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Abstract Pairs of disjoint sets (orthopairs) naturally arise

or have points in common with many tools to manage

uncertainty: rough sets, shadowed sets, version spaces,

three-valued logics, etc. Indeed, they can be used to model

partial knowledge, borderline cases, consensus, examples

and counter-examples pairs. Moreover, generalized ver-

sions of orthopairs are the well known theories of Ata-

nassov intuitionistic fuzzy sets and possibility theory and

the newly established three-way decision theory. Thus, it is

worth studying them on an abstract level in order to outline

general properties that can then be casted to the different

paradigms they are in connection with. In this paper, we

will review how to define orthopairs and a hierarchy on

them in the light of granular computing. Aggregation

operators will also be discussed as well as possible gen-

eralizations and connections with different paradigms. This

will permit us to point out new facets of these paradigms

and outline some possible future developments.
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1 Introduction

An orthopair is a pair of disjoint subsets of a given universe

X, we denote it as O ¼ ðP;NÞ. The two letters P and N

directly points to the semantics usually attached to an

orthopair: P standing for positive andN for negative. Indeed,

an orthopair can be used to collect positive and negative

examples, affirmed or negated propositional variables, trust

and distrust statements, accepted and rejected objects and so

on. An orthopair tri-partitions the universe in three subsets

P;N; ðP [ NÞc, we denote this last term as boundary: Bnd :

¼ ðP [ NÞc being the set of unknown objects in a partial

knowledge setting. Clearly any combination of these three

subsets defines an orthopair. That is, also (P, Bnd) and

(Bnd, N) are orthopairs, even if these two interpretations are

rare. On the other hand, it is frequent to find a representation

of an orthopair through a nested pair of sets, such as ðP;NcÞ.
The set Nc represents the non-negative or possibility zone,

we will denote it as Upp, following the usual rough set

nomenclature of Upper approximation (as opposite to the

lower approximation represented by P).

Orthopairs are strictly related to three-valued sets, being

possible to establish a bijection between the two notions.

Indeed, a three-valued set: f : X 7!f0; 1
2
; 1g corresponds to

an orthopair O defined pointwisely for all x as:

x 2 P iff fðxÞ ¼ 1

x 2 N iff f ðxÞ ¼ 0

Thus, all notions on three-valued sets and three-valued

logics can be inherited by orthopairs (Ciucci and Dubois

2014; Ciucci et al. 2014). This will be particularly useful

when defining operations on orthopairs.

Thanks to their simplicity in representing bipolar informa-

tion, orthopairs can be found at work in several contexts such

as, to make some recent example, trust and distrust statement

expressed by experts in Social Network Analysis (Wu et al.

2015), representing partial knowledge (Aguirre et al. 2014) or

vague knowledge (Crosscombe and Lawry 2015; Vetterlein

2015), formal concept analysis (Qi et al. 2014).

Pairs of nested or disjoint sets have been studied also in

the past. In Ciucci (2014), we reviewed some works made
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in the ’60s by Fadini, Andreoli and Gentilhomme (some of

their results will also be reported in this paper). More

recently, Yao investigated pairs of nested sets under the

name interval sets, as a tool to represent imprecise or

partial knowledge (Yao 1993, 2009a). In this sense, they

are strictly related to orthopairs and all the considerations

put forward here could apply also to interval sets and to

interval set applications such as clustering (Yao et al.

2009), at least from a purely theoretical standpoint. The

difference with respect to our approach lies in the seman-

tics. Interval sets are conceived as a generalization to set of

interval arithmetics and they are not considered as three-

valued structures but as a ‘‘family of sets’’ (Yao 2009a).

In the present work we will survey orthopairs in the light

of granular computing. In particular, there are two key

elements in granular computing: granulation of the uni-

verse and hierarchy on granules (Yao et al. 2013). Our

granules will be orthopairs on a universe X. In Sect. 2 we

will see some possible ways to define an orthopair, thus

how to granulate our universe. To define a hierarchy, we

will present in Sect. 3 some ways to define an order relation

among orthopairs. Clearly, this naturally defines different

levels of granules. The possibility to move along this

hierarchy can be given by union and intersection of

orthopairs, which are studied in Sect. 4 together with other

aggregation operators. Sections 5 and 6 are devoted to

present the relationship of orthopairs with some other

existing paradigms, which are generalization of orthopairs

or based, as orthopairs, on a tri-partition of the universe.

Finally, some conclusions are provided and open questions

discussed. We notice that here we present a general setting.

According to the application we have to handle, we need to

specialize and tune the way to define and manage

orthopairs.

2 Granulation

An orthopair can be seen as a complex granule, made of

two sets that can assume different meanings and can be

obtained in different ways. We are now going to see some

ways to obtain orthopairs (or equivalently nested pairs).

2.1 Rough Sets

Rough Set Theory was conceived by Z. Pawlak to manage

uncertain information in classification tasks (Pawlak 1982).

In more than 30 years of research, it reached a consensus in

many applications and it has been generalized in several

directions and hybridized with different paradigms, fuzzy

sets among all. For a recent overview see the chapters de-

voted to Rough Set Theory in Kacprzyk and Pedrycz

(2015). For the scope of the present work, let us introduce

and discuss generalized rough sets based on binary rela-

tions. Similar considerations can be, however, put forward

for other rough set models.

Definition 1 An approximation space is a pair ðX;RÞ
with X a set of objects and R a binary relation on X. The

granule generated by R for a given object x is the set

gRðxÞ :¼ fy 2 X : xRyg.

