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1Department of Physics, University of California at San Diego, La Jolla, CA 92093

2Instituto de F́ısica Corpuscular, Universitat de València - CSIC, Apdo. 22085, 46071 Valencia, Spain
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The photon spectrum in orthopositronium → 3γ decay is computed using effective field theory
methods. For energetic photons, the spectrum agrees with the Ore-Powell result, but deviates from
it when the photon energy is comparable to the positronium binding energy. The decay spectrum in
this region depends on a positronium structure function, which is computed in this paper. At still
lower energies the photon spectrum is dominated by the parapositronium resonance contribution.
Our results are compatible with Low’s theorem on soft photon emission.

I. INTRODUCTION

Since its discovery in 1951 [1] Positronium has be-
come a high precision laboratory for testing QED. A de-
tailed study of the properties of the e+e− spin triplet
(orthopositronium: o-Ps) and spin singlet (parapositro-
nium: p-Ps) states has provided impressive confirmation
of QED radiative corrections.

Recently, it was pointed out [2] that the calculation
of the o-Ps decay spectrum, first performed by Ore and
Powell [3], is in apparent contradiction with Low’s theo-
rem, i.e. that the soft photon spectrum is not consistent
with QED gauge invariance in combination with analyt-
icity. While Low’s theorem applied to this decay requires
that the spectrum vanishes as E3

γ , with Eγ the energy of
the radiated photon, the standard Ore-Powell calcula-
tion predicts a O(Eγ) behavior for Eγ → 0. According
to the authors of Ref. [2], this failure is traced back to
the different radiation properties of the free charged lep-
tons which are used as the asymptotic states in typical
o-Ps→ 3γ calculations, and those of positronium which
is a neutral spin-1 boson.

In this paper we compute the orthopositronium → 3γ
decay spectrum using non-relativistic effective field the-
ory (NREFT) methods developed to study bound states
in QED and QCD [4, 5, 6, 7]. The expansion parameter
of the effective theory is the velocity v ≪ 1 of the electron
in the Ps bound state. [We will use the velocity power
counting of Refs. [6, 8] and treat α ∼ v.] We show that
the Ore-Powell calculation can be reconciled with Low’s
theorem if the latter is carefully applied considering all
the energy scales present in the problem.

The three important scales for the photon decay spec-
trum are the electron massm, the binding energy of order
mα2, and the hyperfine splitting between the singlet and
triplet states of ordermα4. The Ore-Powell computation
is valid for photon energies Eγ ≫ mα2. When Eγ is of
order mα2, the Ps binding energy can not be neglected.
The decay amplitude depends on a sum over an infinite
set of excited Ps states, and can be written in terms of a
Ps structure function. We will compute the Ps structure
function using NRQED to leading order in the v expan-
sion. When Eγ is of order mα4, the decay amplitude is

dominated by the o-Ps → p-Ps transition. We will show
that the photon spectrum crosses over from an Eγ behav-
ior above the structure function region to an E3

γ behavior
below the p-Ps resonance region.
The outline of the paper is as follows. In section II

we review Low’s theorem for soft photon emission and
its implications for Ps decay. In section III, we summa-
rize the standard Ore-Powell computation of the decay
spectrum. The NREFT calculation is discussed in the
next three sections. Section IV discusses the matching
between QED and NRQED, section V computes the de-
cay amplitude in NRQED to leading order in v in terms
of Ps matrix elements, and section VI discusses the com-
putation of the required matrix elements. Results and
conclusions are given in Section VII.

II. LOW’S THEOREM AND O-PS → 3γ DECAY

Low’s theorem [9] gives the amplitude for soft photon
emission in the scattering of charged particles. It states
that the first two terms of the series expansion in powers
of the photon energy of a radiative amplitude X → Y γ
may be obtained from a knowledge of the corresponding
nonradiative amplitude X → Y . Expanding the radia-
tive amplitude Mµ in the limit k → 0,

ǫµMµ =
M0

k
+M1 +O(k), (1)

where ǫ is the photon polarization, one finds that M0

and M1 are independent of k and completely determined
from the nonradiative amplitude T0, its derivatives in
physically allowed kinematic directions, and the electro-
magnetic properties of the particles involved [9]. The
terms M0,1 are given by pole diagrams. The O(k) am-
plitude has both pole and non-pole contributions.
The term M0 arises from the emission of a photon by

ingoing or outgoing charged particles and is proportional
to T0 times the universal factor −Qi ǫ · pi/k · pi, summed
for all the external lines in the diagram. Note that if the
nonradiative process involves no moving charged parti-
cles or is forbidden due to some selection rule, then M0

is identically zero. The term M1 can be expressed as a
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function of the magnetic moments, the amplitude T0 and
its derivatives with respect to internal variables which are
not subject to constraint, e.g. the energy and angles. The
crucial observation is that unphysical derivatives with re-
spect to masses (p2i ) can be shown to cancel out [9].
Combining the amplitude behavior with that of the

phase-space, the low-frequency form of the photon spec-
trum is

dΓ

dEγ
=

A

Eγ
+B +O(Eγ), (2)

where A is proportional to |M0|2 and B is the M0M1

interference term. If M0 vanishes, the soft photon decay
spectrum is of order Eγ dEγ ; if both M0 and M1vanish,
it is of order E3

