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Abstract

A straightforward generalization of the classical inverse of a real function
based on reflections leads to several insuperable difficulties. We introduce a
new type of inverse w.r.t. monotone bijections φ that is determined by the
direction of the base vectors of the real Euclidean plane. Inverting a mono-
tone function in the real plane does not necessarily result in a function. Given
an increasing real function f , Schweizer and Sklar geometrically construct a
set of inverse functions. We will largely extend their construction to our new
concept of φ-inverses, also incorporating decreasing functions f . Furthermore,
the geometrical and algebraical aspects of our approach are elaborated com-
prehensively. Special attention goes to the symmetry of a monotone function
f w.r.t. some monotone bijection φ.

1 Introduction

In the real plane R2, the inverse F−1 of a set F ⊆ R2 is defined as F−1 = {(x, y) ∈
R2 | (y, x) ∈ F}. Geometrically, we obtain F−1 by reflecting F about the graph of
the first bisector id : R → R : x 7→ x. For a function f (i.e. every element x in the
domain of f is mapped to a unique image f(x)), its inverse f−1 = {(x, y) ∈ R2 |
x = f(y)} is again a function if and only if f is injective. A set F is symmetrical
w.r.t. the first bisector if (x, y) ∈ F whenever (y, x) ∈ F , meaning that the set
and its inverse coincide. Analogously, F is symmetrical w.r.t. the second bisector
−id : R → R : x 7→ −x if it holds that (x, y) ∈ F whenever (−y,−x) ∈ F . Hence,
F−id := {(x, y) ∈ R2 | (−y,−x) ∈ F} can be understood as the inverse of F w.r.t.
the second bisector. In particular, F−id is the reflection of F w.r.t. −id. However,
reflections are not always apt to define the inverse of a set w.r.t. a given monotone
R → R bijection φ. For instance, suppose that φ contains part of a circle with center
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(x0, y0) belonging to F . There does not exist a unique straight line perpendicular
to φ that contains (x0, y0). This observation forces us to approach the inverse of F
in a different way.

2 Inverting monotone functions

2.1 Geometrical construction

Consider a point (x0, y0) on F . Due to the strict monotonicity of φ, the triplet
((x0, φ(x0)), (x0, y0), (φ

−1(y0), y0)) determines a unique rectangle through the point
(x0, y0), with each side parallel to one of the axes and having at least two vertices
on φ. The fourth point (φ−1(y0), φ(x0)) of the rectangle belongs to the set

F φ := {(x, y) ∈ R2 | (φ−1(y), φ(x)) ∈ F} .

We call F φ the φ-inverse of F . It holds that (x, y) ∈ F φ if and only if (φ(x), φ−1(y)) ∈
F−1. In case φ is the identity function id, F id = F−1 and will still be referred to as
the inverse of F . The φ-inverse of a function f is again a function if and only if f
is injective. Moreover, in this case fφ = φ ◦ f−1 ◦ φ. Note also that (F φ)φ = F .

It is well known that a monotone function f : [a, b] → [c, d], with [a, b] and
[c, d] closed subintervals of [−∞,∞] (a < b and c < d), has a countable number
of discontinuity points. Consider a monotone bijection φ : [q, r] → [s, t] such that
[a, b] ⊆ [q, r] and [c, d] ⊆ [s, t]. If f is not injective or rng f ⊂ [c, d], its φ-inverse fφ

cannot be seen as a φ−1([c, d]) → φ([a, b]) function. There are various ways to adjust
this φ-inverse, ensuring that it becomes a φ−1([c, d]) → φ([a, b]) function. Given an
increasing function f : [a, b] → [c, d], Schweizer and Sklar geometrically construct a
set of inverse functions [3]. Some additional results for monotone functions are due
to Klement et al. [1, 2]. We will largely extend these results and associate to each
monotone function f a set of φ-inverse functions.

Adding vertical segments we complete the graph of f to a continuous line from
the point (a, c) to the point (b, d) whenever f is increasing and from the point (a, d)
to the point (b, c) whenever f is decreasing. We construct the φ-inverse of such
a ‘completed’ curve and delete all but one point from any vertical segment. The
set of all φ−1([c, d]) → φ([a, b]) functions obtained in this way, is denoted Q(f, φ).
Note that, by definition, for a constant function f the set Q(f, φ) contains the
φ−1([c, d]) → φ([a, b]) functions constructed from the increasing completion of f
as well as those constructed from the decreasing completion of f . The injectivity
and/or surjectivity of f is reflected in the set Q(f, φ).

Theorem 1. The following assertions hold:

(i) f is injective if and only if |Q(f, φ)| = 1.

(ii) f is surjective if and only if Q(f, φ) contains injective functions only.

(iii) f is bijective if and only if fφ ∈ Q(f, φ).

For a bijective function f it clearly holds that Q(f, φ) = {fφ}.
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We can introduce an equivalence relation on the class of monotone [a, b] → [c, d]
functions by calling two functions f and h equivalent if their ‘completed’ curves
coincide, or equivalently, if the sets Q(f, φ) and Q(h, φ) coincide. The monotone
bijection φ can be chosen arbitrarily. The equivalence class containing a function f
is then given by Q(g, φ), with g ∈ Q(f, φ).

Theorem 2. The following assertions hold:

(i) For every g ∈ Q(f, φ) it holds that f ∈ Q(g, φ).

(ii) For every g1, g2 ∈ Q(f, φ) it holds that Q(g1, φ) = Q(g2, φ).

(iii) For every g ∈ Q(f, φ) it holds that h ∈ Q(g, φ) if and only if Q(h, φ) = Q(f, φ).

2.2 The importance of Q(f, id)

In order to describe the members of Q(f, φ) mathematically, we first have to intro-

duce four φ−1([c, d]) → φ([a, b]) functions f
φ
, fφ, f

φ and f
φ
:

f
φ
(x) = sup{t ∈ φ([a, b]) | f(φ−1(t)) < φ(x)}

fφ(x) = inf{t ∈ φ([a, b]) | f(φ−1(t)) > φ(x)}

fφ(x) = sup{t ∈ φ([a, b]) | f(φ−1(t)) > φ(x)}
f
φ
(x) = inf{t ∈ φ([a, b]) | f(φ−1(t)) < φ(x)} .

