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ABSTRACT 

Objective: Review the effect of orthostatic hypotension (OH) and rapid-eye-movement sleep 

behavioral disorder (RBD) on survival, cognitive impairment, and postural stability, and discuss 

pathogenic mechanisms involved in the association of these two common non-motor features 

with relevant clinical outcomes in α-synucleinopathies.  

 

Methods:  We searched PubMed (2007–2019) for human studies of OH and RBD evaluating 

cognitive impairment, postural instability, and survival in Parkinson disease, dementia with 

Lewy bodies, multiple system atrophy, and pure autonomic failure. Included studies were 

analyzed for design, key results, and limitations as per the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines. 

 

Findings:  OH and RBD showed a positive association with cognitive impairment in Parkinson 

disease and dementia with Lewy bodies, conflicting association in pure autonomic failure, and 

no association in multiple system atrophy. OH was correlated with incident falls and postural 

instability in Parkinson disease and dementia with Lewy bodies but not in multiple system 

atrophy. The association between RBD and postural instability was inconclusive; positive in five 

studies, negative in seven. OH, but not RBD, correlated with reduced survival in Parkinson 

disease, dementia with Lewy bodies, and multiple system atrophy. The combination of OH and 

RBD was associated with cognitive impairment and more rapid progression of postural 

instability. 

 

Conclusions and Relevance: OH and RBD yielded individual and combined negative effects 

on disability in α-synucleinopathies, reflecting a “malignant” phenotype of Parkinson disease 

with early cognitive impairment and postural instability. Underlying mechanisms may include 

involvement of selected brainstem cholinergic and noradrenergic nuclei.  
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INTRODUCTION 

Orthostatic hypotension (OH) and rapid-eye-movement sleep behavior disorder (RBD) are 

frequent non-motor sources of disability in α-synucleinopathies including Parkinson disease 

(PD), dementia with Lewy bodies (DLB), pure autonomic failure (PAF), and multiple system 

atrophy (MSA) 1–3. OH occurs in 20-50% in PD, 30-70% in DLB, 80% in MSA and, by 

definition, 100% in PAF2. RBD has a prevalence of 30-50% in PD, 70-80% in DLB, and 80-

90% in MSA. In addition, 70-90% of idiopathic RBD convert to alpha-synucleinopathies1.  

 

OH is defined as a blood pressure (BP) drop of at least 20/10 mmHg (systolic/diastolic) from 

supine to standing position, which results from cardiovascular dysfunction caused by the 

complex interplay between autonomic dysregulation in central (brainstem) and peripheral 

mechanisms, cardiac noradrenergic sympathetic denervation, peripheral norepinephrine 

deficiency, and arterial baroreflex failure, ultimately leading to impaired arterial 

vasoconstriction and reduced compensatory cardiac output in response to hypotension4. The 

clinical manifestations of OH are typically insidious, ranging from nonspecific symptoms such 

as dizziness, lightheadedness, and confusion, to potentially dramatic complications from 

syncope and falls5, with a 36% increased mortality risk among the elderly6.  

 

RBD is a clinical disorder characterized by loss of the normal muscle atonia during the rapid eye 

movement (REM) phase of sleep, which results in impaired suppression of movement 

generators and complex dream enactment behaviors7. Although the RBD-generating pathogenic 

mechanisms remain unclear, several lines of evidence suggest a dysregulation of specific 

brainstem areas, in particular, the REM-activating pre-coeruleus and sub-laterodorsal regions 

and the REM-inhibitory periaqueductal grey matter and lateral pontine tegmentum8. Clinically, 

RBD represents not only a primary cause of sleep quality disruption, but also a major cause of 

secondary injuries due to punching, kicking, jumping, or other involuntary motor behaviors 

occurring during sleep9.  
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Studies investigating the phenotypic heterogeneity of PD have identified OH and RBD as risk 

factors for early development of postural instability and dementia10–15. However, the clinical and 

pathological association of these two non-motor symptoms has never been properly investigated 

in α-synucleinopathies. We sought to systematically analyze and discuss data accumulated in 

support of the individual and combined effects of OH and RBD on cognitive impairment, 

postural instability, and survival.  