γ dEγ .
In the three-photon decay of o-Ps, one of the photons

can have an arbitrarily small energy. The process can
be then viewed as the radiative version of the o-Ps→ 2γ
decay. As the two-photon decay of o-Ps is not allowed
by charge conjugation invariance, the direct application
of Low’s theorem yields M0,1 = 0 so that the o-Ps→ 3γ
amplitude is of order O(Eγ), and the decay spectrum is

dΓoPs→3γ

dEγ
∼ E3

γ (3)

as Eγ → 0. This is in contradiction with the Ore-Powell
spectrum (see Eq. (18)) which vanishes linearly with Eγ ,
and is the contradiction pointed out in Ref. [2].
To understand the origin of the contradiction, it is

worth noting that in the derivation of Low’s theorem,
one takes the limit Eγ → 0 and neglects all states other
than those degenerate with the incoming and outgoing
states, i.e. one uses Eγ ≪ ∆E, where ∆E is the en-
ergy gap to excited states. The amplitudes M0,1 depend
on the charge and magnetic moment couplings between
all states degenerate with the initial or final states. A
more general version of Low’s theorem gives the decay
spectrum for small Eγ without taking the strict Eγ → 0
limit. One treats all states with ∆E ≪ Eγ as degenerate
states, and includes them in the computation of charge
and magnetic moment matrix elements for the purposes
of Low’s result. Which states are included in Low’s the-
orem then depends on the magnitude of Eγ .
In the case of Ps decay, consider the case where the

photon energy is much larger than the binding energy.
Then all Ps states (including o-Ps, p-Ps, radial excita-
tions, etc.) are degenerate for the purposes of Low’s the-
orem. In this case, there is a non-zero magnetic dipole
matrix element between o-Ps and p-Ps, so that M1 does
not vanish in this extended space of states. As a result,
the decay spectrum vanishes linearly with Eγ . This is the
approximation under which the Ore-Powell calculation is
valid, as we will see in more detail later. For energies
much smaller than the o-Ps–p-Ps hyperfine splitting, p-
Ps as well as radial excitations are treated as excited
states, the matrix element M1 vanishes, and the spec-
trum is of order E3

γ .

p1

k1

p2

k3

k2

FIG. 1: Three photon annihilation graph. The graph is
summed over the 3! permutations of the photons.

III. ORTHOPOSITRONIUM DECAY

AMPLITUDE

The Ore-Powell calculation [3] of the 3γ annihilation
of o-Ps is given in many textbooks. We briefly review
the derivation here, using the notation of Ref. [10]. The
amplitude for an electron and positron to annihilate into
three photons is given, to lowest order in α, by the graph
in Fig. 1. In the center-of-mass frame, the momentum of
the electron is p and that of the positron is −p. The on-
shell decay amplitude is a function of p. In the NRQED
power counting p is of order v, so one can expand the
amplitude in a power series in v. The leading term in
the expansion, which is all that is required here, is the
p → 0 limit of the annihilation amplitude.
Pick a gauge where the photon polarizations ǫi are

purely transverse, ǫi · ki = 0, ǫ0i = 0. The sum of all
six QED graphs gives

A = − ie3

2m2
χ†

[

σ · V
]

φ,

V = (ǫ2 · ǫ3) ǫ1 + (ǫ1 · ǫ3) ǫ2 + (ǫ1 · ǫ2) ǫ3
+(δ2 · ǫ3) δ1 + (δ1 · ǫ3) δ2 − (δ1 · δ2) ǫ3
+(δ3 · ǫ1) δ2 + (δ2 · ǫ1) δ3 − (δ2 · δ3) ǫ1
+(δ1 · ǫ2) δ3 + (δ3 · ǫ2) δ1 − (δ3 · δ1) ǫ2,

(4)

where

δj = k̂j × ǫj , k̂j =
kj

Ej
, (5)

and we use non relativistic Pauli spinors φ , χ for the
electron and positron respectively,

u =

(

φ
0

)

, v =

(

0
χ

)

. (6)

Let us take k3 as the photon with vanishing energy. As
E3 → 0, the high-energy photons become antiparallel, so

we have k̂1 = −k̂2. In this limit, Eq. (4) becomes

V = 2 (ǫ2 · ǫ3) ǫ1 + 2 (ǫ1 · ǫ3) ǫ2
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+2 (ǫ1 · ǫ2)
(

k̂1 · ǫ3
)

k̂1

+2
[(

k̂1 · ǫ3
)(

ǫ2 · k̂3

)

−
(

k̂1 · k̂3

)

(ǫ2 · ǫ3)
]

ǫ1

+2
[(

k̂3 · k̂1

)

(ǫ3 · ǫ1)−
(

k̂3 · ǫ1
)(

ǫ3 · k̂1

)]

ǫ2

+2
[(

ǫ1 · k̂3

)

(ǫ2 · ǫ3)− (ǫ1 · ǫ3)
(

ǫ2 · k̂3

)]

k̂1,

(7)

since ǫ1,2 · k̂1 = 0, and we have used the identity

[(a× b) · c] [(x× y) · z]
= (a · x) (b · y) (c · z) + (a · y) (b · z) (c · x)

+ (a · z) (b · x) (c · y)− (a · z) (b · y) (c · x)
− (a · y) (b · x) (c · z) − (a · x) (b · z) (c · y) .