In the following theorem we lay bare the tight connection between the above
functions constructed from a monotone bijection φ and those constructed from the
identity function.

Theorem 3. 1. If φ is increasing, then the following identities hold:

f
φ

= f ◦ φ−1id ◦ φ = φ ◦ φ−1 ◦ f id
= φ−1 ◦ f ◦ φ−1id = φ ◦ f id ◦ φ

fφ = f ◦ φ−1
id ◦ φ = φ ◦ φ−1 ◦ f id = φ−1 ◦ f ◦ φ−1

id = φ ◦ f id ◦ φ

fφ = f ◦ φ−1id ◦ φ = φ ◦ φ−1 ◦ f id
= φ−1 ◦ f ◦ φ−1id = φ ◦ f id ◦ φ

f
φ

= f ◦ φ−1
id
◦ φ = φ ◦ φ−1 ◦ f

id
= φ−1 ◦ f ◦ φ−1

id
= φ ◦ f

id
◦ φ .

2. If φ is decreasing, then the following identities hold:

f
φ

= f ◦ φ−1id ◦ φ = φ ◦ φ−1 ◦ f id = φ−1 ◦ f ◦ φ−1id = φ ◦ f
id
◦ φ

fφ = f ◦ φ−1
id ◦ φ = φ ◦ φ−1 ◦ f id

= φ−1 ◦ f ◦ φ−1
id

= φ ◦ f id ◦ φ

fφ = f ◦ φ−1id ◦ φ = φ ◦ φ−1 ◦ f
id

= φ−1 ◦ f ◦ φ−1id = φ ◦ f id ◦ φ

f
φ

= f ◦ φ−1
id
◦ φ = φ ◦ φ−1 ◦ f id

= φ−1 ◦ f ◦ φ−1
id = φ ◦ f id ◦ φ .
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Proof We will prove the theorem for f
φ
, the other cases being similar. On the one

hand, for an increasing bijection φ, we obtain that

f
φ
(x) = inf{t ∈ [φ(a), φ(b)] | f(φ−1(t)) < φ(x)} = f ◦ φ−1

id
(φ(x)) ;

= φ(inf{T ∈ [a, b] | f(T ) < φ(x)}) = φ(f
id

(φ(x))) ;

= inf{t ∈ [φ(a), φ(b)] | φ−1(f(φ−1(t))) < x} = φ−1 ◦ f ◦ φ−1
id

(x) ;

= φ(inf{T ∈ [a, b] | φ−1(f(T )) < x}) = φ(φ−1 ◦ f
id

(x)) ,

for every x ∈ φ−1([c, d]). On the other hand, for a decreasing bijection φ, we obtain
that

f
φ
(x) = inf{t ∈ [φ(b), φ(a)] | f(φ−1(t)) < φ(x)} = f ◦ φ−1

id
(φ(x)) ;

= φ(sup{T ∈ [a, b] | f(T ) < φ(x)}) = φ(f
id

(φ(x))) ;

= inf{t ∈ [φ(b), φ(a)] | φ−1(f(φ−1(t))) > x} = φ−1 ◦ f ◦ φ−1
id(x) ;

= φ(sup{T ∈ [a, b] | φ−1(f(T )) > x}) = φ(φ−1 ◦ f id
(x)) ,

for every x ∈ φ−1([c, d]).

Thanks to this theorem, properties of f
id

, f id, f id and f
id

are easily translated

to properties of f
φ
, fφ, f

φ and f
φ
. Note also that the theorem even holds for

non-monotonic functions f .

Corollary 1. Both functions f
φ

and fφ have the same type of monotonicity as φ.

The monotonicity of the functions fφ and f
φ

is the opposite of that of φ.

Proof It is easily verified that f
id

and f id are always increasing and that f id and
f

id
are always decreasing. Taking into account Theorem 3 yields the postulate.

As shown in the following theorem, both setsQ(f, φ) andQ(f, id) are isomorphic.

Theorem 4. Consider a monotone bijection ψ : [m,n] → [u, v] such that [a, b] ⊆
([q, r]∩ [m,n]) and [c, d] ⊆ ([s, t]∩ [u, v]). Then Q(f, φ) and Q(f, ψ) are isomorphic.
In particular, for every g ∈ Q(f, φ) there exists a unique function h ∈ Q(f, ψ) such
that φ−1 ◦ g ◦ φ−1 = ψ−1 ◦ h ◦ ψ−1.

Proof It suffices to prove that

Iφ : Q(f, φ) → Q(f, id) : g 7→ Iφ(g) := φ−1 ◦ g ◦ φ−1

is an isomorphism for every monotone bijection φ : [q, r] → [s, t] such that [a, b] ⊆
[q, r] and [c, d] ⊆ [s, t]. Recall the geometrical construction of Q(f, φ) and Q(f, id).
For every g ∈ Q(f, φ) we know that (φ−1(g(x)), φ(x)), with x ∈ φ−1([c, d]), belongs
to the completion of f . Hence, the set

{(φ(x), φ−1(g(x))) | x ∈ φ−1([c, d])} = {(X, Iφ(g)(X)) | X ∈ [c, d]}
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indeed defines a [c, d] → [a, b] function belonging to Q(f, id). Conversely, consider
a function k ∈ Q(f, id), then {(k(x), x) | x ∈ [c, d]} is a subset of the completion
of f . It is clear that the set

{(φ−1(x), φ(k(x))) | x ∈ [c, d]} = {(X,φ(k(φ(X)))) | X ∈ φ−1([c, d])}

defines a function belonging to Q(f, φ) and thus k = Iφ(φ ◦ k ◦ φ). We conclude
that Iφ is surjective. The bijectivity of φ ensures that Iφ is also injective. Since
φ is monotone, it holds that Iφ is order-preserving and therefore Iφ is indeed an
order-preserving bijection.