Remark 1 Typically, in rough-set applications, objects are

described using some properties and organized in so called

Information Tables. Then, the relationR is obtained looking

at the properties of objects: for instance the typical way to

consider two objects as equivalent is to check if they assume

the same value for all the properties under investigation.

Thus, the minimal unit of information, the granule, is the

set of objects reachable through a relationR from an object

x and so, it collects the objects connected to x, where the

kind of connection depends on R: it can be equivalence (as

in the original Pawlak case), similarity, preference, etc. The

objects in a granule are considered indiscernible, thus

meaning that we cannot single out all the objects and have

a perfect knowledge of all the universe. However, given a

subset of objects, we can define its approximation.

Definition 2 Let ðX;RÞ be an approximation space. The

lower approximation of H � X is

lðHÞ :¼ fx 2 XjgRðxÞ � Hg

and the upper approximation of H is

uðHÞ :¼ fx 2 XjgRðxÞ \ H 6¼ ;g

If the relation is serial,1 then lðHÞ � uðHÞ Yao (1998)

and the nested pair (l(H), u(H)) is named a rough set. The

corresponding orthopair ðlðHÞ; ucðHÞÞ also defines the

same rough set through the lower approximation and the so

called exterior region, denoted as eðHÞ :¼ ucðHÞ. Finally,
the uncertainty region BndðHÞ ¼ uðHÞnlðHÞ is the

boundary region. Of course also the pair (l(H), Bnd(H)) is

an orthopair, even if this notation is less used than the

previous one.

The lower approximation of a set H is interpreted as

certainty: it contains the objects that certainly belong to H,

whereas the upper approximation represents the possibility,

i.e., it contains the elements that possibly belong to H. Of

course the exterior e(H) represents the impossibility, that is,

the objects that certainly do not belong to H.

We remark that in general not all nested/ortho pairs on

X can be obtained as approximations of a subset H of the

1 A relation is serial iff any element is in relation through R with at

least one other element. Formally, 8x 2 X; 9y 2 X : xRy.
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universe X. That is rough sets on an approximation space

(X, R) are just a subset of all the orthopairs of X. Even in the

simpler case of an equivalence relation, this poses some

problems when introducing operations on rough sets, since it

is not assured that even if the result is a nested (ortho) pair it

is also a rough approximation (Ciucci and Dubois 2014).

2.2 Shadowed sets

To simplify the infinite precision of fuzzy subsets of a

universe X, Pedrycz introduced shadowed sets as, basically,

a three-valued entity on the same universe X Pedrycz

(1998): ‘‘shadowed sets are information granules induced

by fuzzy sets so that they capture the essence of fuzzy sets

at the same time reducing the numeric burden’’ (Pedrycz

2009). More formally, we can define them as follows.

Definition 3 Let X be a set of objects, called the universe.

A shadowed set on X is any mapping s : X ! f0; ð0; 1Þ; 1g.

That is objects are classified in three regions: the core,

sðxÞ ¼ 1, the region of exclusion, sðxÞ ¼ 0 and the shadow,

objects we are not able to correctly classify. As can be

seen, this is exactly a three-valued set which originates an

orthopair.

So, we can say that shadowed sets gives a granulation of

the universe in terms of orthopairs, starting from a fuzzy set.

This procedure is done through a-cuts. That is, we fix a value
a 2 0; 1

2

� �
, and given the membership function of a fuzzy set

f : X 7!½0; 1� the induced shadowed set is defined as

sðxÞ :¼
0 if fðxÞ� a

1 if fðxÞ� 1� a

ð0; 1Þ otherwise

8
><

>:

One of the main characteristic of shadowed sets is the

procedure to define the threshold a. The aim is to have a

balance of uncertainty (Pedrycz and Vukovich 2002;

Pedrycz 2005), that is to compensate the change of lower

and upper values of f(x) with the values f(x) in the shadow.

For any given shape of fuzzy sets, we obtain a typical

threshold, for instance in case of a triangular membership

function, the optimal value is a ¼
ffiffiffi
2

p
� 1.

2.3 Partial logical valuations

Let us consider a set of Boolean variables A which rep-

resent some knowledge on a given domain. Their value or

truth assignment can be obtained from the information

contained in a relational database or be given by an agent,

for instance an expert of the domain. Some information can

be missing, so that we are not able to give a truth value to

all variables, which are then unknown, giving rise to a

partial assignment typical of partial logics Blamey (1985).

Clearly, a partial assignment v gives rise to an orthopair of

true-false variables: P ¼ fa 2 A : vðaÞ ¼ 1g and

N ¼ fa 2 A : vðaÞ ¼ 0g. In case of complete assignments

we get the simple orthopair ðP;PcÞ.
A different but equivalent way to represent such an

orthopair is given by consistent Boolean valuation pairs

(Lawry and González Rodrı́guez 2011), that is pairs ðv; vÞ
of Boolean valuations on f0; 1g, such that v� v holds

pointwisely. The bijection between orthopairs and consis-

tent Boolean valuation pairs is defined as follows

a 2 P iff vðaÞ ¼ vðaÞ ¼ 1

a 2 N iff vðaÞ ¼ vðaÞ ¼ 0

a 2 ðP [ NÞc iff vðaÞ ¼ 0; vðaÞ ¼ 1

We also notice that any orthopair of variables defines a

particular possibility distribution (or epistemic set). Indeed,

we can collect all the (complete) assignments that are

compatible with a (partial) orthopair, that is, the possibility

distribution associated to an orthopair (P, N) is the set

fv : A7!f0; 1g : 8a 2 P; vðaÞ ¼ 1 ; 8a 2 N; vðaÞ ¼ 0g.
The other way round is not true, that is not all possibility

distributions give rise to an orthopair. We will further

discuss this issue in Sect. 5. More discussion on the logical

treatment of orthopairs and its different interpretations can

be found in Ciucci et al. (2014).