(8)

A. Ore-Powell Decay Spectrum

The o-Ps annihilation amplitude can be obtained from
the free-particle decay amplitude in Eq. (4) by taking
the matrix element between the o-Ps state and the vac-
uum. If the o-Ps momentum space wavefunction is φo(p)
and the annihilation amplitude is A(p), the bound-state
decay amplitude is

∫

d3p

(2π)3
A(p)φo(p). (9)

To lowest order in v, A(p) is a constant, A(0), and Eq. (9)
becomes

A(0)ψo(0), (10)

where ψo(0) is the o-Ps position space wavefunction at
the origin, x = 0. Using

ψo(x) =
1

(πa3)
1/2

e−|x|/a, a =
2

mα
, (11)

for the 1S wavefunction, spin-averaging |A|2 in Eq. (4)
(see Ref. [10]) gives,

1

3

∑

spin

|A|2 =
4e6

3m4
|ψo(0)|2

∑

cyclic

(1− cos θ12)
2
, (12)

where cos θ12 = k̂1 · k̂2. In terms of the dimensionless
variables xi = Ei/m,

(1− cos θ13) = 2
x1 + x3 − 1

x1x3
, (13)

and the differential decay rate is

dΓ3γ =
2mα6

9π
dx1dx3

[

(x1 + x3 − 1)2

x21x
2
3

+
(1− x1)

2

x23(2 − x1 − x3)2
+

(1− x3)
2

x21(2− x1 − x3)2

]

,

(14)

FIG. 2: The Ore-Powell orthopositronium decay spectrum.

using the phase space factor

1

6

2(2m)2

256π3
dx1dx3. (15)

In addition to the usual three-body phase space, we have
1/6 for three identical particles in the final state, and
2(2m) to convert from the non-relativistic normalization
of the o-Ps state to the relativistic normalization.

For the decay spectrum we can perform the integration
over x1 to obtain (x ≡ x3)

dΓ3γ

dx
=

4mα6

9π

[

2− x

x
+

(1− x) x

(2− x)
2 − 2 (1− x)

2
log(1− x)

(2− x)
3

+
2 (1− x) log(1− x)

x2

]

, (16)

which is the Ore-Powell result [3], and is plotted in Fig. 2.
Integrating Eq. (16) over x gives the total decay rate

Γ3γ =
2
(

π2 − 9
)

mα6

9π
. (17)

The low-energy photon spectrum results from the x→ 0
limit of Eq. (16),

dΓ3γ

dx
=

2mα6

9π

[

5x

3
+O(x2)

]

, (18)

which vanishes linearly with the energy of the radiated
photon.
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IV. EFFECTIVE THEORY COMPUTATION:

MATCHING CONDITION

The NREFT computation provides a systematic way
of including bound state effects in the computation of the
o-Ps decay amplitude. One computes the decay ampli-
tude in QED. The NRQED Hamiltonian is constructed
to reproduce the same amplitude, neglecting any binding
effects. Once the NRQED Hamiltonian has been deter-
mined, it can be used to compute the decay including
binding corrections.
The bound state dynamics is described by the Coulomb

Hamiltonian for an e+e− system in interaction with the
quantized electromagnetic field:

H = H0 +Hint

H0 =
p2

m
− α

r
Hint = −µ [σφ + σχ] ·B− ex ·E (19)

with x = x1 − x2 the relative position of the pair of
leptons, p1 = p, p2 = −p, and σφ, σχ the Pauli matrices
acting on the electron and positron spinors (µ = e/2m).
The interaction Hamiltonian Hint has been written in

gauge invariant form in terms of the electric and magnetic
fields. It can be obtained by a Göppert-Mayer transfor-
mation of the usual Hamiltonian with a p− eA coupling
(see e.g. Ref. [11, 12]). The Göppert-Mayer transforma-
tion removes the vector potential coupling in the covari-
ant derivative, so that the electron and positron behave
as neutral particles. The electromagnetic interactions are
through multipole interactions with the electric and mag-
netic fields. The electric and magnetic dipole interactions
are shown in Eq. (19). The higher multipoles are higher
order in v. Gauge invariance, and the computation using
p ·A interactions is discussed in Appendix. B.
The electric and magnetic fields E, B in Hint are evalu-

ated in the dipole approximation, which is valid when the
spatial extent of the positronium state, a = 2a0 = 2/mα,
is small with respect the wavelength of the radiated pho-
ton (i.e. when k ≪ mα). The low energy photon is
described by an ultrasoft field in NRQED, and the multi-
pole expansion follows from the NRQED velocity expan-
sion [6, 13]. Our NRQED computation is valid provided
the soft photon energy is small compared with mα. The
NRQED result is valid even though the other two photons
in the decay have energies of order m, because the anni-
hilation into hard photons is a short distance coefficient
in the NRQED Hamiltonian. It is possible to extend the
NRQED computation to photon energies which are small
compared to m but not mα by not using the multipole
expansion.
We shall use time-ordered (or “old-fashioned”) pertur-

bation theory (TOPT) in the effective theory calcula-
tions, as it is more suitable for non-relativistic interac-
tions. We recall that in TOPT vertices conserve only
three-momenta and the virtual states are always on-shell.
It is the violation of energy that characterizes the inter-

mediate states rather than the off-shellness of the parti-
cles, as in covariant perturbation theory.
The Coulomb Hamiltonian H0 is the leading term in

the velocity power counting. The kinetic energy and
Coulomb potential are the same order in v. The en-
ergies and wavefunctions of H0 are thus the Coulomb
wavefunctions with reduced mass m/2. The electric and
magnetic dipole interaction terms are treated as pertur-
bations. The long distance part of the o-Ps decay ampli-
tude involves these interactions.
The p-Ps decay amplitude has no long-distance contri-

bution, since both photons are hard, with energym. The
p-Ps annihilation amplitude is purely short-distance, and
is given by computing the on-shell e+e− annihilation am-
plitude in QED as a power series in the lepton momentum
p. For this paper, we need the first two terms in the v ex-
pansion, which are given in Appendix. A. Since the p-Ps
decay amplitude is purely short distance, it can be writ-
ten as a local operator in NRQED, with the hard photons
treated as external sources from the point of view of the
effective theory. The photons carry away the energy of
order m produced in the annihilation, so the NRQED
operator only depends on the scale mα. The first two
terms in the v expansion computed in Appendix A give
the annihilation operators in the Lagrangian (a sum on
p is implicit)