Corollary 2. Consider a monotone bijection ψ : [m,n] → [u, v] such that [a, b] ⊆
([q, r] ∩ [m,n]) and [c, d] ⊆ ([s, t] ∩ [u, v]). Then for every g ∈ Q(f, φ) there exists a
unique function h ∈ Q(f, ψ) such that

gφ = h
ψ
, gφ = hψ, g

φ = hψ and g
φ

= hψ ,

whenever φ and ψ have the same monotonicity and

gφ = hψ, gφ = hψ, g
φ = h

ψ
and g

φ
= hψ ,

whenever φ and ψ have opposite types of monotonicity.

Proof From Theorem 4 we know that, given a function g ∈ Q(f, φ), there exists a
unique function h ∈ Q(f, ψ) such that φ−1 ◦ g ◦φ−1 = ψ−1 ◦h◦ψ−1. The statements
then follow immediately from Theorem 3.

3 The set Q(f, id)

3.1 Mathematical description

The mathematical description of the set Q(f, id) originates from the following ob-
servations dealing with monotone [a, b] → [c, d] functions f :

(I) if x ∈ f([a, b]), then f−1(x) = {y ∈ [a, b] | f(y) = x} is an interval;

(IIa) if f is increasing and x ∈ [c, d] \ f([a, b]), then f
id

(x) = f id(x);

(IIb) if f is decreasing and x ∈ [c, d] \ f([a, b]), then f id(x) = f
id

(x).

In this setting sup ∅ = a and inf ∅ = b. As shown by Schweizer and Sklar [3], the set
Q(f, id) can be described as the set of [c, d] → [a, b] functions g fulfilling

(I)id

(
∀x ∈ f([a, b])

)(
g(x) ∈

[
inf(f−1(x)), sup(f−1(x))

])
;

(IIa)id if f is increasing:
(
∀x ∈ [c, d] \ f([a, b])

) (
g(x) = f

id
(x) = f id(x)

)
;
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(IIb)id if f is decreasing:
(
∀x ∈ [c, d] \ f([a, b])

) (
g(x) = f id(x) = f

id
(x)

)
.

Special attention is drawn to the constant functions ααα : [a, b] → [c, d] : x 7→ α,
for some α ∈ [c, d]. These functions are both increasing and decreasing. Therefore,
Q(ααα, id) contains functions fulfilling (IIa)id as well as functions fulfilling (IIb)id.
Whenever f(a) 6= f(b), all elements of Q(f, id) fulfill the same condition: either
(IIa)id or (IIb)id. According to Klement et al. [2], in this case we can merge
(IIa)id and (IIb)id as follows:

(II)id

(
∀x ∈ [c, d] \ f([a, b])

)
(
g(x) = sup{t ∈ [a, b] | (f(t)− x) · (f(b)− f(a)) < 0}

= inf{t ∈ [a, b] | (f(t)− x) · (f(b)− f(a)) > 0}
)
.

In case f(a) < f(b), resp. f(a) > f(b), the function f
id

, resp. f id, is known

as the pseudo-inverse f (−1) of f [2]. For a constant [a, b] → [c, d] function ααα, Kle-
ment et al. [2] define the pseudo-inverse as ααα(−1) := a. This pseudo-inverse does
not necessarily coincide with αααid or αααid, which can easily be verified by considering
the [0, 1] → [0, 1] function 1

2
. The authors were clearly inspired by the ‘supremum

expression’ in condition (II)id. However, when dealing with constant functions, con-
dition (II)id can never hold as sup ∅ = a < b = inf ∅ and the ‘supremum expression’
in condition (II)id is neither related to condition (IIa)id nor to condition (IIb)id.
Pseudo-inverses are often used in the construction of triangular norms and conorms
(see [1], [2], [4] and [5]). They have been studied extensively in that context. Some
of our results concerning the pseudo-inverse of non-constant monotone functions can
be (partially) found in [1], [2] or [5]. Our goal was not only to extend the existing
knowledge, but also to purify the theorems from superfluous conditions and to rear-
range the results in a more insightful way. We also clarified the inversion of constant
functions.

We now try to figure out the significance of the four functions f
id

, f id, f id and
f

id
. In the following theorem we investigate which of these functions belongs to

Q(f, id) and can therefore be understood as some kind of inverse of f .

Theorem 5. The following assertions hold:

(i) If f(a) < f(b), then a [c, d] → [a, b] function g belongs to Q(f, id) if and only

if f
id ≤ g ≤ f id.

(ii) If f(a) > f(b), then a [c, d] → [a, b] function g belongs to Q(f, id) if and only
if f id ≤ g ≤ f

id
.

(iii) If f(a) = f(b), then a [c, d] → [a, b] function g belongs to Q(f, id) if and only

if f
id ≤ g ≤ f id or f id ≤ g ≤ f

id
.

The structural difference between f
id
, f id and f id, f

id
implies the following

corollary:
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Corollary 3. The following assertions hold:

(i) If f(a) < f(b), then Q(f, id) contains increasing functions only and {f id, f
id
}∩

Q(f, id) = ∅.

(ii) If f(a) > f(b), then Q(f, id) contains decreasing functions only and {f id
, f id}∩

Q(f, id) = ∅.

(iii) If f(a) = f(b), then Q(f, id) contains increasing and decreasing functions.

Proof It is easily verified that every function located between f
id

and f id is increas-
ing and that every function located between f id and f

id
is decreasing. By definition

it holds that f
id

(c) = f id(d) = a and f id(d) = f
id

(c) = b. Furthermore, f id(c) = b

and f
id

(d) = a whenever f(a) < f(b) and f
id

(d) = b and f id(c) = a whenever
f(a) > f(b). Taking into account the monotonicity of the members of Q(f, id) yields

that {f id, f
id
} ∩ Q(f, id) = ∅ whenever f(a) < f(b) and {f id

, f id} ∩ Q(f, id) = ∅
whenever f(a) > f(b).

Depending on the monotonicity of f , the functions f
id
, f id or f id, f

id
do not

only constitute the boundaries of Q(f, id), they can also be sifted out of Q(f, id)
by means of continuity conditions.

