
Introduction

In 1965 Marshall Urist [46] found that in rabbits demin-
eralized bone matrix was capable of inducing formation
of mature bone ossicles filled with marrow elements,
when implanted in an ectopic, non-bony site. Although
neither identified nor characterized, Urist named this ac-
tivity bone morphogenetic protein (BMP) [30, 45, 46,
47]. Reddi [32] and Sampath and Reddi [34] standard-
ized this bioassay in rats, which allowed broad and re-
producible screening of bone inductive activity in vari-
ous fractions of non-collagen bone proteins [35, 36, 37,
38, 39]. The proteins were shown to exist across all spe-
cies [34], which suggested that BMPs are highly con-
served in mammals, and provided a basis for the isola-
tion and characterization of these proteins from bovine
bone matrix [4, 27, 37]. So far, it has been shown that
different BMP-like molecules, such as single morphog-
ens, have a site-specific multiple tissue induction poten-
cy [29]. For example, osteogenic protein (OP)-1 induces
bone formation when implanted subcutaneously with
collagen carrier into muscle or between bone fragments
[37]. Based on the bovine osteogenic protein peptide se-
quence human cDNA was cloned [31] and recombinant
human OP-1 (rhOP-1) was produced by recombinant
DNA technology [37]. Since 1992, extensive clinical and
preclinical research has taken place to investigate rhOP-1

in bone and cartilage regeneration and to make it avail-
able for routine clinical use [9, 10, 35, 50, 51]. In this re-
view we will focus primarily on OP-1 (BMP-7) in precli-
nical and clinical studies related to orthopedics.

rhOP-1 heals critical-sized diaphyseal defects

Numerous preclinical studies have proven the potency of
rhOP-1 to heal critical-sized long bone defects. By defi-
nition these defects cannot heal without the addition of
exogenous osteogenic stimuli. Implantation of rhOP-1-
containing collagen matrix preparations into surgically
created critical-sized diaphyseal segmental defects leads
to regeneration of new bone that is fully functional both
biologically and biomechanically. These results have
been shown in rabbits [11, 12, 13]. Both the rate and
quality of the osseous union were better than that
achieved by autogenous bone graft controls. In the pri-
mate ulna defect model rhOP-1 was shown to be capable
of healing defects that could not be healed with autoge-
nous bone [13]. In all animal models, nearly 100% of the
intact limb strength was achieved in the rhOP-1 groups,
which was significantly greater than that achieved in
equivalent defects, treated with autogenous bone. Well-
remodeled new cortices with a medullary canal were
formed. The medullary canal was filled with fully func-
tional marrow elements. In humans, a prospective 
randomized and double-blinded trial was reported by
Geesink et al. [19] showing that osteogenic activity of
rhOP-1 was sufficient to repair a critical-size human fib-
ula defect model. In patients undergoing high tibial oste-
otomy a standardized fibula defect of critical dimensions
was created. The patients then received demineralized
bone matrix, the collagen-matrix alone, or the rhOP-1
bound to collagen matrix as a carrier. When treated with
rhOP-1 five out of six critical-sized defects were bridged
by 4 months, while none of the collagen-alone implants
were effective in bridging such a gap [19].
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rhOP-1 heals non-unions

The first prospective randomized clinical trial on a mem-
ber of the BMP family compared rhOP-1 to autologous
bone graft in resistant non-unions of the tibia [18]. In or-
der to qualify for enrolment in this study, patients had to
have an established tibial non-union for 9 months or
more, and were in need of open bone grafting and intra-
medullary fixation. Patients with stiff hypertrophic non-
unions in good alignment were excluded, since these pa-
tients would likely do well by intramedullary nailing
alone. A total of 122 patients with 124 tibial non-unions
were recruited in 18 centers in the United States. The
rhOP-1 group was treated with an rhOP-1-containing im-
plant, consisting of 3.5 mg rhOP-1 in 1 g bovine-derived
non-soluble type I collagen matrix (known as ‘OP-1 De-
vice’). The study showed that the rhOP-1 implant and the
autograft were comparable with respect to the clinical
outcome parameters including resolution of pain and re-
turn to full weight bearing ambulation. The groups were
comparable with respect to avoidance of the need for sub-
sequent surgical treatment for persistent non-union. The
rhOP-1 implant, however, eliminated the morbidity and
pain associated with surgical harvest of autologous bone
graft and was associated with a reduction of intraopera-
tive blood loss and the rate of infection [18].