− i
e2

16m3
ǫµναβFµνFαβχ†

−pφp +
e2

2m4
F i

αF jαpiχ†
−pσ

jφp

(20)

where ψp annihilates electrons with momentum p and

χ†
−p annihilates positrons with momentum −p. We

use the convention ǫ0123 = +1 for the Levi-Civita ten-
sor. The field strength tensors of the hard photons have
been denoted by F to emphasize that they are external
sources, and not dynamical fields in NRQED. The op-
erators Eq. (20) allow one to compute the annihilation
amplitude including all angular and polarization depen-
dence, including that of the hard photons. One can in-
stead integrate out the external sources F to get local
four-fermion annihilation operators. These allow one to
compute the angular and polarization dependence on the
soft photon after averaging over all possible states of the
hard photons. The four-fermion operators we will need
are the S- and P-wave annihilation operators in Ref. [5],

L =
fγγ(

1S0)

m2
O(1S0) +

fγγ(
3P0)

m4
O(3P0) +

fγγ(
3P2)

m4
O(3P2)

(21)

where the operators are [5]

O(1S0) = χ†
−pφp |0〉 〈0|φ†pχ−p

O(3P0) =
1

3
χ†
−p(p · σ)φp |0〉 〈0|φ†p(p · σ)χ−p

O(3P2) = χ†
−p(p

(iσj))φp |0〉 〈0|φ†p(p(iσj))χ−p

(22)
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o-Ps p-Ps

FIG. 3: Magnetic dipole graph for o-Ps annihilation. The
solid square denotes the p-Ps annihilation vertex.

and the coefficients are given in Appendix A of Ref. [5]

Imfγγ(
1S0) = πα2,

Imfγγ(
3P0) = 3πα2,

Imfγγ(
3P2) =

4πα2

5
. (23)

The annihilation Lagrangian can only be used to compute
the square of the decay amplitude.
The o-Ps decay amplitude has both short distance and

long-distance contributions. The matching condition for
the o-Ps decay amplitude in the effective theory is given
by computing the difference between the QED o-Ps de-
cay amplitude in the soft photon limit, Eq. (7), and the
corresponding amplitude computed in the effective the-
ory. The difference between the two computations gives
the total short-distance o-Ps annihilation contribution in
the effective Hamiltonian. We will compute the match-
ing conditions using the annihilation amplitude Eq. (20),
and use it to compute the decay spectrum. In Sec. VID
we show how the decay spectrum can be obtained using
Eq. (21).

A. Magnetic Dipole

The magnetic term in Hint can induce a 1 3S1 → 1 1S0

transition between Coulomb e+e− states. The effective
theory graph for magnetic dipole emission is shown in
Fig. 3, and contributes to the long-distance o-Ps decay
amplitude. The amplitude is:

Am =
∑

n

i
〈

0
∣

∣A(2γ)
∣

∣n
〉

〈n| i µ [σφ + σχ] ·B |o-Ps〉
Eo − En − E3

= i

〈

0
∣

∣A(2γ)
∣

∣1 1S0

〉 〈

1 1S0

∣

∣ i µ [σφ + σχ] ·B
∣

∣o-Ps
〉

Eo − Ep − E3

(24)

where the only allowed intermediate state in the dipole
approximation is the p-Ps ground state, with energy Ep,
so that Eo − Ep = ∆Ehfs. The energy of the emitted
photon is E3. Recoil effects in the energy propagator are
suppressed by E2

3/m and are higher order in v.
The magnetic dipole amplitude above is easily evalu-

ated
〈

1 1S0

∣

∣ i µ [σφ + σχ] ·B
∣

∣o-Ps
〉

=
e√
2m

E3 δ3 · χ† σ φ.

o-Ps n

FIG. 4: Electric dipole transition for o-Ps decay. The solid
square denotes the p-Ps annihilation vertex.

(25)

The quantity A(2γ) is the e+e− → 2γ amplitude with
fermions at rest calculated in Appendix A, see Eq. A2.
For e+e− S-wave states only the constant part of the
A(2γ) amplitude (W0) contributes. When projected in

the spin-singlet configuration (χ†ψ →
√
2 ), it yields

〈

0
∣

∣

∣
A(2γ)

∣

∣

∣
1 1S0

〉

=
e2√
2m

[δ1 · ǫ2 + δ2 · ǫ1]ψo(0).

(26)

To compute the o-Ps decay amplitude matching coef-
ficient, one compares the effective theory result with the
QED computation which neglects bound state effects.
Neglecting the hyperfine mass difference in the energy
denominator of Eq. (25) gives

Am = − ie3

2m2
ψo(0)χ

†δ3 · σ [δ1 · ǫ2 + δ2 · ǫ1]φ,
(27)

so we can define, in analogy with Eq. (4),

Vm = δ3 [δ1 · ǫ2 + δ2 · ǫ1] . (28)

The limit of Vm as E3 → 0 is

Vm = 2
[(

k̂1 · ǫ3
)(

ǫ2 · k̂3

)

−
(

k̂1 · k̂3

)

(ǫ2 · ǫ3)
]

ǫ1

+2
[(

k̂3 · k̂1

)

(ǫ3 · ǫ1)−
(

k̂3 · ǫ1
)(

ǫ3 · k̂1

)]

ǫ2

+2
[(

ǫ1 · k̂3

)

(ǫ2 · ǫ3)− (ǫ1 · ǫ3)
(

ǫ2 · k̂3

)]

k̂1.