Theorem 6. If f 6∈ {ccc,ddd}, then the following assertions hold:

1. If f is increasing, then

(i) f
id

is the only member of Q(f, id) that is left-continuous and maps c to a;

(ii) f id is the only member of Q(f, id) that is right-continuous and maps d
to b.

2. If f is decreasing, then

(i) f id is the only member of Q(f, id) that is right-continuous and maps d
to a;

(ii) f
id

is the only member of Q(f, id) that is left-continuous and maps c to b.

The set Q(ccc, id), resp. Q(ddd, id), contains exactly two continuous functions: cccid =

aaa and cccid = bbb, resp. ddd
id

= aaa and dddid = bbb. The above theorem has to be adjusted as
follows.

Theorem 7. The following assertions hold:

1. (i) cccid and cccid are the only members of Q(ccc, id) that are left-continuous and
map c to a.

(ii) cccid is the only member of Q(ccc, id) that is right-continuous and maps d
to b.

(iii) cccid is the only member of Q(ccc, id) that is right-continuous and maps d
to a.
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(iv) cccid and cccid are the only members of Q(ccc, id) that are left-continuous and
map c to b.

2. (i) ddd
id

is the only member of Q(ddd, id) that is left-continuous and maps c to a.

(ii) dddid and dddid are the only members of Q(ddd, id) that are right-continuous
and map d to b.

(iii) ddd
id

and dddid are the only members of Q(ddd, id) that are right-continuous
and map d to a.

(iv) dddid is the only member of Q(ddd, id) that is left-continuous and maps c to b.

Note that Theorem 6 remains applicable to the other constant functions ααα, with
α ∈ ]c, d[. The boundary conditions ensure the unicity.

3.2 Properties

In this section we focus on the characteristic properties of the classical inverse and fig-
ure out under which conditions these properties are preserved in our new framework.
Firstly, we deal with the involutivity of the ‘inverse’ operator, i.e. (f−1)−1 = f .
From Theorem 2 we know that f ∈ Q(g, id), for every g ∈ Q(f, id). Therefore, in-
terpreting g as some inverse of f and f as some inverse of g, we obtain that in some
sense ‘inverting’ some ‘inverse’ yields the original function. For monotone bijections
f this reasoning is sound as Q(f, id) = {f id} = {f−1} (Theorem 1). Otherwise,
whenever f is not bijective, we know that |Q(f, id)| > 1 and/or |Q(g, id)| > 1, for
some g ∈ Q(f, id) (Theorem 1). We need to find out how the inverse g of f , resp.
the inverse of g, should be selected from the set Q(f, id), resp. Q(g, id). Special

attention is drawn here to the functions f
id
, f id and f id, f

id
.

Theorem 8. The following assertions hold:

(i) If there exists a function g ∈ Q(f, id) such that gid = f , then f must be
increasing, left-continuous and f(a) = c.

(ii) If there exists a function g ∈ Q(f, id) such that gid = f , then f must be
increasing, right-continuous and f(b) = d.

(iii) If there exists a function g ∈ Q(f, id) such that gid = f , then f must be
decreasing, right-continuous and f(b) = c.

(iv) If there exists a function g ∈ Q(f, id) such that g
id

= f , then f must be
decreasing, left-continuous and f(a) = d.

Proof Consider a monotone function f and suppose that there exists a function
g ∈ Q(f, id) such that g

id
= f . In particular, it then holds that f(a) = g

id
(a) =

inf{t ∈ [c, d] | g(t) < a} = d. The decreasingness of f is an immediate consequence
of Corollary 1. From Corollary 3 and the definition of g

id
we can derive that g must

be decreasing. Theorems 6 and 7 then ensure that f = g
id

is always left-continuous.
The other cases are proven in the same way.
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Note that neither gid = f nor g
id

= f can hold if f(a) < f(b) and g ∈ Q(f, id).

Indeed, in contrast to f , both functions gid and g
id

are decreasing (Corollary 1).
Similarly, if f(a) > f(b), there does not exist a function g ∈ Q(f, id) such that
gid = f or gid = f .

Theorem 9. Let f be non-constant.

1. For an increasing function f it holds that:

(i) If f is left-continuous and f(a) = c, then gid = f for every g ∈ Q(f, id).

(ii) If f is right-continuous and f(b) = d, then gid = f for every g ∈ Q(f, id).

2. For a decreasing function f it holds that:

(i) If f is right-continuous and f(b) = c, then gid = f for every g ∈ Q(f, id).

(ii) If f is left-continuous and f(a) = d, then g
id

= f for every g ∈ Q(f, id).

Proof Consider a left-continuous decreasing function f for which f(a) = d and take
g ∈ Q(f, id). Theorem 5 and the left-continuity of f ensure that

g(f(x) + ε) ≤ f
id

(f(x) + ε) = inf{t ∈ [a, b] | f(t) < f(x) + ε} < x , (1)

for every x ∈ [a, b] such that f(x) < d and with ε ∈ ]0, d− f(x)]. Moreover, it holds
that

g(f(x)− ε) ≥ f id(f(x)− ε) = sup{t ∈ [a, b] | f(t) > f(x)− ε} ≥ x , (2)

for every x ∈ [a, b] such that c < f(x) and with ε ∈ ]0, f(x) − c]. Consider an
arbitrary x ∈ [a, b] such that f(x) ∈ ]c, d[ and let ε ∈ ]0,min(d − f(x), f(x) − c)].
As g is decreasing, combining Eqs. (1) and (2) leads to

g
id

(x) = inf{t ∈ [c, d] | g(t) < x} = f(x) . (3)

In case f(x) = c, then Eq. (1), with arbitrary ε ∈ ]0, d−c], also implies Eq. (3). In a
similar way, Eq. (2) implies Eq. (3) whenever f(x) = d. We conclude that g

id
= f .

The other cases are proven in a similar way.

From the proof of the previous theorem one can easily derive the following result
concerning the constant functions ccc and ddd.