In another study Shimmin and Ruff [42] reported on
44 patients with resistant non-unions and a follow up
longer than 5 months. Three patients had failed both ra-
diological and clinical assessment; however, two of them
were exhibiting bone formation before the hardware
failed. Considering that all the patients had already pre-
viously failed conventional orthopaedic treatments, the
bone forming response of rhOP-1 was encouraging. At
the Department of Orthopaedic Surgery, Zagreb School
of Medicine more than 20 patients were successfully
treated for resistant non-unions with the OP-1 Device
(Fig. 1 and Fig. 2). 

rhOP-1 enhances bone graft incorporation 
and implant fixation

Bone implants coated with OP-1 in conjunction with a
carrier material involving porous and smooth surfaced
cobalt-chromium alloy implants were bilaterally placed
transcortically through the femoral diaphysis of adult
dogs. The dogs were killed after 3 and 6 weeks. Greater
surface bone ingrowth and apposition was seen in the
rhOP-1 treated implant, although there was little differ-
ence in mechanical fixation [10]. In another study, addi-
tion of OP-1 to morselized and impacted allograft in a
dog model [43] resulted in significantly more bone for-
mation and remodeling of the allograft in 3 weeks. With-
in the newly formed bone the trabecular structure was
oriented towards the implant and optimal approximation
on the implant surface was achieved. When combined
with a (coralline) hydroxyapatite, the significant increase
in bone ingrowth throughout the graft, the remodeling
and the implant osseointegration led to a 900% increase
in shear strength. Although the addition of rhOP-1 to the
allograft did not increase the mechanical fixation at 3
weeks, it did so in the hydroxyapatite group with out-
come comparable to that of the allograft group. More re-
cently, it has been reported that the addition of OP-1 sig-
nificantly increased energy absorption and new bone for-
mation in apposition to the implant as compared to the
allograft and/or hydroxyapatite alone [24]. These results
suggest that OP-1 may be used to promote enhanced os-
seointegration of metal implants and can induce new
bone formation in implant-bone interface gap space.

rhOP-1 increases remodeling and bone ingrowth 
in bone grafts and bone substitutes

Since the use of autograft results in extra morbidity, al-
ternatives have become an accepted routine in bone sur-
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Fig. 1A–D Left radius of a 
73-year-old female patient
(K.V.). Internal fixation with
plate and screws of fractured
ulna and radius was performed
in March 1999. Reoperation
with plate and screws in 
October 1999 was unsuccess-
ful. Seven months later no bone
healing of radius was observed
(A). Osteogenic protein-1 de-
vice was applied to radius dur-
ing the third surgical procedure
(B). After 3 months beginning
of bone healing was observed
(C) and complete bone bridg-
ing of the radius was present 
6 months postoperatively (D)