(29)

B. Electric Dipole

The electric dipole term −ex · E in Hint can change
orbital angular momentum by one unit, allowing for tran-
sitions from ground state o-Ps to n 3P0,2 states (n 6= 1).
We do not consider intermediate n 3P1 states as they can-
not decay to two photons [14]. The effective theory graph
for electric dipole emission is shown in Fig. 4, with am-
plitude

Ae =
∑

n

i
〈

0
∣

∣A(2γ)
∣

∣n
〉

〈n| i ex · E |o-Ps〉
Eo − En − E3

, (30)



6

and

〈n| i ex · E |o-Ps〉 = eE3 〈n|x · ǫ3 |o-Ps〉 . (31)

For the matching computation, the energy separation
between o-Ps and the intermediate states, Eo − En ∼
O(mα2) is taken to be much smaller than the photon
energy E3. In this case

Ae = −ie
∑

n

〈

0
∣

∣

∣
A(2γ)

∣

∣

∣
n
〉

〈n|x · ǫ3 |o-Ps〉

= −ie
〈

0
∣

∣

∣
A(2γ)x · ǫ3

∣

∣

∣
o-Ps

〉

. (32)

The two-photon amplitude A(2γ) has terms which are a
constant or linear in p. The constant term W0 yields the
matrix element

〈0|x |o-Ps〉 = 0 (33)

since xψo(x) vanishes at the origin. The linear terms
W1 · p give

〈0|W1 · px · ǫ3 |o-Ps〉 , (34)

which can be evaluated using

pixj =
1

3
δijp · x +

1

2

(

pixj − pjxi
)

+
1

2

(

pixj + pjxi − 2

3
δijp · x

)

. (35)

The o-Ps state is an S state, so to get a non-zero matrix
element, the operator must have zero angular momen-
tum. Only the first term contributes, and the p must act
on x, otherwise the wavefunction vanishes at the origin.
This gives

〈0|W1 · px · ǫ3 |o-Ps〉 = −i 〈0|W1 · ǫ3 |o-Ps〉
= −i ψo(0)χ

†W1 · ǫ3φ. (36)
Substituting the W term from Eq. (A4) we get

Ae = − ie3

m2
ψo(0)χ

†
[(

ǫ3 · k̂1

)(

σ · k̂1

)

(ǫ1 · ǫ2)

+ (ǫ3 · ǫ1)σ · ǫ2 + (ǫ3 · ǫ2)σ · ǫ1
]

φ (37)

so that

Ve = 2 (ǫ3 · ǫ1) ǫ2 + 2 (ǫ3 · ǫ2) ǫ1 + 2 k̂1

(

ǫ3 · k̂1

)

(ǫ1 · ǫ2) .
(38)

The sum of the magnetic and electric dipole transi-
tions in the effective theory, Eqs. (29) and (38) gives the
full theory amplitude Eq. (7). The matching condition,
which is the difference of the two results, vanishes. Thus
there is no additional three-photon annihilation term in
the NRQED Hamiltonian, and the entire soft-photon o-
Ps annihilation in the effective theory is due to electric
and magnetic radiation followed by two-photon annihila-
tion of p-Ps. This must happen, because the amplitude
Eq. (7) in the full theory is O(1) as Eγ → 0. Any local
gauge invariant operator in the NRQED Hamiltonian de-
pends on the soft-photon field-strength tensor, and gives
an amplitude that is order O(Eγ).

V. EFFECTIVE THEORY DECAY AMPLITUDE

INCLUDING ENERGY DENOMINATORS

The decay amplitude in the effective theory can now
be computed without neglecting the energy difference be-
tween o-Ps and the intermediate states. The matching
calculation of the previous section shows that the entire
contribution comes from the magnetic and electric graphs
in Figs. 3,4.
The magnetic dipole amplitude including energy de-

nominators is from Eq. (24)

− iAm =
e3

2m2
ψo(0) δ3 · σ [δ1 · ǫ2 + δ2 · ǫ1]

ω

∆Ehfs − ω

(39)

while the electric dipole emission amplitude is

− iAe = eω
∑

n

〈

0
∣

∣A(2γ)
∣

∣n
〉

〈n|x · ǫ3 |o-Ps〉
Eo − En − ω

(40)

where ω = E3 is the soft photon energy. The x · E op-
erator connects to p-wave states, so only the W1 part of
A(2γ) is relevant,

− iAe = eω
∑

n

〈0|W1 · p |n〉 〈n|x · ǫ3 |o-Ps〉
Eo − En − ω

. (41)

We can work out the matrix elements above with the
help of the Wigner-Eckart theorem [15]. Define the re-
duced matrix elements

〈n, 1, 0| z |o-Ps〉 = 〈〈n, 1|x |o-Ps〉〉
〈0| pz |n, 1, 0〉 = 〈〈0| p |n, 1〉〉, (42)

where |nℓm〉 are the Ps states, and only ℓ = 1 con-
tributes. In terms of the reduced matrix elements,
Eq. (41) reads

− iAe = eω
∑

n

χ†W1 · ǫ3φ
Eo − En − ω

×〈〈0| p |n, 1〉〉 〈〈n, 1|x |o-Ps〉〉. (43)

It is convenient to define

am(ω) = − ω

∆Ehfs − ω

ae(ω) = −i ω

ψo(0)

∑

n

〈〈0| p |n, 1〉〉 〈〈n, 1|x |o-Ps〉〉
Eo − En − ω

(44)

so that

− iAm = − e3

2m2
ψo(0)am χ† δ3 · σ [δ1 · ǫ2 + δ2 · ǫ1]φ

−iAe = − e3

m2
ψo(0)ae χ

†

[

(

ǫ3 · k̂1

)(

σ · k̂1

)

(ǫ1 · ǫ2)

+ (ǫ3 · ǫ1)σ · ǫ2 + (ǫ3 · ǫ2)σ · ǫ1
]

