix PDE flows

on constrained manifolds.

6. Applications of Orthogonal Matrix Flows

In this section, we present two different applica-

tive problems that can be naturally solved using our

orthogonal-matrix preserving flow (12).

6.1. Estimated Camera Motion Regularization

Suppose one wants to regularize a video camera mo-

tion. Taking a real movie sequence as an input, a first

process estimates the camera motion, then outputs two

temporal sequences, one corresponding to the camera

translation (change of the view point) and the second

to the camera rotation (change of the view angle) (see

Faugeras (1993) and RealviZ (1999) for algorithms and

products that perform this estimation).

These two outputs may be noisy (motion estima-

tion algorithms often use correspondence points com-

puted from the movie images which are very sensitive

to the noise) and a motion regularization process may

be needed (Fig. 7). This is the case for instance, when

Figure 7. Camera motion regularization.

one wants to re-project with a smoother way 3D vir-

tual objects on a real movie, using the estimated motion

information (this new technique attracts a growing in-

terest in the domain of special effects).

The translation part T = (Tx , Ty, Tz)
T of this cam-

era motion can be easily restored, using classic un-

constrained vector-valued PDE’s (Blomgren and Chan,

1998; Kimmel et al., 2000; Sapiro and Ringach, 1996;

Sochen et al., 1997; Sternberg, 1991; Tschumperlé and

Deriche, 2001a; Weickert, 1998). Regularizing the se-

quence of the camera orientations may be more com-

plicated.

When dealing with rotation matrices, a natural idea

is to decompose these matrices into more simple data

that are easy to regularize (usually Euler angles, unit

quaternions or rotation vectors), then reconstruct the

final rotation field from smoothed versions of these

data (Fig. 8).

However this method has some drawbacks: First,

the conversions often induce numerical imprecisions.

Figure 8. Decomposition of the rotations for orientation regular-

ization purposes.



246 Tschumperlé and Deriche

Figure 9. Direct rotation field restoration using orthonormal vector

sets.

Second, the rotation decomposition is not unique. It

would introduce annoying discontinuities in the de-

composed data, even if the initial rotation field is per-

fectly smooth. These discontinuities are coming from:

• The 2π -periodicity ambiguity of the Euler angles or

the norms of the rotation vectors.

• The double representation of a single rotation by two

equivalent quaternions q and −q.

It has a large influence on the anisotropic regulariza-

tion behavior by detecting non-existent discontinuities

which perturb the diffusion process.

Actually, using the orthogonal-preserving flow (12)

coming from the framework of orthonormal vector sets,

solves this problem: we apply directly the PDE (12) on

the rotation matrices sequence in order to regularize it.

No rotation decompositions are needed anymore, and

there are no false discontinuities problems since we

work directly on the matrix coefficients which form a

unique representation of R (Fig. 9).

Note that this approach is valid, since the matrix de-

terminant det(R) = +1 is preserved along the regular-

ization flow, thanks to the determinant property (14).

One result obtained on a real camera estimation se-

quence is presented in Section 7.

6.2. Regularization of DT-MRI Volumes

Let us denote by P(3) the space of symmetric and

positive-definite matrices. We are now interested in reg-

ularizing fields

T : � → P(3)

of diffusion tensors coming from DT-MRI imaging.

This recent and non-invasive 3D medical image

modality consists in measuring the water molecule mo-

tion in the white matter tissues, using magnetic reso-

nance techniques. Each voxel T (x) of the acquired im-

age T is a symmetric and positive definite 3×3 matrix

that defines the local fiber structure of the tissues, as

described in Granlund and Knutsson (1995), Le Bihan

(2000), Poupon (1999) and Vemuri et al. (2001).

Regularizing such fields is an interesting process:

• It constructs smoothed versions of the tissues fibers,

allowing to retrieve interesting ‘scale-space’ proper-

ties of these physiological structures.

• It denoises the datasets and more coherent physi-

ological indices (as VR, RA, FA, . . . see Le Bihan

(2000) and Poupon (1999)) can be computed from

the regularized tensors.

Actually, the fiber orientations are not explicitly

given by the matrices T (x), but can be retrieved by

a spectral decomposition

∀x ∈ �, T (x) = R(x)D(x)R(x)T

where R(x) = (I(x)|J(x)|K(x)) and

D(x) =







λ1(x) 0 0

0 λ2(x) 0

0 0 λ3(x)







R is a field of 3×3 orthogonal matrices that represent

the tensors orientations and whose columns I, J and

K are the unit eigenvectors T , while D is the field of

the tensors diffusivities which are positive values (T

is positive-definite). A natural 3D representation of T

is then a field of ellipsoids whose axes and radiuses

are respectively given by the eigenvectors of T and the

columns of R (Fig. 10).

Retrieving the fiber bundles is then made by follow-

ing the main direction I of the tensors at each voxel of

the volume T .