Theorem 10. For every [c, d] → [a, b] function g the following assertions hold:

(i) gid = ccc if and only if cccid ≤ g ≤ cccid.

(ii) gid = ddd if and only if ddd
id ≤ g ≤ dddid.

(iii) gid = ccc if and only if cccid ≤ g ≤ cccid.

(iv) g
id

= ddd if and only if dddid ≤ g ≤ dddid.
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Proof The sufficient conditions immediately follow from the proof of Theorem 9.
Suppose now that g

id
= ddd, then necessarily g(x) = b whenever x ∈ [c, d[ and hence

dddid ≤ g ≤ dddid. The other cases are proven in the same way.

Note that if, for example, g
id

equals a non-constant left-continuous function f
fulfilling f(a) = d, then it does not necessarily hold that g ∈ Q(f, id) (consider for
example g = id[0,1] and let [a, b] = [c, d] = [0, 1]). This prevents us from further
generalizing Theorem 9.

In classical analysis it holds that f−1 ◦ f = id[a,b] (i.e. {y ∈ [a, b] | f(x) =
f(y)} = {x} for every x ∈ [a, b]) if and only if f is injective. It is easily verified that

f
id ◦ f ≤ id[a,b] ≤ f id ◦ f whenever f is increasing and f id ◦ f ≤ id[a,b] ≤ f

id
◦ f

whenever f is decreasing.

Theorem 11. There exists a function g ∈ Q(f, id) such that g ◦ f = id[a,b] if and
only if f is injective.

Proof We present the proof for a decreasing function f . If g ◦ f = id[a,b] holds
for some g ∈ Q(f, id), then g must be surjective. From Theorem 1 it then follows
that Q(g, id) contains only injective functions. Since f ∈ Q(g, id) (Theorem 2), this
means that f must be injective. Conversely, assume that f is an injective decreasing
[a, b] → [c, d] function. Expressing the injectivity of f

(∀x ∈ [a, b[)(∀ε ∈ ]0, b− x])(f(x+ ε) < f(x)) ,

is equivalent with

f
id

(f(x)) = inf{t ∈ [a, b] | f(t) < f(x)} = x ,

for every x ∈ [a, b]. Recall from Theorems 1 and 5 that Q(f, id) = {f
id
}. Hence,

g ◦ f = id[a,b], with g ∈ Q(f, id).

For monotone [a, b] → [c, d] functions f , it holds that f ◦ f−1 = id[c,d] (i.e.
f({y | x = f(y)}) = {x} for every x ∈ [c, d]) if and only if f is bijective. The
injectivity of f ensures that f−1 is a function. Since Q(f, id) only contains functions,
the injectivity of f will become superfluous when replacing f−1 by some g ∈ Q(f, id).

Theorem 12. There exists a function g ∈ Q(f, id) such that f ◦ g = id[c,d] if and
only if f is surjective. Moreover, the surjectivity of f implies that f ◦ g = id[c,d] for
every g ∈ Q(f, id).

Proof We present the proof for a decreasing function f . Clearly, f ◦ g = id[c,d],
for some g ∈ Q(f, id), implies the surjectivity of f . Conversely, suppose that f is
surjective, then f is continuous, f(a) = d and f(b) = c. By definition it then holds
that

f(f id(x)) = f(sup{t ∈[a, b] | f(t) > x})
= x = f(inf{t ∈ [a, b] | f(t) < x}) = f(f

id
(x)) ,

for every x ∈ [c, d]. Taking into account that f id ≤ g ≤ f
id

, for every g ∈ Q(f, id)

(Theorem 5), this leads to f ◦ f id = f ◦ g = f ◦ f
id

= id[c,d].

Combining Theorems 11 and 12, we obtain the following corollary.
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Corollary 4. There exists a function g ∈ Q(f, id) such that g ◦ f = id[a,b] and
f ◦ g = id[c,d] if and only if f is bijective.

4 The set Q(f, φ)

4.1 Increasing bijections

In this section we will generalize our previous results concerning the set Q(f, id),
to properties of the set Q(f, φ) where f is a monotone [a, b] → [c, d] function and φ
is an increasing [q, r] → [s, t] bijection fulfilling [a, b] ⊆ [q, r] and [c, d] ⊆ [s, t]. The
isomorphy between Q(f, id) and Q(f, φ) (see Theorem 4) allows a straightforward
conversion of the properties of Q(f, id) to those of Q(f, φ): for every g ∈ Q(f, φ),
we know that φ−1 ◦ g ◦φ−1 belongs to Q(f, id). Throughout this translation process
we make extensively use of Theorem 3 and Corollary 2, where ψ = id. The proofs
are elementary and therefore left out.

The set Q(f, φ) can be described as the set of all [φ−1(c), φ−1(d)] → [φ(a), φ(b)]
functions g fulfilling

(III)
(
∀x ∈ φ−1(f([a, b]))

)(
g(x) ∈ φ

([
inf(f−1(φ(x))), sup(f−1(φ(x)))

]))
;

(IIaIIaIIa) if f is increasing:
(
∀x ∈ φ−1 ([c, d] \ f([a, b]))

) (
g(x) = f

φ
(x) = fφ(x)

)
;

(IIbIIbIIb) if f is decreasing:
(
∀x ∈ φ−1 ([c, d] \ f([a, b]))

) (
g(x) = fφ(x) = f

φ
(x)

)
.

For a constant function ααα, with α ∈ [c, d], the set Q(ααα, φ) contains functions
fulfilling (IIaIIaIIa) as well as functions fulfilling (IIbIIbIIb). The following theorems point out

the significance and importance of the functions f
φ
, fφ, f

φ and f
φ
.

Theorem 13. The following assertions hold:

(i) If f(a) < f(b), then a φ−1([c, d]) → φ([a, b]) function g belongs to Q(f, φ) if

and only if f
φ ≤ g ≤ fφ.

(ii) If f(a) > f(b), then a φ−1([c, d]) → φ([a, b]) function g belongs to Q(f, φ) if
and only if fφ ≤ g ≤ f

φ
.