 

METHODS  

Search Methods  

This review was conducted in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines16. We searched PubMed for human studies 

published between January 2007 and February 2019 using combinations of the following terms: 

orthostatic hypotension, REM sleep behavior disorder, cognition, dementia, postural instability, 

survival, Parkinson, multiple system atrophy, pure autonomic failure, dementia with Lewy 

bodies. Qualifying studies were categorized as documenting the individual vs. combined effect 

of OH and RBD on at least one of the following endpoints: a) cognitive impairment, b) falls or 

postural instability, and c) survival. Imaging and pathological studies were included but 

analyzed separately. To limit potential confounders, we excluded studies reporting outcomes on 

patients treated with deep brain stimulation or infusion therapies. No restrictions were applied to 

gender, age, ethnicity, disease duration, disease severity, or language.  

 

Selection of Studies and Quality Appraisal  

Abstracts were independently reviewed for eligibility criteria by 2 investigators (A.M., J.A.T.). 

Quality appraisal and selection of pertinent full-text articles were conducted using the Wales 

Health Evidence Bulletin tools for cohort, case-control, and cross-sectional studies17. 
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Disagreements were settled by consensus among the authors. The reference lists of selected 

articles were additionally screened for additional pertinent studies.  

 

Data Extraction   

We used a standardized form to extract the following data from eligible studies: a) study 

population (PD, DLB, PAF, MSA), b) study design (longitudinal, cross-sectional, retrospective, 

pathologically-proven [e.g., autopsy] case-series), c) sample size, d) key results, e) measures of 

statistical association, and f) possible bias and study limitations. 

 

The level of diagnostic accuracy for OH, RBD, cognitive impairment, and postural 

instability/falls was rated as follows:  

 

Diagnosis of RBD. Level A: based on polysomnography; level B: based on RBD-specific 

validated questionnaires such as the REM Behavioral Screening Questionnaire (RBDSQ)18 or 

the Mayo Clinic RBD questionnaire19; level C: based on non-specific questionnaires assessing 

sleep disturbances and other non-motor symptoms such as the Non-Motor Symptoms 

Questionnaire (NMSQ)20 or the Non-Motor Symptoms Scale (NMSS)21. 

 

Diagnosis of OH. Level A: based on cardiovascular autonomic laboratory testing; level B: 

based on supine-to-standing blood pressure measurements in a clinical setting; level C: based on 

clinical questionnaires. 

 

Diagnosis of Cognitive Impairment. Level A: based on the Movement Disorder Society 

(MDS) level II criteria for mild cognitive impairment (MCI)22 or dementia23; level B: based on 

MDS level I criteria for MCI22 or dementia23; level C: based on clinical diagnosis of cognitive 

impairment not supported by formal neuropsychological testing.  
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Diagnosis of Falls and Postural Instability. Level A: prospective assessment of the number of 

falls; level B: postural instability evaluated by validated clinical scales (i.e. Tinetti and Berg 

balance scales24) or posturography25; level C: postural instability at the “pull test”26. 

 

RESULTS 

Out of the 2,601 records derived from the initial search strategy, 101 studies met full eligibility 

criteria and underwent data extraction: 41 focused on OH; 43 on RBD; 3 on both OH and RBD; 

and 14 on the association between OH and RBD (eFigures 1, 2, and 3 in the Supplement). 

 

Individual Impact of OH on Clinical Outcomes 

Cognition. Three longitudinal studies found a 2.8-3.3-fold increased risk of cognitive 

impairment in PD patients with OH10,27,28, confirming the results from six cross-sectional studies 

in PD29–34 and one in PAF35. Negative data were reported by four cross-sectional studies in 

PD36–39, three in MSA40–42, and one in PAF43 (eTable 1 in the Supplement).  

 

Postural Stability and Falls. Six longitudinal44–49, one cross-sectional50, and two autopsy51,52 

studies found an association between OH and incident falls in PD. OH was associated with 

number of falls in PD and DLB53, and with increased postural sway in PD54. Negative data were 

reported in one longitudinal and two cross-sectional studies in PD55–57, one autopsy series in 

DLB52, and two autopsy series in MSA (eTable 2 in the Supplement)52,58.  

 

Survival. Two longitudinal studies and one autopsy cohort demonstrated an independent 

association between OH and reduced survival in PD51,59,60, with a 10-year survival rate of 74% 

in PD patients with OH compared with 93% in PD patients without OH, 36% in MSA, and 87% 

in PAF59 (Table 1). A reduced life-expectancy was also documented in DLB patients with OH60, 

and a trend towards reduced survival in MSA with early autonomic dysfunction58,61,62. Only one 

study did not find an association between OH and survival in PD63.  
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Imaging and pathology. OH correlated with cerebral atrophy involving the insular cortex64, as 

well as with cholinergic alterations34, subcortical microbleeds65, and white matter 

hyperintensities (WMH)66,67 in PD (eTable 3 in the Supplement and Figures 1-2). One study 

documented the association between OH and WMH in MSA68 , while two (one in PD and one in 

MSA) reported negative results30,41. In DLB, OH was correlated with hypoperfusion in the 

occipital-parietal cortex69 (eTable 3 in the Supplement).  