gery. To date none of these have been established as a
successful substitution for an autograft. Blokhuis and
colleagues [3] created a 3 cm segmental defect in the tib-
ia of 30 sheep. The defects were stabilized with an intra-
medullary-interlocking nail and were then left empty
(n=6), treated with autograft (n=8), 10 ml HA (Endo-
bone; Biomet/Merck GmbH, Germany) (n=8), or 10 ml
HA plus 3.5 mg OP-1/1 g collagen matrix (n=8). After
12 weeks bone healing was evaluated radiographically
and biomechanically. In all assessments both the auto-
graft and the HA plus OP-1 groups outperformed the HA
alone and the sham controls. The addition of OP-1 to HA
granules considerably improved the bone healing. Since
the results of HA plus OP-1 were comparable to auto-
graft, HA plus OP-1 may be used as an alternative in the
treatment of large bone defects [3]. Using OP-1 with dif-
ferent HA carrier materials in the healing of segmental
defects in a rabbit ulna model, it has been demonstrated
that the addition of rhOP-1 at low concentration to HA
graft materials increased the amount of bone formation
and incorporation [33]. Large 2.5 cm segmental ulna de-
fects in dogs were filled with one of seven combinations:
100% OP-1 Device (3.5 mg rhOP-1/1 g type I collagen),
100%, 67% or 33% autograft, 100%, 67%, or 33% allo-
graft with remaining percent made up of OP-1 Device
[14]. The healing was studied radiographically until kill-
ing at 12 weeks. As early as 2–4 weeks significant bone
formation was observed in all sites containing OP-1,
where defects filled with either 100% autograft or 100%
allograft showed no new bone formation on radiographs
until 6 weeks. Allograft and autograft produced substan-
tially less new bone formation. OP-1 Device treated sites

showed new bone formation by 2 weeks, extensive new
radiodense bone formation at 4 weeks, and bridging of
the defects at 6 weeks. Mechanically, OP-1 Device alone
tested at 100% of the contra-lateral intact ulna, whereas
the autograft-alone bones tested at less than 50% of the
contra-lateral intact ulna. This demonstrates that OP-1
Device, when used alone, was effective for the treatment
of large segmental bone defects [33].

rhOP-1 provides a full alternative 
for autograft in spinal fusion

The search for suitable alternatives to conventional bone
grafting techniques provides much of the basis for cur-
rent spinal endeavors. Approximately 25% of patients
with iliac crest donor sites reported significant pain last-
ing on average 5 years following surgery [44]. Unfavor-
able results with allogenic, xenogenic and artificial graft-
ing materials in this indication limit the clinical applica-
tion of these materials. Cook et al. [8] evaluated the effi-
cacy of OP-1 in treating posterior spinal fusion segments
in adult mongrel dogs at 6, 12 and 26 weeks post-
implantation. Four sites on each animal received im-
plants consisting of OP-1 on the standard collagen carri-
er, bone collagen carrier alone, autogenous iliac crest
bone, or no implant material. OP-1 treated fusion seg-
ments attained a stable fusion by 6 weeks post-implanta-
tion and were completely fused by 12 weeks. The auto-
graft sites demonstrated fusion at 26 weeks post-implan-
tation. These results indicated that OP-1 is an effective
bone graft substitute for achieving stable posterior spinal
fusion in animal models. Magin and Delling [28] tested
OP-1 in a sheep model for dorsal interbody fusion of the
lumbar vertebral column by using a laterodorsal ap-
proach with transpedicular fixation. Three groups of ten
sheep each were utilized. Implants consisted of auto-
graft, deproteinized bovine hydroxyl apatite, or OP-1 in
a collagen matrix. Biomechanically the greatest rigidity
was seen in those treated with autograft and OP-1 [28].
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Fig. 2A–D A 32-year-old female patient (B.S.) with non-union 
9 months after elongation of the left femoral bone by a Wagner
procedure (A). After removal of the Wagner apparatus, osteosyn-
thesis with a condylar plate was performed with addition of osteo-
genic protein-1 device and an autologous cancellous bone graft
(B). 3 months after the procedure the beginning of bone healing
was observed (C) and complete bridging of the defect was seen 
6 months postoperatively (D)