3 Hierarchy of levels

The straightforward way to define levels and hierarchy of

orthopairs is to define an order relation on them. There are

different orders that give rise to lattice structures or simply

posets. We are now going to revise these order relations. Let

us notice that from a partial order relation on three values

we can define an order relation on three valued functions, in

a straightforward pointwise way, and then on orthopairs.

The other way does not hold in general. That is, not

pointwise order relations cannot be defined on three values,

but they can be meaningful in orthopairs as we will see.

In Table 1, we give an overview of the (pointwise)

orderings we will discuss. We notice that dual orderings

Table 1 A summary of the pointwise order relations on orthopairs

Order on 3 Order on O

0� 1
2
� 1 P1 � P2, N2 � N1

1
2
� 1� 0 N1 � N2, Bnd2 � Bnd1

1
2
� 0� 1 P1 � P2, Bnd2 � Bnd1

1
2
� 1, 1

2
� 0 P1 � P2, N1 � N2

0� 1
2
, 0� 1 P1 � P2, Bnd1 � Bnd2

1� 1
2
, 1� 0 N1 � N2, Bnd1 � Bnd2
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with respect to these ones can also be given and studied,

i.e., for any order � we can also consider the dual �d

defined as O1 �d O2 iff O2 � O1. The dual order relations

are not listed in Table 1.

All these order relations produce a different hierarchy,

i.e, a different granulation of the universe. We can navigate

in these hierarchies by zooming in or zooming out, using

the intersection and union operation generated by the

ordering.

3.1 Total orderings

We have three total order relations (plus the dual ones). At

first, the standard order �t on three values and on ortho-

pairs is known as the truth ordering (Belnap 1977) (also

proper (Fadini 1962b) or normal inclusion Gentilhomme

(1968)):

x �t y iff 0 	 1

2
	 1 ð1Þ

O1 �t O2 iff P1 � P2;N2 � N1 ð2Þ

The fact that an orthopair O2 is greater than another one O1

is interpreted as if O2 is ‘‘more true’’ than O1, since it has

more positive elements and less negative ones than O1.

Example 1 Let us consider a granulation of the universe

given by partial evaluations (see Sect. 2.3). Then, the

hierarchy built by this ordering has as a top element the

orthopair corresponding to assigning true to all variables

and as bottom element the orthopairs with all variables set

to false. A path from top to bottom, means diminishing true

assignments and augmenting false ones (with some that can

be unknown). For instance, in case of four variables

fa; b; c; dg, we have ð;; fa; b; c; dgÞ �t ðfag; fb; c; dgÞ �t

ðfag; fc; dgÞ �t ðfa; b; c; dg; ;Þ.

The other two orderings are named ‘‘one-sided infor-

mation’’ ordering. The term ‘‘one sided’’ is due to the fact

that positive and negative part do not play the same role: in

the case of �N the negative information is preserved

whereas in �P the positive one is. On orthopairs they read

as:

O1 �N O2 iff N1 � N2;Bnd2 � Bnd1 ð3Þ

O1 �P O2 iff P1 � P2;Bnd2 � Bnd1 ð4Þ

and the corresponding orders on three values are

x �N y iff
1

2
	 1 	 0 ð5Þ

x �P y iff
1

2
	 0 	 1 ð6Þ

We remark that all these three order relations give rise to a

lattice structure whose meet and join will be given in Sect.

4.1.

3.2 Partial orderings

The most important partial order relation we are going to

introduce has received attention in several fields, and it is

known as knowledge ordering (Belnap 1977; Yao 2009a)

or semantic precision (Lawry and Dubois 2012) or sharp-

ening relation (Shapiro 2006). We will use the symbol �I

to denote it, the I standing for information:

O1 �I O2 iff P1 � P2;N1 � N2 ð7Þ

We can interpret it as the orthopair O1 being less infor-

mative than the orthopair O2, since the uncertainty region

is wider and this is due to a greater knowledge in both

positive and negative parts. This contrasts with the previ-

ous introduced orders �N and �P where the difference in

the boundary was due only to one of the two sides. The

formal relationships among these three orders is:

ðP1;N1Þ �I ðP2;N2Þ () ðP1;N1Þ �N ðP2;N2Þ
and ðP1;N1Þ �P ðP2;N2Þ:

ð8Þ

That is the information ordering implies the two one-sided

orders and we need both the one sided to get the infor-

mation ordering.

Example 2 Let us consider a granulation based on rough

sets. This ordering (which is not the standard one used in

rough set theory, which is �t) can be used to represent an

increase of knowledge. Indeed, if we add an attribute to

characterize our objects (i.e., we acquire more knowledge,

for instance making a further diagnostic test in medicine),

then the granulation of the universe becomes finer and our

orthopairs can be ordered with �I .

On three values, it corresponds to the partial order where
1
2
is less than both 0 and 1 (the unknown is less informative

than the known values true and false):

x �I y iff
1

2
	 0;

1

2
	 1 ð9Þ

Of course, this order gives rise only to a meet semi-lattice.

The other two partial order relations move information

from the positive (negative) side of O1 to the negative

(positive) side or to the boundary of O2 with the boundary

of O2 being greater. That is, there is more uncertainty in O2

than in O1. The first one reads 0� 1
2
, 0� 1 on three values.