 

Individual Impact of RBD on Clinical Outcomes 

Cognition. Nine longitudinal studies reported an increased risk of cognitive impairment (OR= 2-

49) in PD patients with RBD10,11,27,70–75, confirming the results from twelve cross-sectional 

studies76-87. An autopsy series showed an association between RBD and more aggressive 

progression of dementia and hallucinations in DLB88. Negative data were reported in one 

longitudinal89 and seven cross-sectional studies in PD90–96, and one longitudinal study in DLB 

(eTable 4 in the Supplement)97.  

 

Postural Stability and Falls. One longitudinal48 and four cross-sectional studies showed that 

RBD is associated with falls83,91,98 and postural instability96 in PD, while two longitudinal and 

five cross-sectional studies, all based on clinical questionnaires81,93,95,99–102, yielded negative 

results (eTable 5 in the Supplement).  

 

Survival. A prospective population-based study found similar survival rates in PD patients with 

and without RBD after adjusting for age, age at onset, sex, and motor symptoms severity (Table 

1)103.  

 

Imaging and pathology. RBD was associated with WMH104,105 and cerebral atrophy in the 

pedunculo-pontine nucleus, raphe, locus coeruleus/subcoeruleus77,79,106, thalamus77,107, medial 
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amygdala, prefrontal, posterior cingulate, and hippocampal cortex108 in PD (eTable 6 in the 

Supplement; Figure 1). Functional and nuclear medicine studies found a correlation between 

RBD and reduced primary motor cortex activation on functional MRI109,110, reduced cortical 

metabolism80, and extensive noradrenergic79, cholinergic98,111 denervation, with still 

inconclusive data on nigrostriatal denervation75,80. Pathological data from two PD autopsy series 

documented an association between RBD and α-synuclein deposition in both cortical and 

subcortical regions112,113. In DLB, there was an association between RBD and lower cortical 

metabolic activity114, greater nigrostriatal dopaminergic denervation115, and decreased amyloid 

or neurofibrillary tangles compared to α-synuclein pathology (increased DLB ratio)88,116,117 

(eTable 6 in the Supplement).  

 

 Combined Impact of OH and RBD on Clinical Outcomes 

The association between OH and RBD was examined in four longitudinal12–14,74, nine cross-

sectional studies79,81,83,93,95,118–121, and one autopsy series in PD122. The OH-RBD cluster 

correlated with cognitive impairment and postural instability in a cohort of drug-naïve PD 

patients followed-up for a mean of 4.5 years14, and in analysis of the PPMI cohort12,122, which 

also demonstrated an association between OH-RBD and greater cerebral atrophy, lower 

dopamine uptake, and lower b-amyloid levels in the cerebrospinal fluid (Table 2). In drug-naïve 

PD, a cross-sectional study ascertained an association between OH-RBD and cognitive 

impairment, nigrostriatal denervation, and electroencephalographic (EEG) alterations in the 

posterior cortical areas 13.  

 

DISCUSSION 

There was robust evidence supporting an association for OH and RBD with cognitive 

impairment in PD and DLB, as well as a significant negative effect of OH on postural instability 

and survival. The combination of OH and RBD (“OH-RBD cluster”) was associated with a 
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malignant phenotype of PD characterized by more rapid progression of cognitive deficits and 

postural instability. 

 

In PD, OH strongly correlated with reduced survival, as well as with an increased risk of 

dementia, falls and postural instability. RBD was associated with increased risk of dementia and, 

to a lower extent, gait and postural impairment. Associations were more evident in studies 

employing a tilt table for the diagnosis of OH and a polysomnography for the diagnosis of RBD, 

casting doubts on the accuracy of clinical questionnaires for the screening of orthostatic 

symptoms and sleep disorders123. Similarly, we found that studies using screening measures of 

global cognition, such as the MMSE (Mini Mental State Examination) or Montreal cognitive 

assessment, frequently failed to find an association between RBD and OH or to predict the risk 

of incident dementia compared to those employing extensive neuropsychological testing27,124,125.  

