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Orthonormal wavelet expansion is applied to experimental data of turbulence. A direct relation 
is found between the wavelet spectrum and the Fourier spectrum. The orthonormal wavelet analysis 
with conditional sampling is applied to data of wind turbulence, yielding Kolmogorov's spectrum and 
the dissipation correlation with the intermittency exponent ,11"'0.2. 

Fourier transform method is a fundamental and indispensable tool in data 
analysis since it enables us to decompose data into components with different scales. 
Many fundamental properties of physical systems have been described in terms of 
Fourier spectrum, that is, the amplitude of Fourier coefficients. However, since 
Fourier spectrum totally ignores the phase of each Fourier coefficient, it lacks infor­
mation about positions of local events which underlie the characteristics of the 
spectrum. The Fourier spectrum analysis therefore encounters difficulty in ana)yzing 
data in temporal or spatial intervals which include different kinds of local events. 

The method of scale analysis applicable even to such complicated situations 
should enable us to identify the origin of characteristics of the spectrum with local 
events occurring in physical space. This requirement would be satisfied at least 
partially by an expansion in terms of basis functions which are local both in physical 
and Fourier space, although the locality is limited in its extent by the uncertainty 
principle. In this paper, we adopt an expansion method' in terms of orthonormal 
wavelets (discrete wavelet analysis) as one of such types of expansion method. 

The orthonormal wavelet expansion is a discrete version of continuous wavelet 
analysis.!) The latter is an integral transform method with kernel functions obtained 
by translating and dilating a l~calized function (analyzing wavelet). The continuous 
wavelet transform of a square integrable function is an isometric transform between 
a Hilbert space (V space on Rn) and V space on a locally compact topological group 
(a group of translation and dilation) with its Haar measure:2H) The continuous 
wavelet is a useful tool especially for studying a singularity or a fractal structure of 
a given function.5H) In particular, the energy cascade process in fully-developed 
turbulence has been captured remarkably in such an analysis.7

) However, it is not 
very advantageous if one is interested in the energetic aspect because the kernel 
functions are not mutually orthogonal and no physically immediate meaning can be 
associated with the expansion coefficients. IO

) 

Recently, mathematicians have succeeded in constructing a wavelet expansion in 
terms of orthonormal wavelets, which allows a clear and conventional physical 
interpretation of expansion coefficients from the energetic point of view. The orth­
onormal wavelets are obtained from a single function, the analyzing wavelet ¢(t). In 
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Meyer's procedure/O),Il) the analyzing wavelet is constructed from a real, even, 
non-negative and infinitely differentiable function ¢(w) satisfying the conditions that 
(1) ¢(w) is monotonically decreasing for w~O, (2) ¢(w) =1 (lwl~27r/3), 0(lwl~47r/3), 
(3) ¢(w)2+¢(w-27r)2=1 (27r/3~lwl~47r/3). These conditions do not determine ¢(w) 

uniquely, and here we take ¢(w)=j(h(w)h( - w», h(w)= 1(47r/3- w)/(f(w-27r/3) 
+/(47r/3-w», l(w)=exp(-I/w2)(w>0), O(w~O). The analyzing wavelet cjJ(t) is 

given by cjJ(t)=(1/27r)1 exp(iwt) ¢ (w )dw, where ¢ (w) =exp( - iw/2)j ¢(w/2)2- ¢(w)2 . 
This analyzing wavelet is a real function so localized that it decays to zero faster than 
any negative power of Ixl as Ixl ..... oo . The orthonormal wavelets are obtained from 
the analyzing wavelet cjJ(t) through discrete dilation and translation as cjJj,k(t) 
=2

j
/2cjJ(2jt - k) (j, k: integers). The integers j and k specify respectively: the spatial 

scale and the position of the wavelet cjJj,k(t) in the form of k/2 j. These orthonormal 
wavelets have been proved to form a complete orthonormal basis of lS 2(R) as 

(1) 

where * denotes complex conjugate. 
Practically, one of the most interesting properties of these orthonormal wavelets 

is the compactness of their support in Fourier space; ¢(w)*O only for 27r/3<ldJl<87r 
/3. This property suggests through (1) that the wavelet spectrum E j = ~k=_oolaj,kI2 
reflects the energy spectrum integrated from Iwl =2

j
27r/3 to 2j87r/3 in Fourier space. 