On orthopairs it becomes

P1 � P2 and Bnd1 � Bnd2 :

In this case, O2 has less negative knowledge: some nega-

tive points in N1 are moved to P2, thus becoming positive

and some others to Bnd2. So, the second orthopair from

negative becomes possibilistic with respect to these last

points.
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The last partial order relation is given by 1� 1
2
, 1� 2 and

on orthopairs by

N1 � N2 and Bnd1 � Bnd2

and it acts in the opposite direction: some objects in P1

move to the negative side or to the boundary in O2. So, O2

is greater than O1 can be interpreted as O2 is more negative

or pessimistic than O1.

Both these order relations define a meet semi-lattice.

3.3 Non pointwise orderings

These kind of order relations were investigated by Fadini

Fadini (1962b) and they are greatly influenced by his

view of an orthopair as (positive, boundary). Indeed,

positive and boundary regions play a major role in

defining these orderings. The essential condition

required is that P1 [ Bnd1 � P2 [ Bnd2, which is equiv-

alent to N2 � N1, that is the negative knowledge is less in

the greater element O2. Apart from the information

ordering (7), he defines four other situations that satisfy

this constraint. They are:

(npo1-neg) Total inclusion: ðP1 [ Bnd1Þ � P2, the

name is clearly given by the intuition that the orthopair O1 it

totally contained in O2, both in its certainty and possibility

parts. This ordering has also been named strong in Gentil-

homme (1968) with respect to the weak one:

P1 � P2 [ Bnd2.

(npo2-neg) Improper or inverted inclusion:

Bnd1 � P2, P1 � Bnd2. Everything that is positive in O1

becomes uncertain in O2 and everything that is uncertain

become positive.

(npo3-neg) Total improper inclusion:

P1 [ Bnd1 � Bnd2, everything that is positive in O1

becomes uncertain.

(npo4-neg) Mixed inclusion: Bnd1 and P1 are both

contained in P2 [ Bnd2 and they have a non-empty inter-

section with both P2 and Bnd2.

Clearly, if we change the constraint N2 � N1 with the

corresponding positive condition P1 � P2, other similar

orders could be defined:

(npo1-pos) N2 [ Bnd2 � N1: not only O2 has more

knowledge than O1 but this is due to the fact that the

uncertainty in O2 is all due to some negative information

that becomes uncertain.

(npo2-pos) Bnd2 � N1, N2 � Bnd1. Everything that is

negative in O2 was uncertain in O1 and everything that is

uncertain was negative.

(npo3-pos) N2 [ Bnd2 � Bnd1, everything that was

negative or uncertain in O1 becomes uncertain in O2. This

also implies that N1 � P2, that is all the negative infor-

mation becomes positive.

3.4 An orthopair as a hierarchy

A different approach with respect to the idea of an ortho-

pairs as a granule and then levels made of orthopairs, is to

consider a single orthopair as a structure itself. In this case

we have only three levels and granules are simple objects.

This idea was put forward by Andreoli (1959, 1961) with

motivations coming from genetic studies. Indeed, in this

example, the universe is made of a dominant and a reces-

sive allele fA; ag and the granules are all the possible pairs

AA, Aa 
 aA, aa, where the orthopair is given by (AA, aa)

and the order relation is aa�fAa; aAg�AA, generating

the structure in Fig. 1.

Andreoli also introduces the typical operations of ‘‘re-

finement’’ and ‘‘attenuation’’ on levels, which enable to

zoom-in or zoom-out from one level to the other. As can be

seen in Fig. 1, a Boolean algebra is generated by an allele,

and then it is investigated as a three-valued entity using

levels. This idea can be generalized to generic Boolean

algebras and Andreoli himself sketches some possible ways

to do this.

4 Aggregation of orthopairs

The order relations given in the previous section enable us

to define lattice or semilattice structures. We will give

these operations at first, then several possibilities to define

a negation and a difference will be investigated.

We notice that we are not dealing here with an algebraic

approach to these operations (such as Cattaneo et al. 2011;

Moraschini 2014), nor to an abstraction of orthopairs to

Boolean, or even more general, algebras. For some hint on

this topic see Ciucci (2011) and [Pagliani (2008), Frame

10.11].

4.1 Meet and join by total orderings

The three total order relations given in Sect. 3.1 define

three lattice structures and hence three different meet and

join operations. Once translated on three values, we can see

that they correspond to strong Kleene conjunction and

disjunction (from �t), weak Kleene conjunction and dis-

junction (respectively, the min from �P and �N), the

Sobocinski conjunction and disjunction (respectively, the

Fig. 1 Three levels of an ortho-

pair of alleles
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max from �N and �P). These three pairs of operators read

on orthopairs as follows.

– the strong Kleene conjunction and disjunction (Kleene

1952):

ðP1;N1Þ u ðP2;N2Þ :¼ ðP1 \ P2;N1 [ N2Þ ð10aÞ

ðP1;N1Þ t ðP2;N2Þ :¼ ðP1 [ P2;N1 \ N2Þ ð10bÞ

This is also the standard way to define intersection and

union in rough set settings, they turn out to be mathe-

matically well-defined, even if we can have difficulties

in interpreting them (see Ciucci and Dubois 2014 for a

discussion).