 

Similar data were also found in other α-synucleinopathies. In DLB, OH correlated with 

cognitive deficits69, and RBD with Lewy body cortical pathology116,88. Also, idiopathic RBD 

showed higher risk of conversion to DLB than PD, possibly indicating an association between 

RBD and prodromal cognitive deficits126–129. In MSA, we did not find any associations between 

OH or RBD and cognitive deficits. While these findings might reflect lesser cortical 

involvement in this specific α-synucleinopathy130, the limited sample size of available studies 

should be taken into consideration due to the frequent finding of attentional, visual-spatial, and 

executive deficits in patients with MSA131. In PAF, conflicting results were reported on the 

cognitive effect of cerebral hypoperfusion35,43.  

 

Neuroimaging studies identified severe nigrostriatal denervation and electroencephalographic 

(EEG) alterations in the posterior cortical areas of PD patients with RBD and OH13, as well as 

an individual association of both conditions with cholinergic deficits34,98,111. These data prove 

relevant when considering the pathological overlap in the anatomical and functional structures 
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associated with OH and RBD, which involve critical brainstem regions modulating the 

cholinergic, serotoninergic, and noradrenergic pathways (Figures 1 and 2). 

Neuropathological studies found an association between RBD and α-synuclein deposition in 

critical areas such as the locus coeruleus, raphe nuclei, paramammillary nuclei, amygdala, 

thalamus and entorhinal cortex. The same regions are involved in the central autonomic network 

that extends from cortical and diencephalic structures (insular cortex, anterior cingulate and 

amygdala) to the brainstem periaqueductal grey, ventrolateral medulla, medullary raphe, dorsal 

motor nucleus of vagus, nucleus ambiguous, and pontine micturition centre. 2 

OH, in particular, is associated with degeneration in the pedunculopontine cholinergic nucleus, 

noradrenergic periacqueductal gray neurons, rostral ventrolateral medulla, dorsolateral vagal 

motor nucleus, and nucleus ambiguous (Figure 1). All of these structures participate in a 

subcortical network projecting to the thalamic areas and to the posterior insular cortex, which 

receives and integrate inputs from visceral, thermal and pain receptors and connect with the 

anterior cingulate cortex, amygdala, and basal ganglia64. While cholinergic and noradrenergic 

deficits due to the involvement of locus coeruleus, pontine reticular formation, and lower raphe 

are likely to be involved in cognitive impairment79,132, mechanisms underlying the association 

between OH and falls remain unclear. It has been suggested that OH might cause falls due to 

orthostatic cortical hypoperfusion133, neurodegeneration of critical areas responsible for both 

postural instability and cardiovascular dysautonomia34, or a combination thereof134.  

Critically, the effect of peripheral hypotension and the frequently associated supine hypertension 

(SH) on the regulation of cerebrovascular perfusion remains to be clarified. A retrospective 

assessment of 204 subjects found that patients having PD with OH have a greater extent of deep 

and periventricular white matter lesions. However, the differential effect of OH and SH on white 

matter abnormalities remains unclear, as well as the impact of these two opposing 

haemodynamic conditions on cortical and subcortical areas involved in cognition and gait. 
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Pathogenic mechanisms associated with RBD involve an extensive network of micro-circuits 

within the brainstem, forebrain, and hypothalamus. In normal subjects, cholinergic inputs 

activate the subcoeruleus glutamatergic and gabaergic neurons, which promote REM sleep and 

muscle atonia135. The locus coeruleus activity is also modulated by the dorsal 

paragigantocellular reticular medullar nucleus, hypothalamic melanin-concentrating hormone 

neurons, dorsal raphe, and periacqueductal gray matter (Figures 1-2)9. Pathologically-proven 

case series have shown an association between RBD and α-synuclein deposition in the locus 

coeruleus and other brainstem nuclei participating to the thalamic modulation of the cortical 

activity88,112,113,136. In addition, independent reports found evidence of cholinergic dysfunctions 

in patients with RBD111, as well as signs of involvement of the pedunculopontine nucleus, which 

is a critical node in the locomotor mesencephalic area modulating gait and balance134.  

 

Some limitations may affect the interpretation of our data. First, the studies assessing the 

combined effect of OH and RBD are relatively few. Second, the majority of studies focused on 

PD, with relatively limited data from other α-synucleinopathies. Third, substantial heterogeneity 

was detected in the inclusion criteria, as well as in the methodologies used to assess OH and 

RBD.  