(iii) If f(a) = f(b), then a φ−1([c, d]) → φ([a, b]) function g belongs to Q(f, φ) if

and only if f
φ ≤ g ≤ fφ or fφ ≤ g ≤ f

φ
.

It is clear that Q(f, φ) only contains increasing, resp. decreasing, functions
provided that f(a) < f(b), resp. f(a) > f(b). Depending on the monotonicity of

f , the functions f
φ
, fφ and fφ, f

φ
can also be characterized by means of some

continuity conditions.
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Theorem 14. If f 6∈ {ccc,ddd}, then the following assertions hold:

1. If f is increasing, then

(i) f
φ

is the only member of Q(f, φ) that is left-continuous and maps φ−1(c)
to φ(a);

(ii) fφ is the only member of Q(f, φ) that is right-continuous and maps φ−1(d)
to φ(b).

2. If f is decreasing, then

(i) fφ is the only member of Q(f, φ) that is right-continuous and maps φ−1(d)
to φ(a);

(ii) f
φ

is the only member of Q(f, φ) that is left-continuous and maps φ−1(c)

to φ(b).

Dealing with the constant functions ccc and ddd, we have to reformulate Theorem 7
in a similar way. This adjustment has been omitted since it is straightforward yet

lengthy. Next, we wonder which properties of fφ remain preserved for f
φ
, fφ and

fφ, f
φ
.

Theorem 15. The following assertions hold:

(i) If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be in-
creasing, left-continuous and f(a) = c.

(ii) If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be in-
creasing, right-continuous and f(b) = d.

(iii) If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be de-
creasing, right-continuous and f(b) = c.

(iv) If there exists a function g ∈ Q(f, φ) such that g
φ

= f , then f must be de-

creasing, left-continuous and f(a) = d.

Also the converse property holds.

Theorem 16. Let f be non-constant.

1. For an increasing function f it holds that:

(i) If f is left-continuous and f(a) = c, then gφ = f for every g ∈ Q(f, φ).

(ii) If f is right-continuous and f(b) = d, then gφ = f for every g ∈ Q(f, φ).

2. For a decreasing function f it holds that:

(i) If f is right-continuous and f(b) = c, then gφ = f for every g ∈ Q(f, φ).

(ii) If f is left-continuous and f(a) = d, then g
φ

= f for every g ∈ Q(f, φ).

Although Theorems 11, 12 and Corollary 4 can be easily transformed to proper-
ties on the set Q(f, φ), it still remains unclear what the meaning is of g ◦f and f ◦ g
with g ∈ Q(f, φ). Also, fφ ◦ f and f ◦ fφ have no straightforward interpretation.



Orthosymmetrical monotone functions 111

4.2 Decreasing bijections

Let f be a monotone [a, b] → [c, d] function and φ a decreasing [q, r] → [s, t] bijection
fulfilling [a, b] ⊆ [q, r] and [c, d] ⊆ [s, t]. As in the previous section, Theorem 3
and Corollary 2 will be used to convert the properties of Q(f, id) into properties
of Q(f, φ). The set Q(f, φ) can be described as the set of all [φ−1(d), φ−1(c)] →
[φ(b), φ(a)] functions g fulfilling

(III)
(
∀x ∈ φ−1(f([a, b]))

)(
g(x) ∈ φ

([
inf(f−1(φ(x))), sup(f−1(φ(x)))

]))
;

(IIaIIaIIa) if f is increasing:
(
∀x ∈ φ−1 ([c, d] \ f([a, b]))

) (
g(x) = fφ(x) = f

φ
(x)

)
;

(IIbIIbIIb) if f is decreasing:
(
∀x ∈ φ−1 ([c, d] \ f([a, b]))

) (
g(x) = f

φ
(x) = fφ(x)

)
.

Working with decreasing bijections instead of increasing bijections reverses the

role of the functions f
φ
, fφ and fφ, f

φ
in the description of the set Q(f, φ).

Theorem 17. The following assertions hold:

(i) If f(a) < f(b), then a φ−1([c, d]) → φ([a, b]) function g belongs to Q(f, φ) if
and only if fφ ≤ g ≤ f

φ
.

(ii) If f(a) > f(b), then a φ−1([c, d]) → φ([a, b]) function g belongs to Q(f, φ) if

and only if f
φ ≤ g ≤ fφ.

(iii) If f(a) = f(b), then a φ−1([c, d]) → φ([a, b]) function g belongs to Q(f, φ) if

and only if f
φ ≤ g ≤ fφ or fφ ≤ g ≤ f

φ
.

Every function located between fφ and f
φ

is increasing and every function lo-

cated between f
φ

and fφ is decreasing. In the following theorem we try to pinpoint

the functions f
φ
, fφ and fφ, f

φ
by means of their continuity.

Theorem 18. If f 6∈ {ccc,ddd}, then the following assertions hold:

1. If f is increasing, then

(i) fφ is the only member of Q(f, φ) that is left-continuous and maps φ−1(d)
to φ(b);

(ii) f
φ

is the only member of Q(f, φ) that is right-continuous and maps φ−1(c)

to φ(a).

2. If f is decreasing, then

(i) f
φ

is the only member of Q(f, φ) that is right-continuous and maps φ−1(c)
to φ(b);

(ii) fφ is the only member of Q(f, φ) that is left-continuous and maps φ−1(d)
to φ(a).
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Thanks to the following two theorems we can derive under which conditions it
holds that

f
φ
φ

= f, fφφ = f, fφ
φ

= f or f
φ
φ

= f .

Theorem 19. The following assertions hold:

(i) If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be de-
creasing, right-continuous and f(b) = c.

(ii) If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be de-
creasing, left-continuous and f(a) = d.

(iii) If there exists a function g ∈ Q(f, φ) such that gφ = f , then f must be in-
creasing, left-continuous and f(a) = c.

(iv) If there exists a function g ∈ Q(f, φ) such that g
φ

= f , then f must be in-

creasing, right-continuous and f(b) = d.

Theorem 20. Let f be non-constant.