– the weak Kleene meet and join (Kleene 1952):

ðP1;N1Þ uK ðP2;N2Þ :¼ ðP1;N1Þ uN ðP2;N2Þ
:¼ ððP1 \ P2Þ [ ½ðP1 \ N2Þ [ ðP2 \ N1Þ�;N1 \ N2ÞÞ

ð11aÞ

ðP1;N1Þ tK ðP2;N2Þ :¼ ðP1;N1Þ uP ðP2;N2Þ
:¼ ðP1 \ P2; ðN1 \ N2Þ [ ½ðN1 \ P2Þ [ ðN2 \ P1Þ�Þ

ð11bÞ

In three-valued logics these operations make sense

when the third value is interpreted as undefined.

Though tK could look more like a conjunction than a

disjunction, its real nature becomes evident once

translated in three-values Ciucci et al. (2014).

– the Sobociński operations (Sobocinski 1952):

ðP1;N1Þ uS ðP2;N2Þ :¼ ðP1;N1Þ tN ðP2;N2Þ
¼ ðP1nN2 [ P2nN1;N1 [ N2Þ

ð12aÞ

ðP1;N1Þ tS ðP2;N2Þ :¼ ðP1;N1Þ tP ðP2;N2Þ
¼ ðP1 [ P2;N1nP2 [ N2nP1Þ

ð12bÞ

On three values they correspond to uninorms with

neutral element 1
2
(Grabisch et al. 2009) and are used in

conditional events to fuse conditionals (Dubois and

Prade 1994), where they are known as quasi conjunc-

tion and quasi disjunction.

4.2 Meet by partial orders

The information ordering defines the following meet

operation:

ðP1;N1Þ uI ðP2;N2Þ :¼ ðP1 \ P2;N1 \ N2Þ ð13Þ

It is also known as the pessimistic combination operator in

the context of belief aggregation (Lawry and Dubois 2012),

since it keeps only what both orthopairs agree on, both in

the positive and negative side. On three values, it corre-

sponds to a nullnorm, more specifically the meet of x, y is

the median of fx; y; 1
2
g (Grabisch et al. 2009). The corre-

sponding join (that does not always give an orthopair) is

also named the optimistic combination operator (Lawry

and Dubois 2012):

ðP1;N1Þ tI ðP2;N2Þ :¼ ðP1 [ P2;N1 [ N2Þ ð14Þ

and it makes sense whenever the two orthopairs are con-

sistent, i.e., P1 \ N2 ¼ ; and P2 \ N1 ¼ ;.
The other two orderings just keep one of the two side of

the above meet (13) and add elements to the other side:

ðP1 \ P2;N1 [ N2 [ ðP1 \ Bnd2Þ [ ðP2 \ Bnd1ÞÞ ð15Þ

ðP1 [ P2 [ ðN1 \ Bnd2Þ [ ðN2 \ Bnd1Þ;N1 \ N2Þ ð16Þ

As can be seen the second equation defines a disjunction

more than a conjunction. In both operations, we notice that

the boundary is obtained as the intersection of the two

starting boundaries: BndO1uO2
¼ Bnd1 \ Bnd2. Once inter-

preted on three values they both originate non-monotonic

operations.

4.3 Negations

In three valued logics there are three different negations

that extend the classical ones: they obviously differ only on

the value assigned to the negation of the third value, giving

rise to the standard (involutive) negation, the intuitionistic

and paraconsistent negations. The value assigned to the

third value 1
2
is, respectively, 1

2
, 0 and 1. On orthopairs, these

three negations read as:

:ðP;NÞ :¼ ðN;PÞ
� ðP;NÞ :¼ ðN;NcÞ
�ðP;NÞ :¼ ðPc;PÞ

We can see that the involutive negation switches the pos-

itive and negative parts, whereas the other two just con-

sider one side of the switching and then construct an

orthopair with no boundary.

We can play with the other two total orders as we did

with the standard one and obtain six other different nega-

tions. That is, in the case of order �N we set 1
2
and 0 to be

the negation one of the other and then assign to the nega-

tion of 1 one of the three possible values. Similarly, for �P,
1
2
and 1 will be the negation one of the other and in case of 0

one of the three values is considered as its negation. On

orthopairs these six negations are:

:NðP;NÞ :¼ ðP;BndÞ
� NðP;NÞ :¼ ð;;BndÞ
�NðP;NÞ :¼ ð;;NÞ
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Though they can appear strange at a first sight, at least

some of them have a meaningful interpretation and have

been studied by some authors. The negation :N is con-

sidered in Fadini (1962a), as one of the possible ways to

negate a positive-boundary pair (‘‘complex class’’ in

Fadini’s terminology). It consists in negating only the

boundary that is switched with the negative part, thus

moving from a positive-negative to a positive-boundary

pair. Fadini also considered the three negations arising

from the order �P. The involutive one :P is obtained by

admitting that a negation of the Boolean and Boundary part

could contain only elements outside the Boolean/Boundary

parts and not all and only as it was in his other negations.

Hence, the swapping of the Positive and Boundary sets.

The intuitionistic and paraconsistent like negations are

obtained by negation of both the Boolean and Boundary

part. In these two negations, nothing is false, the difference

lies in the positive part, which consists in one case in the

boundary and in the other in the union of boundary and

negative. We also remark that on three values, the negation

�P corresponds to the complete negation introduced by

Reichenbach in his studies on quantum mechanics (Re-

ichenbach 1954).

As a last and different approach, let us consider an

operation which is not well defined on the collection of

orthopairs, in the sense that the result is a pair of sets not

necessarily disjoint. The negation of (P, N) consists in

negating both the positive and negative part ðPc;NcÞ and it

was introduced in Andreoli (1959). Clearly, unless the

boundary is empty this is no more an orthopair, but a

generic pair of sets, which can make sense in a more

general context (see Sect. 5.1). This operation is introduced

under a decision theoretic interpretation of an orthopair

where P corresponds to accept, N to reject and the

boundary to undecided. So, the negation of undecided is

just decided which can mean either accept or reject. We

will go back to this issue while discussing the connections

with three-way decision theory in Sect. 6.2.