Also, the variable number of available studies for each α-synucleinopathy inevitably limited 

comparisons between different pathologies. While OH and RBD showed a positive association 

with cognitive impairment in PD and DLB, conflicting results were reported in PAF and no 

association in MSA. To what extent these data reflect fundamental differences in pathological 

mechanisms remains to be clarified. 

 

CONCLUSIONS 

Limitations notwithstanding, our systematic review highlights the importance of OH and RBD 

as markers of a distinctive subtype of α-synucleinopathies characterized by early cognitive 

impairment, pronounced postural instability, and reduced survival rate. These data support the 
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need for well-designed clinical and neuroimaging studies focusing on the management of non-

dopaminergic symptoms124,137,138, critical to inform the development of innovative cholinergic 

and noradrenergic agents for cognitive impairment and postural instability in α-

synucleinopathies. 
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FIGURE LEGENDS 

 

FIGURE 1. Structures associated with OH, RBD, cognitive impairment, and postural 

stability  

 

OH-associated structures include the intermediolateral cell column (sympathetic), caudal and 

rostral ventrolateral medulla (sympathetic), tractus solitarius and nucleus ambiguous 

(parasympathetic), and paraventricular and supraoptic nuclei of the hypothalamus (production of 

oxytocin and ADH), anterior cingulate and insular cortex. RBD-associated structures include the 

magnocellularis nucleus of the medulla, pontine sublateral dorsal and dorsal raphe (serotonergic) 

nuclei, locus subcoeruleus (noradrenergic/sympathetic), and lateral pontine tegmentum, 

midbrain periaqueductal gray matter formation (GABAergic) and substantia nigra 

(dopaminergic), basal ganglia, hypothalamus, and motor cortex. Postural instability-associated 

structures include the pedunculopontine nucleus (glutamatergic/cholinergic) in the pontine 

tegmentum/midbrain, cerebellum, caudate nucleus (GABAergic), posterior thalamus, thalamic 

ventrolateral nucleus (GABAergic), and parieto-insular vestibular and prefrontal cortex. 

Cognitive-associated structures include the hippocampus, nucleus basalis of Meynert 

(cholinergic/parasympathetic), and the neocortex, especially prefrontal, temporo-parietal and 

occipital lobes. 

Abbreviations. BG, basal ganglia; HT, hypothalamus; ILCC, intermediolateral cell column; 

LC, locus coeruleus; LSC, locus subcoeruleus; MCN, magnocellularis nucleus; OH, orthostatic 

hypotension; NBM, nucleus basalis of Meynert; PAG, periaqueductal gray matter; PPN, 

pedunculopontine nucleus; RBD, REM-sleep behavior disorders; RM, raphe medialis; SLD, 

sublateral dorsal nucleus; SN, substantia nigra; TS&A, tractus solitarius and ambiguus nuclei; 

VLM, caudal and rostral ventrolatero medulla; VTA, ventrotegmental area. 
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FIGURE 2. Functional Neurotransmission Pathways connected to the regions linking OH, 

RBD, Cognitive Impairment, and Postural Stability  

Cholinergic pathways connect the pedunculopontine/lateral dorsal tegmental nuclei projections 

to thalamus and the nucleus basalis of Meynert with the neocortex. Dopaminergic pathways 

connect the substantia nigra in the ventral midbrain with the nigrostriatal system, and the 

ventrotegmental area to mesolimbic and mesocortical areas. Noradrenergic pathways connect 

the locus coeruleus with the cingulate and prefrontal cortex. Serotoninergic pathways connect 

the raphe nuclei with the frontal cortex.  

 



 28 

 
TABLES 

 

Table 1. Association between OH and RBD and survival in α-synucleinopathies 

 

 

Study 
Study 
Design 

Study 
Population 

Diagnosis of 
OH  

Diagnosis of 
RBD 

Main Results 

 
OH 

In support of an association 

De Pablo 
Fernandez et al. 
2017 

AS PD (n= 100) Level B - Association between OH, dysautonomia, and reduced survival rate 

Stubendorf et al. 
2016 

L – 3 y 
PDD (n= 14) 
DLB (n= 16) 

Level B - Association between OH and reduced survival rate 

Goldstein et al. 
2015 

L - 10 y 
PD (n= 95) 

PAF (n= 26) 
MSA (n= 55) 

Level B - 
Association between OH and reduced survival in PD; reduced survival rate in MSA compared to PD 
and PAF  

Coon et al. 2015 R 
MSA (n= 

685) 
Level A - Association between early autonomic dysfunction and reduced survival 

Tada et al. 2007 AS MSA (n= 49) Level B - Association between early autonomic dysfunction and reduced survival 