1. For a decreasing function f it holds that:

(i) If f is right-continuous and f(b) = c, then gφ = f for every g ∈ Q(f, φ).

(ii) If f is left-continuous and f(a) = d, then gφ = f for every g ∈ Q(f, φ).

2. For an increasing function f it holds that:

(i) If f is left-continuous and f(a) = c, then gφ = f for every g ∈ Q(f, φ).

(ii) If f is right-continuous and f(b) = d, then g
φ

= f for every g ∈ Q(f, φ).

5 Symmetrical monotone functions

5.1 Orthosymmetry

Generalizing the classical notion of symmetry, we call a set F ⊆ R2 φ-symmetrical if
it coincides with its φ-inverse, i.e. (φ−1(y), φ(x)) ∈ F ⇔ (x, y) ∈ F . Unfortunately,
when dealing with monotone [a, b] → [c, d] functions f only bijections can coincide
with their φ-inverse. Indeed, if f has discontinuity points, its φ-inverse fφ will not be
defined on a closed interval. Otherwise, if f is not injective, its φ-inverse will not be
a function on φ−1([c, d]). To overcome these problems we will generalize the classical
concept of symmetry by means of the set Q(f, φ), containing the inverse functions
associated with f . We call a monotone [a, b] → [c, d] function f φ-orthosymmetrical
if f ∈ Q(f, φ). The prefix ‘ortho’ refers to the rectangle-based construction of
Q(f, φ) (see Section 2.1). Since every element of Q(f, φ) is a φ−1([c, d]) → φ([a, b])
function, it must hold that φ−1([c, d]) = [a, b]. Hence, it suffices to consider monotone
[a, b] → [c, d] bijections φ only. From now on f denotes a monotone [a, b] → [c, d]
function and φ denotes an arbitrary monotone [a, b] → [c, d] bijection.
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Theorem 21. If f is φ-orthosymmetrical, then every member of Q(f, φ) is φ-ortho-
symmetrical.

Proof If f is φ-orthosymmetrical, then there exists a function g ∈ Q(f, φ) such that
f = g. Based on Theorem 2, we then know that h ∈ Q(h, φ), for every h ∈ Q(f, φ).

From Theorem 1 we know that Q(f, φ) = {fφ} whenever f is bijective. Hence,
φ-symmetry can be related to φ-orthosymmetry.

Theorem 22. A monotone [a, b] → [c, d] bijection is φ-symmetrical if and only if
it is φ-orthosymmetrical. Monotone [a, b] → [c, d] bijections are the only monotone
[a, b] → [c, d] functions that can be both φ-symmetrical and φ-orthosymmetrical.

As φ itself is φ-symmetrical this leads to the following:

Corollary 5. Every monotone [a, b] → [c, d] bijection φ is φ-orthosymmetrical.

The following theorem yields necessary and sufficient conditions for φ-ortho-
symmetry.

Theorem 23. A non-constant function is φ-orthosymmetrical if and only if

1. f
φ ≤ f ≤ fφ if f and φ have the same type of monotonicity;

2. fφ ≤ f ≤ f
φ

if f and φ have opposite types of monotonicity.

The only φ-orthosymmetrical constant functions are ccc and ddd.

Proof The first part is an immediate consequence of Theorems 13 and 17. Consider
now a constant function ααα and suppose that α ∈ ]c, d[. By definition, it holds that
αααφ(a) = αααφ(a) ∈ {c, d} and αααφ(a) = αααφ(a) ∈ {c, d}. However, we know from Theo-
rems 13 and 17 that αααφ(a) ≤ ααα(a) ≤ αααφ(a) or αααφ(a) ≤ ααα(a) ≤ αααφ(a), which leads
to a contradiction. We conclude that α ∈ {c, d}. Because ccc = cccφ ∈ Q(ccc, φ) and
ddd = dddφ ∈ Q(ddd, φ), the constant functions ccc and ddd are indeed φ-orthosymmetrical.

For a non-constant function f it is impossible that fφ ≤ f ≤ f
φ

if f and φ

have the same type of monotonicity. Similarly, f
φ ≤ f ≤ fφ cannot occur if f and

φ have opposite types of monotonicity. This is easily illustrated by evaluating the
functions in x = a. It enables us to simplify the previous theorem.

Corollary 6. f is φ-orthosymmetrical if and only if f
φ ≤ f ≤ fφ or fφ ≤ f ≤ f

φ
.

Based on Theorems 14 and 18 we can provide simple methods to verify whether
non-constant, left- or right-continuous, monotone [a, b] → [c, d] functions are φ-
orthosymmetrical or not. Depending on the continuity of f , the monotonicity of f
and φ, and given some additional boundary conditions, we have to verify whether

f = f
φ
, f = fφ, f = fφ or f = f

φ
holds. Moreover, given the bijection φ, these

equalities fix the monotonicity and continuity of f , and imply its φ-orthosymmetry.
The explicit formulation of these results has been omitted as they are straightfor-
wardly obtained by combining Corollary 1, Theorems 23, 13 and 15 and by combin-
ing Corollary 1, Theorems 23, 17 and 19.
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5.2 Properties

In general, a monotone function f can only be φ-symmetrical if it coincides with the
bijection φ or if it has the opposite type of monotonicity. Similar results hold when
considering φ-orthosymmetry.

Theorem 24. If f is non-constant and φ-orthosymmetrical, then one of the follow-
ing assertions holds:

1. f = φ;

2. f and φ have opposite types of monotonicity.

Proof It suffices to prove that f = φ whenever f and φ have the same type of
monotonicity. From Theorem 23 we know that

sup{t ∈ [c, d] | f(φ−1(t)) < φ(x)} ≤ f(x) ≤ inf{t ∈ [c, d] | f(φ−1(t)) > φ(x)} ,

for every x ∈ [a, b]. In particular this means that φ(x) ≤ f(φ−1(t)) whenever
t ∈ ]f(x), d] and that φ(x) ≥ f(φ−1(t)) whenever t ∈ [c, f(x)[. Suppose that there
exists x ∈ [a, b] such that f(x) < φ(x). If we choose arbitrary t ∈ ]f(x), φ(x)[, then
the increasingness of f ◦ φ−1 implies that f(φ−1(t)) ≤ f(x) < φ(x), which contra-
dicts φ(x) ≤ f(φ−1(t)). Similarly, suppose that there exists x ∈ [a, b] such that
φ(x) < f(x), then for every t ∈ ]φ(x), f(x)[, we get that φ(x) < f(x) ≤ f(φ−1(t)), a
contradiction. We conclude that f = φ.