4.4 Difference

Also in case of the difference, several definitions are pos-

sible. Gentilhomme (1968) introduces three kinds of dif-

ference but he considers as correct one only the following:

O1nO2 :¼ O1 u :O2 ¼ ðP1 \ N2;N1 [ P2Þ ð17Þ

The justification of considering this operation as a differ-

ence is more evident if we consider it as a nested pair,

indeed, it would be written as ðP1;U1ÞnðP2;U2Þ ¼
ðP1nU2;U1 n P2Þ. The other two differences can be

obtained similarly to the previous one, but using a different

negation:

O1 u �O2 ¼ ðP1 \ N2;N1 [ Nc
2Þ ð18Þ

O1 u �O2 ¼ ðP1 \ Pc
2;N1 [ P2Þ ð19Þ

Again, once interpreted on nested pairs, their meaning

becomes more evident. The first one ðP1nU2;U1nU2Þ
corresponds to accepting no risk, while the second

ðP1nP2;U1nP2Þ in accepting the maximum of the risk,

since the positive and boundary region are larger than the

first one.

In Lawry and Tang (2012), we can find an operation that

sounds to be a more natural difference in the orthopair

context:

O1 � O2 :¼ ðP1nN2;N1nP2Þ ð20Þ

By removing from the positive (negative) part of O1 what

O2 considers as negative (positive), we make O1 consistent

with O2. Indeed, this difference is at the basis of the con-

sensus operation (Lawry and Dubois 2012)

O1  O2 :¼ ðP1nN2 [ P2nN1;N1nP2 [ N2nP1Þ ð21Þ

in which two orthopairs are merged in a consistent way, by

eliminating, through the difference operator, the discrep-

ancies between the two orthopairs. Indeed, it can be seen

that the following holds:

O1  O2 ¼ ðO1 � O2Þ tI ðO2 � O1Þ :

Remark 2 All the operations outlined in this section can

be used to aggregate orthopairs with different aims

according to the operation and to the application. More-

over, they can be used in two ways to combine orthopairs:

inside the same granulation or between two different

granulations. Some examples are:

– if two orthopairs represent two agents opinion on the

same fact, then we can compute their difference

through � and reach a consensus between them using

the operator ;

– similarly, two agents point of view can be combined in

a pessimistic or optimistic way, using the operations

uI ;tI ;

– Sobocinski operations are standard conjunction and

disjunction operations on conditional events;

– if we want to aggregate two shadowed sets, then a first

choice is to use Kleene lattice operations, that corre-

sponds to min and max on fuzzy sets;

– in case of decision theory, where the regions of the

orthopair represent accept and reject, operations can be

used to aggregate two different decisions on the same

subject (see Sect. 6.2 and future works in Sect. 7.2).

Granul. Comput. (2016) 1:159–170 165

123



5 Generalizations

We now introduce three different generalizations of

orthopairs that can represent different kinds of knowledge.

5.1 Paraconsistent pairs

A first straightforward generalization can be obtained by

dropping the (only) condition of an orthopair: P \ N ¼ ;.
In this way we just get a pair of subsets of the universe

(A, B). Keeping the same interpretation of these two sets as

in orthopairs, we have that the intersection F \ G repre-

sents the objects on which we have contrasting informa-

tion, for instance given by two agents. In this sense, a pair

of this kind is linked to (partial) paraconsistent logic. More

precisely, it is closely related to Belnap’s four valued logic

Belnap (1977). Indeed, as orthopairs are in bijection with

three-valued sets, paraconsistent pairs are in bijection with

four-valued sets. Let h : X 7!f0; 1; u; cg (u stands for

unknown, c for contradictory), then

x 2 AnB iff hðxÞ ¼ 1

x 2 BnA iff hðxÞ ¼ 0

x 2 A \ B iff hðxÞ ¼ c

x 2 ðA [ BÞc iff hðxÞ ¼ u

A bi-lattice structure Fitting (1989) can be defined on these

values whose orderings are the truth ordering (1),

0�fu; cg� 1, and the information ordering (7),

u�f0; 1g� c. A paraconsistent pair can be originated, as

already said, by two different agents whose knowledge can

be represented by an orthopair. Indeed, given two ortho-

pairs ðP1;N1Þ and ðP2;N2Þ we can define a paraconsistent

pair as ðP1 [ P2;N1 [ N2Þ, whose contradictory region is

clearly given by ðP1 \ N2Þ [ ðP2 \ N1Þ.

5.2 Possibility theory

Possibility theory is an uncertainty theory to manage

missing information. It has a bipolar flavor, since it can

manage separately positive and negative information

(Dubois and Prade 2015a); Dubois et al. 2001). This points

directly to orthopairs, which share the same spirit. Possi-

bility distributions and measure however have a greater

flexibility in representing information. As we are going to

explain orthopairs are just particular possibility distribu-

tions, which can thus be seen as a generalization of

orthopairs.

Definition 4 A possibility distribution on a set S is a

mapping: p : S 7!½0; 1�. It is said Boolean if only the values

0, 1 are admitted: p : S 7!f0; 1g.