In other words, if the Fourier spectrum E(w) has a power law as w-P then E j is 
expected to behave as 2-<P-I)j, and vice versa. This direct relation between the 
wavelet spectrum and the Fourier spectrum, together with spatial locality of wavelets, 
will open a variety of applications of the orthonormal wavelet expansion, including a 
local spectrum of a temporal or spatial structure. 

We tested its usefulness by applying it to a shock solution of Burgers equation.12) 
Noticing that the r.h.s. of (1) is essentially a convolution, we can compute aj,k 
numerically by using FFTs. The wavelet spectrum was found to have a scaling form 
Ej~2-j in agreement with Fourier spectrum of k-2 (replace t and w in the above by 
x and k, respectively). For each j, we can find the spatial position of a local event 
dominant for the wavelet spectrum E j , by identifying the maximum value of laj,kl2 

over k. The spatial distribution of laj,kl2 for each j has two sharp peaks which 
surround a particular spatial position, that is, the position of the shock (graphs 
omitted). This confirms a well-known fact that the Fourier spectrum k-2 comes from 
a shock structure and thereby demonstrates sensitivity of wavelets to local events. 

Now we apply the orthonormal wavelet expansion to data of atmospheric turbu­
lence, obtained by a single hot-wire anemometer at a sampling rate of 100 Hz for 
about 8 minutes. The wind was weak and the mean velocity is about 0.5 m/s. In the 
following we implicitly employ Taylor's hypothesis assuming that it may be valid at 
least for sufficiently small scale motion. In Fig. 1 we show the (averaged) Fourier 
spectrum of the signal, and each was transformed with 1012 points. We can see a 
power-law behavior in higher wavenumber part. The slope is nearly equal to -5/3 
of the inertial subrange spectrum of turbulence, but it cannot be distinguished from, 
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Fig. 1. Fourier spectrum of wind turbulence. The 
straight lines show slopes of -3/2 and -5/3. 
The angular frequency (J) denotes 2)[ times 
frequency (Hz). 
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Fig. 2. Wavelet spectrum of wind turbulence. 
The straight lines show slope of -1/2 and 
-2/3. 

for example, -3/2. We show in Fig. 2 the wavelet spectrum obtained from 215 points 
of data ( -15;;;'j;;;' -1), in which the logarithm of E j to the base 2 is plotted against j 
in order to see the power-law dependence directly (the Nyquist frequency corresponds 
to j=-l). For j larger than -7, we can see a power-law behavior with exponent 
closer to -1/2 than to -2/3. Note that the wavelet spectrum gives a more sensitive 
check of a power-law, because it corresponds to the Fourier spectrum multiplied by 
wavenumber and because fluctuations are smoothed out by an averaging effect in the 
wavelet spectrum. 

In order to examine the discrepancy in the slope from -2/3 (Kolmogorov), we 
adopt a working hypothesis that external disturbances contaminate the inertial 
subrange of fully-developed turbulence intermittently. Such events must give rise to 
relatively large values of the spectrum in the inertial subrange. Therefore we 
classify the wavelet coefficients into disturbed and undisturbed ones; disturbed 
coefficients are defined by lQ'j,kI2 > F<IQ'j,kI 2 )k, while undisturbed one by lQ'j,kl 2 

;;;'F<laj,kI2)k, where Ok denotes the average over all k for each value of j, and F is 
an arbitrarily chosen threshold value. Then we introduce conditional wavelet spec­
tra, that is, the wavelet spectra in disturbed periods and undisturbed periods as 

E d
j ={2j /(number of disturbed coefficients)} . L: lQ'j,kI2

, 
disturbed coefficients 

E Uj ={2
j
/(number of undisturbed coefficients)} L: lQ'j,kI 2

• 
undisturbed coefficients 

Each of these represents the wavelet spectrum which we would have if the whole time 
interval would consist of the disturbed or undisturbed periods. We have no apriori 
reason to choose a particular value of F and tried a number of values of F. 