φ. (45)
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From the equations above we already see that in the limit
ω → 0 the effective theory amplitude Am+Ae vanishes as
ω, in agreement with Low’s theorem. In the energy range
∆Ehfs ≪ ω ≪ mα2 the electric dipole amplitude still
behaves as O(ω), but the magnetic amplitude is O(1).
For the region above mα2 both amplitudes are O(1) and
the Ore-Powell behavior is restored.
Neglecting energy denominators, (i.e. taking the limit

ω ≫ En − Eo) the amplitudes am and ae reduce to

am(ω → ∞) → 1

ae(ω → ∞) → i

ψo(0)

∑

n

〈〈0| p |n, 1〉〉 〈〈n, 1|x |o-Ps〉〉

= 1 (46)

and we recover Eqs. (27) and (37).
To compute the spectrum from our effective theory

calculation we first need to to sum over polarizations. A
spin-1 state of o-Ps with polarization ε is obtained by
the replacement

[

φχ†
]

αβ
→ 1√

2
[ε∗ · σ]αβ , (47)

and the matrix element of σ is then

〈φσ χ†〉ε =
1√
2
ε∗ iTr

[

σ σi
]

=
√
2 ε∗. (48)

The sum over polarizations is

∑

ε∗i εj = δij ,
∑

ǫ∗i ǫj = δij − k̂ik̂j , (49)

for o-Ps and photons, respectively. Using these, it is
straightforward to obtain the spin-averaged matrix ele-
ment squared and summed over photon polarizations

1

3

∑

ε

∑

ǫi

|Am +Ae|2 = (50)

8

3

e6

m4
|ψo(0)|2

{

|am|2 + |ae|2
(

2 + cos2 θ
)

}

(51)

where cos θ = k̂1 · k̂3. This agrees with Eq. (12) if one
uses Eq. (46).
The phase space factor Eq. (15) can be written in terms

of the variables cos θ and x3 by using the relation (13):

dx1dx3 =
x3
2

1− x3
[

1− x3

2 (1− cos θ)
]2 dcos θ dx3

≃ x3
2

dcos θ dx3. (52)

The above approximation is valid in the endpoint region
where x3 → 0. The allowed region of integration for cos θ
is −1 ≤ cos θ ≤ 1.

As ae,m are functions only of x3, the cos θ integration
can be performed to give the differential rate (writing
x3 → x):

dΓ

dx
=

mα6

9π
x

[

|am|2 + 7

3
|ae|2

]

. (53)

The magnetic and electric amplitudes am and ae are com-
puted in the next section.

VI. COMPUTING MATRIX ELEMENTS

In this section, we compute the magnetic dipole am-
plitude am and the electric dipole amplitude ae.

A. Magnetic Dipole

For the magnetic term am, the energy denominator can
vanish, so we include the widths,

am = − ω

∆Ehfs − ω + iγop
, (54)

where

∆Ehfs =
7

12
mα4,

γop =
1

2
(Γo + Γp) ≈

1

4
mα5. (55)

This gives the Breit-Wigner form

|am|2 =
ω2

(ω −∆Ehfs)
2
+ γ2op

. (56)

The magnetic amplitude behaves as

am(ω) =

{

1 ω ≫ ∆Ehfs,

− ω
∆Ehfs

ω ≪ ∆Ehfs.
(57)

B. Electric Dipole

We can rewrite the electric dipole amplitude, Eq. (44),
as

ae = i
ω

ψo(0)

〈

0

∣

∣

∣

∣

∣

pz

[

∑

n,m

|n, 1,m〉〈n, 1,m|
En − Eo + ω

]

z

∣

∣

∣

∣

∣

o-Ps

〉

(58)

where the term between brackets is the p-wave Coulomb
Green’s functionG1 defined in Appendix C and evaluated
at energy −k2/m = Eo − ω. In position space, using
Eq. (C4),

∑

n,m

〈x|n, 1,m〉〈n, 1,m|y〉
En + k2/m

= 3 (x · y)G1(x, y; k),

(59)
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gives the electric dipole amplitude

ae(ω) =
4πω

ψo(0)

∫ ∞

0

dy y4G1(0, y; k)ψo(y). (60)

The integral in Eq. (60) can be evaluated numerically as
a function of the soft photon energy ω using Eq. (C14)
for ℓ = 1:

G1(0, y; k) =
mk3

3π
e−ky Γ(2− ν)U(2− ν, 4, 2ky),

(61)

where U is a confluent hypergeometric function, and
ν = αm/(2k). We note Eq. (61) for the p-wave Coulomb
Green’s function was used in Ref. [16], with an additional
factor of 6. Because of this discrepancy, we have given a
derivation of Eq. (61) in Appendix C.
The electric amplitude behaves as

ae(ω) =

{

1 ω ≫ mα2,

2ω
mα2 ω ≪ mα2.

(62)

Note Added

Recently, Voloshin [17] has shown that Eq. (60) can be
written in terms of a hypergeometric function,

ae(ω) =
(1− ν)(3 + 5ν)

3(1 + ν)2

+
8ν2(1 − ν)

3(2− ν)(1 + ν)3
2F1

(

2− ν, 1, 3− ν;
ν − 1

ν + 1

)

.

(63)

C. Electric Dipole: Alternative Derivation

The electric dipole amplitude ae can be obtained in a
different representation by using the explicit form of the
Coulomb wavefunctions. We follow the notation of Bethe
and Salpeter [18] and use the expressions found therein.
Note that all quantities are dimensionless, with length,
momentum and energy measured in units of 1/(µα), µα
and µα2, respectively, where µ = m/2 is the reduced
mass.
For the discrete wavefunctions the dipole reduced ma-

trix elements read

〈〈n, 1|x |o-Ps〉〉 =

[

1

3

28n7(n− 1)2n−5

(n+ 1)2n+5

]1/2

, (64)

〈〈0| p |n, 1〉〉 = −iψo(0)
1

4
√
3

(

2

n

)5/2 [
(n+ 1)(n− 1)

2

]1/2

.