In our case, given a set of propositional variables A, we

consider the collection of valuations that we can define on

A: X ¼ fx : A7!f0; 1gg and we are interested on Boolean

possibility distribution defined on X.
The possibility distribution attached to an orthopair of

variables (P, N) is the characteristic function of the set of

models of the formula / ¼ ½
V

a2P a ^
V

a2N :a�. That is

pðP;NÞðxÞ :¼
1 if x�½

V
a2P a ^

V
a2N :a�

0 otherwise

�
ð22Þ

Clearly, not all possibility distributions, nor even if we

restrict to the Boolean ones can be represented by an

orthopair. It is thus evident that orthopairs can only gen-

erate a subset of Boolean possibility distribution. In par-

ticular, those that take an hyper-rectangle shape on the

space f0; 1gn, i.e., a Cartesian product of subsets of

fa;:ag. To capture any Boolean possibility distribution a

set of orthopairs is needed Ciucci et al. (2014).

5.3 Atanassov intuitionistic fuzzy sets

If we want to generalize orthopairs to a fuzzy environment,

we need to give a definition of orthogonality on fuzzy sets

corresponding to the Boolean requirement P \ N ¼ ;. If
we express this condition in terms of characteristic func-

tions, we can see that it corresponds to ask that for all x,

vPðxÞ þ vNðxÞ� 1, i.e., all elements x can belong at most to

one between P and N (vA is the characteristic function of

the set A). This last relation can be immediately general-

ized to obtain an orthogonality relation on fuzzy mem-

bership functions f, g (Cattaneo and Ciucci 2006; Cattaneo

and Manià 1974):

f ðxÞ þ gðxÞ� 1 :

This condition exactly characterizes Atanassov intuition-

istic fuzzy sets (IFS) (Atanassov 1986, 1999, 2012), a

very well known tool to represent vague bipolar infor-

mation. It has many applications in information retrieval,

data mining, decision making, etc. Clearly, IFS have a

greater flexibility in knowledge representation than

orthopairs, that also results in a wider possibility to define

operations on IFS with respect to the ones on orthopairs

introduced in Sect. 4. For an overview see the book

(Atanassov 2012).

We remark that Çoker in Çoker (1996) introduced the

notion of ‘‘intuitionistic set’’ as the Boolean counterpart of

IFS, of course they coincide with orthopairs. We also

underline that the term ‘‘intuitionistic’’ has been strongly

criticized in this context, since IFS have no relation with

(standard) intuitionistic logic (Dubois 2005; Cattaneo and

Ciucci 2006).
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6 Related paradigms based on a tri-partition
of the universe

Some knowledge representation and reasoning tools deals

with a tri-partition of a universe and as such can be easily

put in correspondence with orthopairs. In this section, we

put forward these connections.

6.1 Hexagon of opposition

An opposition is a relation between two logical statements

expressing an opposite point of view. The study on oppo-

sitions starts in ancient Greece and has its main result is the

Square of Opposition by Aristotle. In the last years, we can

assist to a renewal of interest around this topic, mainly due

by Jean-Yves Béziau Béziau (2003, 2012). Several gener-

alizations of the traditional square are defined, adding new

kind of oppositions and thus different geometrical repre-

sentations: cube, hexagon, tetrahedron, etc. (Reichenbach

1952; Hacker 1975; Dubois and Prade 2012a; Demey 2012;

Smessaert and Demey 2014; Dekker 2015) or generaliza-

tion of the underlying logic from Boolean to many-valued

(Murinová and Novák 2013, 2014; Dubois and Prade

2015b; Ciucci et al. 2016).

Here we are interested in the hexagon of opposition, as

proposed by Blanché Blanché (1953, 1966), that to the

traditional square adds two other vertices. As explained in

Dubois and Prade (2012a), a hexagon of opposition can be

obtained by any tri-partition of a universe, hence by any

orthopair.

Given an orthopair (P, N), the six vertices of the hexa-

gon are: P, N, Bnd, Upp, P [ N, Pc linked as in Fig. 2.

The different links between vertices represent different

kinds of relation among them: P, N, Bnd are mutually

contrary; P;Pc and N, Upp are contradictory; arrows

indicate sub-altern relationship and double-lines a sub-

contrary one. In any hexagon we can find three different

square of opposition, in this case they are: ðP;Upp;N;PcÞ,
ðP;Bnd;Pc;P [ NÞ and ðUpp;Bnd;N;P [ NÞ. We notice

that the top element P [ N represents the objects on which

we are certain, either in a positive or negative sense,

whereas the bottom vertex is the collection on unknown

objects.

Oppositions can be found at work in several knowledge

representation tools, such as formal concept analysis,

possibility theory, abstract argumentation, rough set theory

or analogical proportions (Dubois and Prade 2012a;

Amgoud and Prade 2013; Ciucci et al. 2014; Miclet and

Prade 2014). Thus, the link with the hexagon of opposition

could also open the possibility to connect orthopairs with

all these paradigms.

6.2 Three-way decisions

A tri-partition of the universe is also at the basis of three-

way decision (3WD) theory. Starting from the rough set

division of the universe in three regions, Yao defined this

new paradigm of decision theory (Yao 2009b), where

besides accept and reject also a deferment of the decision is

possible. A three-way decision procedure consists, at high

level, in two steps: trisecting the universe and then acting,

i.e., taking a different strategy on objects belonging to

different regions (Yao 2015). Thus, orthopairs deal mainly

with the first step, and the methods given in Sect. 2 could

potentially also be useful in three-way decision (of course

rough sets are a standard tool in 3WD). Moreover, as

already said, one of the possible interpretations of the three

regions of an orthopair is exactly the decision theoretic one

and this interpretation has sometimes explicitly been taken

into account while studying orthopairs. In Sect. 4.3, an

operator was introduced that changes a decision from

decided to undecided. According to Andreoli, who intro-

duced such an operation, this is the first step of a procedure

to classify objects. At first we divide them between decided

and undecided and then the decided ones are classified as

chosen or rejected. This procedure works in the opposite

direction with respect to the three-way sequential decision

theory introduced in Yao (2013), which at first classifies

objects on which we are sure and then in following steps

classifies the other ones (see Fig. 3).