Interesting works on DT-MRI regularization can be

found in Chefd’hotel et al. (2002), Coulon et al. (2001a,

2001b), Poupon et al. (1998), Tschumperlé and Deriche

Figure 10. 3D diffusion tensor field T : � → P(3).
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Figure 11. Regularization of DT-MRI diffusivities D. (a) Mean

diffusivity (λ1 + λ2 + λ3)/3 of a brain DT-MRI. (b) Regularized

diffusivities with (3) and φ(s) = s.

(2001b) and Vemuri et al. (2001). Instead of regular-

izing directly the matrix field T with positive-definite

preserving flows, we propose to act both on the tensor

orientations R and diffusivities D by applying two dif-

ferent PDE’s (this separate regularization is justified in

Chefd’hotel et al. (2002) and Tschumperlé and Deriche

(2001b).

Concerning the tensor diffusivity part, the field D

can be regularized with classical vector-valued regu-

larization methods that must anyway satisfy the max-

imum principle [4], in order to ensure the definite-

positiveness of the tensors. Suitable PDE’s can be found

for instance in Blomgren and Chan (1998), Kimmel

et al. (2000), Sapiro and Ringach (1996), Sochen et al.

(1997), Sternberg (1991), Tschumperlé and Deriche

(2001a) and Weickert (1998) (Fig. 11).

As for the tensor orientation field R, it can be easily

regularized with our orthogonal-preserving flow (12).

Anyway, we have to take care of the non-uniqueness

of the spectral decomposition: flipping one eigenvector

direction while keeping its orientation gives the same

tensor T . To overcome this problem, a local eigenvec-

tor alignment process is made before applying the PDE

on each tensor of the field T , and for each time-step t .

The idea is to align the neighboring eigenvector direc-

tions with the current one. This is done by minimizing

the angles between them, constraining the dot product

to be positive by flipping the neighboring eigenvectors

if necessary:

∀y ∈ V(x), I[k̃](y) = sign
(

I[k](y) · I[k](x)
)

I[k](y)

where V(x) is a neighborhood of x (see also Coulon

et al. (2001a, 2001b) and Tschumperlé and Deriche

(2001a) for similar eigenvector flipping methods).

This local operation ensures we work only on the ten-

sor orientations, without taking into account the eigen-

vector directions that are dependent of the spectral de-

composition algorithm.

Application results of this regularization method on

real DT-MRI datasets is illustrated in Section 7, with

the reconstruction of fibers map in the white matter of

the brain.

7. Experimental Results

We applied the orthonormal vector sets preserving

equations (6), (10), (12) proposed in this paper, on syn-

thetic and real datasets, using the numerical scheme

proposed in Section (5.3) (this is possible since the

dimensions of the examples are less or equal than 3).

The results are displayed column by column on Figs. 12

and 13:

• Direction vector regularization: The application of

(10) on a field of 2D direction vectors allows to

smooth the noisy field, without losing the impor-

tant global structures (discontinuities and singular

points) thanks to the anisotropic behavior of the

φ-function diffusion (Fig. 12(1))

• Noisy chromaticity color image restoration: This is

an application of (10) for the 3D case, with vectors

I = (R, G, B)T. Denoising the direction of color

vectors allows to act only on the chromaticity part

of these colors. If we assume that the noise if purely

chromatic, we get much better results than classic un-

constrained color regularization PDE’s (Fig. 12(2)).

• Orthogonal matrix diffusion: Figure 12(3) illustrates

how we can deal with anisotropic behavior for or-

thogonal matrix diffusion with (12). We used here a

total variation functional φ(s) = s, in order to restore

a synthetic field of 3 × 3 rotation matrices involving

a triple junction.

• Camera motion regularization: We display on

Fig. 13(4), images of a video sequence where a vir-

tual 3D teapot has been inserted. Estimating the cam-

era motion of the original movie (Fig. 13(4a)) gives

a sequence of rotations and translations. The restora-

tion of these sequences, using (12) and (3) allows to

project in a smooth way, the 3D teapot, leading to a

more realistic sequence (here the original motion is

known to be smooth) (Fig. 13(4c)). Figure 13(5a)

shows that the restoration of the orientation part

of the motion has also a regularizing effect on the

corresponding Euler angles. Note that we didn’t

regularize the Euler-angles themselves, but acted

only on the coefficients of the original rotation
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Figure 12. Application of orthonormal vector sets regularization framework for restoration of unit vector fields (1), color chromaticity (2) and

3D rotations fields (3). (1a) Synthetic 2D field of 2D direction vectors. (1b) With orientation noise added to (1a). (1c) Restored field (Eq. (10),

with φ(s) =
√

1 + s2). (2a) Noisy chromaticity color image. (2b) Regularization with unconstrained color φ-functional (Eq. (3), with φ(s) =√
1 + s2). (2c) Chromaticity-based restoration (Eq. (10), with φ(s) = s). (3a) Synthetic 2D field of 3D rotations (with a triple junction). (3b)

With orientation noise added to (4a). (3c) Restored 3D rotations field (Eq. (12), with φ(s) = s).
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Figure 13. Application of orthonormal vector sets regularization: Smooth reprojection of a virtual object in a real movie (4), (5) and DT-MRI

images regularization and smooth fibers reconstruction (6). (4a) Synthetic movie of a 3D desk. (4b) Incrustation of a virtual 3D teapot on the

desk. (4c) Difference between regularized motion and initial estimated motion from the movie. (5a) Euler angle X of the estimation of a real

camera motion. (5b) Euler angle X of the regularized motion (intermediate iteration), with Eq. (12). (5c) Euler angle X of the regularized motion

(at convergence), with Eq. (12). (6a) Detail of a real DT-MRI of the brain (tensors are displayed on the left, main streamlines on the right).