(65)

Define

cn =
〈〈0| p |n, 1〉〉 〈〈n, 1|x |o-Ps〉〉

−iψo(0)
=

16

3

[

n(n− 1)n−2

(n+ 1)n+2

]

.

(66)

The continuum states RW (r) with energy W = k2/2
are obtained from the discrete wavefunctions by the re-
placement

n → −in′, (67)

where

n′ =
Z

k
. (68)

The exact relation reads

Rnl(r) → (ik)
3/2

√

1− e−2πn′

√

1

Z
RW (r),

(69)

with Z = 1 for e+e− states.
The completeness relation can be written as

∑

n

|n〉 〈n|+
∫

dW |W 〉 〈W |

=
∑

n

|n〉 〈n|+
∫

dn′ |n′〉 〈n′|
(1− e−2πn′)

. (70)

The sum over intermediate Coulomb states is given by
the measure Eq. (70), where the continuum states are
normalized using the analytic continuation of the discrete
states, Eqs. (67,69). Note that the integral over n′ in
Eq. (70) has a non-trivial weight.
The dipole reduced matrix elements for the continuum

states read

cn′ =
〈〈0| p |n′, 1〉〉 〈〈n′, 1|x |o-Ps〉〉

−iψo(0)

=
16

3

n′

(1 + n′ 2)2
exp

[

−
(

π − 2 tan−1 n′
)

n′
]

.

(71)

The p matrix element is given by analytic continuation
of Eq. (65), and the x matrix element by analytic con-
tinuation of Eq. (64) plus complex conjugation, since it
involves 〈n′| rather than |n′〉.
The electric dipole amplitude is (putting back the

units):

ae(ω) =

∞
∑

n=2

ω cn
ω + Eno

+

∫ ∞

0

dn′

1− e−2πn′

ω cn′

ω + En′o

(72)

with the energy differences from the ground state

Eno =
1

4
mα2

(

1− 1

n2

)

,

En′o =
1

4
mα2

(

1 +
1

n′ 2

)

. (73)
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FIG. 5: Decay rate using four-fermion annihilation operators.
The cut graph represents the local annihilation operators.

We have verified that Eq. (72) is numerically equal to
Eq. (60) using Eq. (61) for the Coulomb Green’s function.

D. Decay rate using local annihilation operators

The decay spectrum Eq. (53) can also be computed
using the annihilation Lagrangian Eq. (21) following the
same steps as before. The magnetic dipole transition
proceeds via S-wave annihilation, and the electric dipole
transition via P-wave annihilation, and the diagrams
have the form show in Fig. 5. The decay spectrum is

dΓ

dx
=

mα4

9π2
x

[

Imfγγ(
1S0) |am|2 + 1

3
Imfγγ(

3P0) |ae|2

+
5

3
Imfγγ(

3P2) |ae|2
]

. (74)

Using Eq. (23) reduces this to Eq. (53). Of the 7 |ae|2 /3
electric dipole contribution, the 3P0 contribution is |ae|2
and the 3P2 contribution is 4 |ae|2 /3.
In computing Eq. (74), we have used the matrix ele-

ment
〈

o-Ps
∣

∣

∣
χ†
−pσ

iφp |0〉 〈0|φ†pσjχ−p

∣

∣

∣
o-Ps

〉

= 2 |ψo(0)|2 εioεjo
(75)

VII. RESULTS AND CONCLUSIONS

The o-Ps decay spectrum is given by Eq. (53) with

|am|2 given by Eq. (56) and ae given by Eq. (60). The
Ore-Powell spectrum is given by Eq. (53) with am,e given
by Eq. (46). The ratio of the photon spectrum to the
Ore-Powell value is shown in Fig. 6. At energies large
compared with the binding energy, ae and am approach
their values in Eq. (46), and the spectrum approaches the
Ore-Powell spectrum. The magnetic and electric dipole
terms contribute in the ratio 3 : 7. Note that the ap-
proach to the asymptotic value of unity is rather slow.
At a photon energy of 100 Ryd, the ratio is 0.88. At en-
ergies small compared with the binding energy, the elec-
tric dipole transitions decouple, and one is left with the
magnetic contribution of 3/10 of the Ore-Powell value.

FIG. 6: Ratio of the o-Ps decay spectrum including bind-
ing energy corrections to the Ore-Powell spectrum. The elec-
tric dipole amplitude decouples for energies below a Rydberg,
leaving only the magnetic contribution of 3/10.

The magnetic contribution is given by the p-Ps resonance
contribution. The photon decay spectrum in the p-Ps
resonance region is shown in Fig. 7. At energies much
smaller than the hyperfine splitting, the p-Ps state also
decouples, and the decay rate vanishes as E3

γ .

The results are consistent with the Ore-Powell spec-
trum and with Low’s theorem. They include binding
effects in a systematic expansion in powers of v. The
modification of the decay spectrum also leads to a modi-
fication of the total decay rate. Since the deviation of the
spectrum is of order unity in a region of size the binding
energy, and the decay spectrum is of order x, the total
rate will be corrected at order α4 by the effects we have
computed.
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FIG. 7: Ratio of the o-Ps decay spectrum including binding
energy corrections to the Ore-Powell spectrum. The peak is
the p-Ps resonance. The amplitude in this region is domi-
nated by the magnetic dipole. For energies below the p-Ps
resonance, the ratio to the Ore-Powell spectrum vanishes as
E2.

p1

k1

p2

k2

FIG. 8: Two photon annihilation graph.