The histological and histomorphometrical evaluations of
the fusion with hydroxyl apatite demonstrate no continu-
ous osseous structure, but only the formation of a tense
pseudo-arthrosis. The bone density of the OP-1 induced
fusions exceeded the bone density of fusions in the auto-
graft group by an average of 40% indicating that the use
of OP-1 can increase the reliability of dorsal vertebral in-
terbody fusion, the degree of bone density in the area of
the fusion, and can also lead to greater bone formation at
earlier stages as compared with autograft in sheep [28].
Cunningham et al. [15] compared the efficacy of OP-1
with that of autograft for interbody arthrodesis by appli-
cation of BAK-cages in the thoracic spine. For this he
performed a multilevel thoracic decompression on three
non-contiguous levels by thoracoscopic approach in 12
sheep. These sites were then randomly treated, with one
of five modalities: destabilization alone, empty BAK-
cage, autograft alone, BAK-cage plus autograft and
BAK-cage plus OP-1/collagen carrier. Non-surgical lev-
els were assessed for further control. Results of biome-
chanical analysis showed statistically higher segmental
stiffness levels when comparing the control and experi-
mental groups. Computed tomography (CT) and micro-
radiography showed fusion for the destabilization alone
group in one of six, BAK-cage alone in two of six, auto-
graft alone in four of eight, BAK-cage plus autograft in
five of eight and BAK-cage plus OP-1/collagen carrier in
six of eight. This was confirmed histologically [15]. Tak-
en together these studies suggested that OP-1 provided a
viable alternative for iliac crest autograft in animal mod-
els; thereby obviating the need for a graft donor site and
associated patient morbidity.

Cartilage and tendon repair by OP-1

Several investigators reported on chondrogenic effects of
BMPs [1, 5, 16, 17, 27, 40, 41]. In cultured primitive an-
lagen of embryonic long bones, chondrogenesis was re-
markably enhanced by OP-1, suggesting that OP-1 initi-
ates differentiation of cartilage from perichondrium tis-
sue in vitro [21, 26]. BMP-2 and OP-1 treated explant
cultures of articular chondrocytes show enhanced syn-
thesis of extracellular matrix and maintenance of carti-
lage phenotype [1, 6, 27]. In vivo studies demonstrated
cartilage regeneration by OP-1 in animals both in sub-
chondral and chondral knee joint defects at 3 and 6
months following implantation, respectively [20, 22, 23,
48, 49]. Jelic and collaborators [23] suggested that in the
presence of full mechanical loading OP-1, delivered via
a mini-osmotic pump, stimulates regeneration of chon-
dral defects in sheep (Fig. 3). To evaluate the contribu-
tion of increased mechanical forces in cartilage regenera-
tion, the efficacy of OP-1 in repair of thyroid cartilage
defects has been studied [25]. Unlike control allograft
implants, OP-1 enriched implants, dose-dependently in-
duced bone, cartilage and ligament-like structures, sug-
gesting that OP-1 can promote formation of multiple tis-
sues in this specific microenvironment. Chubinskaya et
al. [7] reported that the expression of OP-1 mRNA in hu-
man cartilage samples did not decrease with aging and
was upregulated two-fold in osteoarthritic cartilage sug-
gesting a role for BMPs in osteoarthritis. Aspenberg and
Forslund [2] showed that tendon healing was stimulated
with cartilage-derived morphogenetic proteins (CDMPs).
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Fig. 3A, B Regeneration of ar-
ticular cartilage at 6 months
following surgery on the knee
of a sheep and treatment with
OP-1. A An empty defect treat-
ed with a acetate buffer vehicle.
B A condylar defect (arrows)
treated with OP-1 was filled
with newly regenerated carti-
lage



Conclusion

Bone induction by OPs/BMPs is one of the most impor-
tant discoveries in the field of bone physiology and bone
surgery. Osteogenic or bone morphogenetic proteins are
growth and differentiation factors capable of initiating
the recruitment, attachment, proliferation and differenti-
ating of mesenchymal cells, leading to newly formed
mature bone.

In the near future OP-1 containing implants could re-
place the conventionally employed autografts in repair-
ing acute bone fractures and induce healing of non-
unions. Such implants could promote osseointegration in
joint arthroplasty and replace and/or improve perfor-
mance of allografts and bone replacement biomaterials,
while speeding up the process of bone formation and re-
modeling for defects and fusions.

With the availability of OP-1 (BMP-7) on a carrier,
the orthopaedic and trauma surgeon will have a new and
potent tool in regenerating bone when it does not sponta-
neously heal.
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