(6b) Regularized volume, with orthogonal PDE (12) and φ(s) =
√

1 + s2 at intermediate iteration. (6c) Regularized volume, with orthogonal

PDE (12) and φ(s) =
√

1 + s2 at steady state.
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matrix sequence. The φ-function φ(s) = s2 used

here has an isotropic effect. This choice is justified

since the handled sequence is uni-dimensional and

shouldn’t contains discontinuities (the motion esti-

mation is always done on continuous sequence of the

movie).

• Diffusion tensor restoration: Figure 13(6) shows the

application described in Section 6.2, for constructing

smooth tissues fiber map in the white matter of the

brain. We regularize a real DT-MRI dataset (cour-

tesy of CEA-SHFJ (2000)) and follow at each voxel

of the volume the main tensor directions which are

representative of the fibers structures. Two regular-

ization steps are shown (Fig. 13(6b) and Fig. 13(6c)).

For each subfigure, the tensor field is represented

with ellipsoids on the left part of the image, and

with the computed streamlines on the right. Note

how the computed fibers are smoothed along the

PDE flow (12). Here, the gradient functional may de-

pend on physiological attributes, as for instance func-

tions proposed in Coulon et al. (2001a, 2001b), al-

though we used here a classical φ-functional φ(s) =√
1 + s2 Charbonnier et al. (1994).

8. Concluding Remarks

In this paper, we introduced an interesting constrained

multi-valued feature: the orthonormal vector set, that is

a natural generalization of the unit sphere Sn for multi-

dimensions, and is well adapted to represent orienta-

tion characteristics of various datasets. We proposed a

φ-functional based framework that allows to regular-

ize fields of orthonormal vector sets, and used it to ad-

dress a wide variety of regularization problems. First,

we made the link with previous works on unit vec-

tor fields regularization with application to chromatic-

ity denoising in color images. Second, we tackled the

problems of diffusion tensor field restoration and cam-

era motion regularization, that can find applications in

medical imaging and post-production. The clear sepa-

ration between the constraints and the minimizing un-

constrained gradient opens new perspectives for other

computer-vision problems, such as image matching or

segmentation. This is on-going research.
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et réhaussement en traitement d’image: Analyse et contributions.

In 11ème Congrés RFIA, AFCET, vol. 1, pp. 277–286.

Koschan, A. 1995. A comparative study on color edge detection. In

Proceedings of the 2nd Asian Conference on Computer Vision,

Singapore, vol. 3, pp. 574–578.

Le Bihan, D. 2000. Methods and applications of diffusion mri. In

Magnetic Resonance Imaging and Spectroscopy in Medicine and

Biology, I.R. Young (Ed.). John Wiley and Sons.

Malladi, R. and Sethian, J.A. 1996. Image processing: Flows under

min/max curvature and mean curvature. Graphical Models and

Image Processing, 58(2):127–141.

Morel, J.M. and Solimini, S. 1988. Segmentation of images by vari-

ational methods: A constructive approach. Rev. Math. Univ. Com-

plut. Madrid, 1:169–182.

Mumford, D. and Shah, J. 1989. Optimal approximations by

piecewise smooth functions and associated variational problems.

Communications on Pure and Applied Mathematics, 42:577–

684.

Nagel, H.H. and Enkelmann, W. 1986. An investigation of smooth-

ness constraint for the estimation of displacement vector fiels from

images sequences. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 8:565–593.

Nikolova, M. and Ng, M. 2001. Fast image reconstruction algorithms

combining half-quadratic regularization and preconditioning. In

Proceedings of the International Conference on Image Processing.

IEEE Signal Processing Society.

Nordström, N. 1990. Biased anisotropic diffusion—A unified reg-

ularization and diffusion approach to edge detection. Image and

Vision Computing, 8(11):318–327.

Osher, S. and Rudin, L.I. 1990. Feature-oriented image enhance-

ment using shock filters. SIAM Journal of Numerical Analysis,

27(4):919–940.

Paragios, N. and Deriche, R. 2002. Geodesic active regions: A new

paradigm to deal with frame partition problems in computer vi-

sion. International Journal of Visual Communication and Image

Representation, Special Issue on PDE in Image Processing, Com-

puter Vision and Computer Graphics, 13(1/2):249–268.

Perona, P. 1998. Orientation diffusions. IEEE Transactions on Image

Processing, 7(3):457–467.

Perona, P. and Malik, J. 1990. Scale-space and edge detection using

anisotropic diffusion. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12(7):629–639.
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