APPENDIX A: PARAPOSITRONIUM DECAY

AMPLITUDE

The p-Ps→ 2γ decay amplitude is given by Fig. 8.
We require the decay amplitude to first order in p. The
incoming momenta are p1 = (E,p), and p2 = (E,−p)

with E =
√

m2 + p2 ∼ m+O(p2). The amplitude is

A(2γ) = −ie2v̄ (p2) ǫ/2
1

p/1 − k/1 −m
ǫ/1u (p1) .

(A1)

We have not included any minus sign coming from Wick
contractions for the initial e+e− state. Including the
crossed-graph, assuming the polarizations are transverse,

and expanding in p gives

A(2γ) ≡ χ† (W0 +W1 · p)φ+O(p2), (A2)

where

W0 =
e2

2m
[δ1 · ǫ2 + δ2 · ǫ1] , (A3)

W1 =
ie2

m2

[

(

σ · k̂1

)

(ǫ1 · ǫ2) k̂1

+(σ · ǫ2) ǫ1 + (σ · ǫ1) ǫ2
]

, (A4)

and we have used k1 = −k2.

APPENDIX B: GAUGE INVARIANCE

One can compute in the effective theory using either
x ·E or p ·A interactions. We have done the computa-
tion using x ·E. If one uses p ·A interactions, then the
gauge invariant momentum operator with our convention
for the covariant derivative is p − eA. The p-Ps decay
amplitude Eq. (A2) is then written in gauge invariant
form as

W0 +W1 · (p− eA) , (B1)

and the interaction Hamiltonian Eq. (19) has the term

Hint = −2e

m
p ·A, (B2)

instead of −ex ·E. The electric dipole amplitude contri-
bution from Eq. (B2) is

2ei

m

∑

n

〈

0
∣

∣A(2γ)
∣

∣n
〉

i 〈n|p · ǫ3 |o-Ps〉
Eo − En − E3

. (B3)

Now

[H,x] = −2i

m
p, (B4)

so that the amplitude is

ie
∑

n

〈

0
∣

∣

∣
A(2γ)

∣

∣

∣
n
〉

〈n|x · ǫ3 |o-Ps〉

+ie
∑

n

E3

〈

0
∣

∣A(2γ)
∣

∣n
〉

〈n|x · ǫ3 |o-Ps〉
Eo − En − E3

. (B5)

The second term agrees with the dipole emission ampli-
tude Eq. (40) using the x ·E interaction. The first term
gives the extra contribution

ie
〈

0
∣

∣

∣
A(2γ)x · ǫ3

∣

∣

∣
o-Ps

〉

= e 〈0|W1 · ǫ3 |o-Ps〉 .(B6)

In addition, one has the amplitude from the −eA term
in Eq. (B1),

− e 〈0|W1 · ǫ3 |o-Ps〉 (B7)

which exactly cancels Eq. (B6), so the net contribution
is gauge invariant.
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APPENDIX C: COULOMB GREEN’S FUNCTION

The Coulomb Green’s function satisfies the differential
equation

(

Ho +
k2

m

)

G (x,y, k) = δ (x− y) , (C1)

with the Coulomb Hamiltonian for positronium

Ho =
p2

m
− α

r
. (C2)

In terms of a complete set of states in position space,

G (x,y, k) =
∑

n

ψn (x)ψ
∗
n (y)

En + k2/m
. (C3)

The Green’s function admits a partial wave decomposi-
tion:

G (x,y, k) =

∞
∑

ℓ=0

(2ℓ+ 1) (xy)
ℓ
Pℓ (x · y/xy)Gℓ (x, y, k)

(C4)

where Pℓ(x) are the Legendre polynomials. The partial
waves of the Green’s function are [19]

Gℓ (x, y, k)

=
mk

2π
(2k)

2ℓ
e−k(x+y)

∞
∑

r=0

L2ℓ+1
r (2kx)L2ℓ+1

r (2ky)r!

(r + ℓ+ 1− ν)(r + 2ℓ+ 1)!

(C5)

with the parameter

ν =
αm

2k
, (C6)

and the associated Laguerre polynomials defined by

Lk
r (x) =

exx−k

r!

(

d

dx

)r

e−xxr+k. (C7)

The Green’s function partial waves have a more com-
pact expression when one of the arguments is zero [16].
Set y = 0 and use

Lk
r(0) =

(r + k)!

r! k!
, (C8)

to get

Gℓ (x, 0, k)

=
mk

2π
(2k)2ℓ e−kx

∞
∑

r=0

L2ℓ+1
r (2kx)

(r + ℓ+ 1− ν)(2ℓ + 1)!
.

(C9)

The generating function for the associated Legendre
Polynomials [20] is

∞
∑

r=0

La
r(u) s

r =
e−us/(1−s)

(1− s)a+1
. (C10)

Also

1

r + b
=

∫ 1

0

ds sr+b−1. (C11)

The identities (C10) and (C11) allow us to write

∞
∑

r=0

La
r(u)

r + b
=

∫ 1

0

ds sb−1 e
−us/(1−s)

(1 − s)a+1
. (C12)

Changing variables to t = s/(1− s) gives

∞
∑

r=0

La
r(u)

r + b
=

∫ ∞

0

dt tb−1(1 + t)a−be−ut

= Γ(b)U(b, a+ 1, u), (C13)

where we have adopted the usual definition of the conflu-
ent hypergeometric function U(a, b, z), see e.g. Ref. [21].
Applied to the sum in Eq. (C9), the result (C13) yields

Gℓ (x, 0, k)

=
mk

2π
(2k)

2ℓ
e−kxΓ(ℓ+ 1− ν)U(ℓ + 1− ν, 2ℓ+ 2, 2kx)

(2ℓ+ 1)!

(C14)

which differs from Ref. [16] by the (2ℓ+ 1)! factor in the
denominator.
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