Figure 3 shows an example of the conditional spectra with F=5. The slope of 
the disturbed spectra is close to -1/2, while that of the undisturbed spectrum to -2/3, 
the value expected in the inertial subrange. Actually, the same results were 
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obtained for 0.01 ~ F ~ 15, and thus such 
a feature is robust to the change of the 
value of F. For F;;;;;'20, both the spectra 
were found to take a power-law with 
exponent -1/2. These results support 
the working hypothesis and also show 
the usefulness of the method of condi­
tional sampling. The origin of strong 
turbulence is supposed to be a violent 
fluid motion in an atmospheric boundary 
layer, associated with the experimental 

-10 -5 environment. 
The undisturbed wavelet co-

Fig. 3. Conditional wavelet spectra; the disturbed 
spectrum (circles) and the undisturbed one efficients, which gives the Kolmogorov's 
(squares). The straight lines -show slopes of spectrum, are considered to represent 
-1/2 and -2/3. fully-developed turbulence. We can 

check this view by examining the third-order moment <OV(t)3>, whose I-dependence in 
the inertial subrange is rigorously derived from the N avier-Stokes equation as 
< OV (l)3 > ~ 1.13) Here ov(l) denotes the magnitude of velocity characteristic to eddies 
of size I, and < > denotes an average. In terms of the wavelet coefficients, we have 
<ov(l)q>~{2jq/2/(number of undisturbed coefficients)}~klaj,klq, where the sum is taken 
only over undisturbed coefficients and I ~ 2-j

• The third-order moment, denoted by 
Tj, with F=5 is shown in Fig. 4, which confirms that the undisturbed coefficients 
represent fully-developed turbulence. We remark that large values of undisturbed 
coefficients appear to locate where velocity gradients are large, while it is difficult to 
identify them with specific spatial structures. 

Finally, we evaluate the intermittency exponent f1. of fully-developed turbulence, 
which is not due to external disturbances but to internal dynamics. The exponent f1. 

has different definitions according to the phenomenological theory employed. 14
)-16) 

Here we adopt the definitions in p'-model and log-normal model, because these are 
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Fig. 4. The third-order moment in the undisturbed 
periods. The straight line shows slope of -l. 
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Fig. 5. The correlation of energy dissipation. 
The straight line shows slope of 0.2. 
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most frequently used and give the same correlation of energy dissipation E(X) as 
<E(X)E(X+l»""<ov(l)6fl2>~l-P.. The dissipation correlation <OV(l)6W> in terms of 
the undisturbed wavelet coefficients, denoted by D j , is shown in Fig. 5 (F=5).*) The 
result in Fig. 5 is consistent with .u ~ 0.2 obtained by Anselmet and his coworkers17

) in 
a more sophisticated experiment .. The consistency of .u in spite of the rather limited 
data demonstrates efficiency of the orthonormal wavelet expansion method in data 
analysis. 

In this paper we focused our attention to the statistical properties of fully­
developed turbulence. The application of the wavelet analysis to spatially local 
strucure of fully-developed turbulence is of particular interest. Also, the wavelet 
analysis can be applied to other aspects of fluid turbulence, such as transport phe­
nomena and coherent structures in· 3D and 2D turbulences. Studies on these issues 
are now in progress and will be reported elsewhere. 

The authors would like to thank Professor Mitsuta for his useful discussion and 
Dr. Morimoto for his discussion on the mathematical aspects of orthonormal wave­
lets. They also thank Professor T. Kambe and Mr. Y. Tsuji for sending references 
on wavelet analysis. 
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