O’ Sullivan et al. 
2008 

AS MSA (n= 83) Level A - Association between early autonomic dysfunction and reduced survival 

Not in support of an association 

Gray et al. 2009 L - 7 y PD (n= 109) Level B - No association between OH and reduced survival 

 
RBD 

Not in support of an association 

Forsaa et al. 
2010 

L - 20y PD (n= 230) - Level C No association between RBD and reduced survival rate 
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Abbreviations: AS, Autopsy Series; DLB, Dementia with Lewy Bodies; L, Longitudinal; MSA, Multiple System Atrophy; OH, Orthostatic 

Hypotension; PAF, Pure Autonomic Failure; PD, Parkinson Disease; PDD, Parkinson’s disease dementia; R, retrospective; RBD, REM Sleep 

Behavioural Disorder; y, years 

* Diagnostic accuracy – OH: level A: diagnosis based on cardiovascular autonomic testing; level B: diagnosis based on laying-to-standing blood 

pressure measurements in a clinical setting; level C: diagnosis based on clinical questionnaires 

** Diagnostic accuracy – RBD: level A: diagnosis based on polysomnography; level B: diagnosis based on RBD-specific validated 

questionnaires; level C: diagnosis based on non-specific questionnaires assessing sleep disturbances and other non-motor symptoms 
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Table 2: Association between OH and RBD  
 

Study 
Study 
Design 

Study 
Population 

Diagnosis of 
OH 

Diagnosis of 
RBD 

Main Results 

In support of an association 

Nomura et al. 2013 L - 2 y PD (n= 82) Level B Level A Association between RBD and OH 

Postuma et al. 2011 CS PD (n= 53) Level A Level A Association between RBD and cardiac autonomic denervation  

Sommerauer et al. 
2018 

CS PD (n= 30) Level A Level A Higher prevalence of OH in patients with versus without RBD 

Kim et al. 2016 CS PD (n= 94) Level A Level B Association between RBD and OH 

Postuma et al 2008 CS PD (n= 36) Level B Level A Association between RBD and OH 

Nomura et al. 2010 CS PD (n= 49) Level B Level A Association between RBD and cardiac autonomic denervation  

Romenets et al. 2012 CS PD (n= 98) Level B Level A Association between RBD and OH 

Rolinski et al. 2014 CS PD (n= 475) Level B Level B Higher BP drop at the tilt-test in patients with versus without RBD 

Liu et al 2017 CS PD (n= 141) Level C Level B Association between RBD and OH symptoms 

Not in support of an association 

Yoritaka et al. 2009 CS PD (n= 150) Level C Level B No association between RBD and OH medication 

CLUSTERS studies 

Fehrestenehjad et al. 
2015 

L - 5 y PD (n= 76) Level B Level A Worse motor, non-motor, and cognitive (NPS) symptoms progression in the OH-RBD cluster 

Fehrestenehjad et al. 
2017 

L - 3 y PD (n= 421) Level B Level B 
Worse motor and cognitive (UPDRS-I, MoCA) symptoms progression and worse ADL 
progression (UPDRS-II) in the OH-RBD cluster 

Arnaldi et al. 2017 L - 5 y PD (n= 54) Level B Level B Worse cognitive (NPS) symptoms progression in the OH-RBD cluster 

De Pablo Fernandez et 
al. 2019 

AS PD (n=111) Level C Level B Malignant phenotype associated with falls, inability to walk, dementia and shorter survival 
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Abbreviations: ADL, Activities of Daily Living; AS, Autopsy Series; BP, Blood Pressure; CS, cross-sectional; L, longitudinal; MoCA, Montreal 

Cognitive Assessment; NPS, Neuropsychological Testing; OH, Orthostatic Hypotension; PD; Parkinson Disease; RBD, Rem Sleep Behavioural 

Disorder; UPDRS-I, Unified Parkinson’s Disease Rating Scale - section I; UPDRS-II, Unified Parkinson’s Disease Rating Scale - section II; y, 

years 

* Diagnostic accuracy – OH: level A: diagnosis based on cardiovascular autonomic testing; level B: diagnosis based on laying-to-standing blood 

pressure measurements in a clinical setting; level C: diagnosis based on clinical questionnaires 

** Diagnostic accuracy – RBD: level A: diagnosis based on polysomnography; level B: diagnosis based on RBD-specific validated 

questionnaires; level C: diagnosis based on non-specific questionnaires assessing sleep disturbances and other non-motor symptoms 
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