Dealing with monotone [a, b] → [c, d] bijections ψ we know that it suffices to
investigate their φ-symmetry only (see Theorem 22). Explicitly, ψ is φ-symmetrical
if and only if ψ = ψφ = φ ◦ ψ−1 ◦ φ or equivalently φ = ψ ◦ φ−1 ◦ ψ, which expresses
the ψ-symmetry of φ. We say that φ and ψ form a symmetrical pair. The question
arises now how to construct a symmetrical pair (φ, ψ), given one of its components.
The following theorem tackles this problem.

Theorem 25. Consider a monotone [a, b] → [c, d] bijection φ. Then a monotone
[a, b] → [c, d] bijection ψ is φ-symmetrical if and only if ψ = φ or there exists a
number α ∈ ]a, b[ and a monotone [a, α] → φ([α, b]) bijection γ with the opposite
type of monotonicity as φ such that

ψ(x) =

{
γ(x) , if x ∈ [a, α] ,
φ(γ−1(φ(x))) , if x ∈ [α, b] .

(4)

Proof In case ψ = φ or Eq. (4) holds, we immediately obtain that ψ = φ ◦ ψ−1 ◦ φ.
The latter expresses the φ-symmetry of ψ. Conversely, if ψ 6= φ is φ-symmetrical,
then ψ = φ ◦ ψ−1 ◦ φ. Since ψ and φ have opposite types of monotonicity (see
Theorem 24), it holds that ψ(a) = φ(b) and ψ(b) = φ(a). Furthermore, there ex-
ists a unique α ∈ ]a, b[ such that ψ(α) = φ(α). Hence, ψ([a, α]) = φ([α, b]) and
ψ([α, b]) = φ([a, α]). It is then clear that γ := ψ|[a,α] is a [a, α] → φ([α, b]) bijection.
Note that γ has the same type of monotonicity as ψ and that γ−1 = ψ−1|φ([α,b]).
Taking into account that ψ = φ ◦ ψ−1 ◦ φ, Eq. (4) is easily verified.
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Consider the family (fn)n∈N0 of [0, 1] → [0, 1] bijections, defined by fn(x) =
n

√
1− (1− x)n. It is easily verified that all these bijections form symmetrical pairs

with N : [0, 1] → [0, 1] : x 7→ 1− x. Unfortunately, the function f∞, defined by

f∞(x) =

{
0 , if x = 0 ,

1 , if x ∈ ]0, 1] ,

is not N -symmetric. However, as verified on this example, the N -orthosymmetry
of the bijections fn is passed on to f∞.

Theorem 26. The limit of a pointwisely converging sequence of monotone φ-ortho-
symmetrical [a, b] → [c, d] functions (fn)n∈N is always a monotone φ-orthosymmetrical
[a, b] → [c, d] function.

Proof Let (fn)n∈N be a sequence of monotone φ-orthosymmetrical [a, b] → [c, d]
functions pointwisely converging to a function f . Clearly f is a monotone [a, b] →
[c, d] function. To demonstrate the φ-orthosymmetry of f we need to distinguish
three cases (see Theorems 23 and 24). Firstly, if there exists a number N ∈ N such
that all functions fn, with n ≥ N , equal ccc or such that all functions fn, with n ≥ N ,
equal ddd, then f = ccc or f = ddd, ensuring the φ-orthosymmetry of f . Secondly, if
there exists a number N ∈ N such that all functions fn, with n ≥ N , equal φ, then
f necessarily equals φ which is trivially φ-orthosymmetrical. Thirdly, there exits a
number N ∈ N such that all functions fn, with n ≥ N , differ from ccc and ddd and
such that the monotonicity of these functions fn is the opposite of that of φ. From
Theorem 23 we then know that

sup{t ∈ [c, d] | fn(φ−1(t)) > φ(x)} ≤ fn(x) ≤ inf{t ∈ [c, d] | fn(φ−1(t)) < φ(x)} ,

for every x ∈ [a, b] and every n ≥ N . The latter implies that for n ≥ N it holds that
fn(φ

−1(t)) ≤ φ(x) whenever t ∈ ]fn(x), d] and that fn(φ
−1(t)) ≥ φ(x) whenever t ∈

[c, fn(x)[. Suppose now that there exists a number t ∈ ]f(x), d] such that f(φ−1(t)) >
φ(x). As limn→∞ fn = f , there exists a natural number N1 > N such that for every
n ≥ N1 it holds that t ∈ ]fn(x), d]. Furthermore, there exists a natural number
N2 > N such that fn(φ

−1(t)) > φ(x), for every n ≥ N2. Combining both results we
obtain the contradiction that there exists for every n ≥ max(N1, N2) a number t ∈
]fn(x), d] such that fn(φ

−1(t)) > φ(x). Consequently, it holds that f(φ−1(t)) ≤ φ(x)
whenever t ∈ ]f(x), d]. In a similar way, it is shown that f(φ−1(t)) ≥ φ(x) whenever
t ∈ [c, f(x)[. Hence,

sup{t ∈ [c, d] | f(φ−1(t)) > φ(x)} ≤ f(x) ≤ inf{t ∈ [c, d] | f(φ−1(t)) < φ(x)} ,

for every x ∈ [a, b], or, in other words fφ ≤ f ≤ f
φ
. Applying Corollary 6 finishes

the proof.

From Theorem 23, it then follows that a sequence of monotone, φ-orthosym-
metrical [a, b] → [c, d] functions (fn)n∈N can never converge to ααα if α ∈ ]c, d[.
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