Other operations introduced on orthopairs could turn out

to be useful in 3WD, for instance to aggregate different tri-

partitions arising from different agents/procedures. For

instance, the reference to ‘‘risk’’ used by Gentilhomme

while introducing the two differences (18) directly points

to 3WD. Moreover, it is not difficult to image a possibility

to merge two tri-partitions to reach a consensus between

Fig. 2 Hexagon induced by an orthopair Fig. 3 Sequential decision making (Andreoli left, Yao right)
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them or simply by a (more or less conservative)

conjunction.

On the other hand all the links between orthopairs and

other paradigms outlined is this section and in the previous

one could be related also to 3WD with the possibility to

make them interact.

6.3 Version spaces

Version spaces is an approach to learning by examples

(Mitchell 1982). The training set is divided in positive

and negative examples with a consistency requirement:

no instances conflict. In our language, an orthopair. Then

the aim, is to build a classifier, that matches positive

instances and does not accept negative ones. The search

space for such a classifier is delimited by two sets: the

most specific and the most general possible ones given

the training set. This strategy requires an order relation

among classifiers:

A pattern P1 ismore specific than or equal to pattern P2

ðP1�P2Þ if and only if pattern P1matches a subset of
all instances which P2matches

For instance a classifier that accepts ‘‘red and round

object’’ is more specific than a classifier that accepts ‘‘red

objects’’. Hence, the first one will have less positive

examples and more negative examples than the second one.

That is the truth ordering �t on orthopairs.

If we identify a classifier with the instances it represents,

then, it can be seen as an orthopair and hence a version

space is a collection of orthopairs. This points to possibility

theory, since, as explained in Sect. 5.2, a possibility dis-

tribution can be described by a collection of orthopairs.

Indeed, connections between version spaces and possibility

theory have already been established Prade and Serrurier

(2008).

7 Conclusions and open problems

Orthopairs are a simple description of bipolar information,

which are at the basis of many representation knowledge

and reasoning tools. We have here framed them into a

granular computing approach by seeing an orthopair as a

granule and the order between granules as a possibility to

generate a hierarchy. Several connections with other

paradigms have been also laid bare. Yet, all these con-

nections are still to be fully understood. Indeed, several

questions and possible research directions remain open, as

exemplified in the following.

7.1 Open problems on orthopairs

– Study the relations and dependencies among the dif-

ferent granular structures generated by the different

orderings, similarly as was done in Yao et al. (2012) for

standard granules.

– Uncertainty measures. If an orthopair is aimed to

represent uncertainty, than it should be important to

measure to which amount our knowledge is certain or

not. In case of shadowed sets outlined in Sect. 2.2, this

measure is intrinsic to their definition, but this is not

always the case and we can think to several approaches

according to the application domain. For instance, we

could measure how many objects are in the boundary

with respect to the universe and then study how this

uncertainty propagates along the granular structure

(i.e., by aggregating orthopairs). In presence of a

collection of orthopairs (as in version spaces or in

rough set theory), overall measure could also be fruitful

to characterize the whole system.

– Clarify the algebraic picture and define orthopairs and

related operations on more abstract settings. Some

results in this sense are already known, we have

algebraic approaches to orthopairs (Cattaneo et al.

2011) and also of pair of nested/ortho pairs defined

on Boolean or Heyting algebras (Monteiro 1980;

Vakarelov 1977; Walker 1994). For more details see

Ciucci (2011) and [Pagliani (2008), Frame 10.11].

7.2 Open problems related to other paradigms

– Partial orthopairs. We can think of another general-

ization of orthopairs, where some objects are undefined,

i.e., out of the scope of the investigation described by

the orthopair. This leads to a partition in four regions of

the universe, but with a different interpretation with

respect to the paraconsistent one. An example of this

granulation can be obtained by rough sets based on

partial coverings Csajbók (2013).

– The role of Formal Concept Analysis (FCA) in this

picture has to be clarified. Indeed, besides the already

mentioned possibility to define a hexagon of opposition

on FCA, there are several other links with the

paradigms presented here. Indeed, version spaces can

be described in terms of formal concept analysis

(Ganter and Kuznetsov 2003), FCA has been general-

ized by ideas from possibility theory (Dubois and Prade

2012b) and, recently, orthopairs have been explicitly

used to generalize FCA (Qi et al. 2014).

– As anticipated in Remark 2 and in Sect. 6.2, the

different aggregation operations outlined on orthopairs
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can be thought to be put at work on the tri-partition of

3WD. For instance to fuse decisions taken from

different agents on the same subject.
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Systématique des Concepts. Vrin, Paris

Cattaneo G, Ciucci D (2006) Basic intuitionistic principles in fuzzy

set theories and its extensions (a terminological debate on

Atanassov IFS). Fuzzy Sets Syst 157:3198–3219

Cattaneo G, Ciucci D, Dubois D (2011) Algebraic models of deviant

modal operators based on de morgan and kleene lattices. Inf Sci

181(19):4075–4100
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