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SUMMARY

A model for the active deformation of cardiac tissue considering orthotropic constitutive laws is introduced
and studied. In particular, the passive mechanical properties of the myocardium are described by the
Holzapfel-Ogden relation, whereas the activation model is based on the concept of active strain. There, an
incompatible intermediate configuration is considered, which entails a multiplicative decomposition between
active and passive deformation gradients. The underlying Euler–Lagrange equations for minimizing the total
energy are written in terms of these deformation factors, where the active part is assumed to depend, at the
cell level, on the electrodynamics and on the specific orientation of the cardiomyocytes. The active strain
formulation is compared with the classical active stress model from both numerical and modeling
perspectives. The well-posedness of the linear system derived from a generic Newton iteration of the
original problem is analyzed, and different mechanical activation functions are considered. Taylor–Hood
and MINI finite elements are used in the discretization of the overall mechanical problem. The results of
several numerical experiments show that the proposed formulation is mathematically consistent and is able
to represent the main features of the phenomenon, while allowing savings in computational costs. Copyright
© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mathematical modeling of living soft tissue presents several challenges originating from anisotropic

material behavior, nonlinear equations, geometrical complexity, heterogeneity, difficult in vivo mea-

surements, and the presence of phenomena taking place at different scales, among many others

[1]. From the viewpoint of solid mechanics analysis, these materials can be regarded as anisotropic

and viscoelastic, and they can experience non-linear elastic large deformations both under normal

physiological conditions and injury [2].

In this framework, a subject of crucial interest is the modeling of the mechanical properties of

cardiac tissue. The ventricular wall can suffer changes in thickness of up to 40% during contraction

[3]; and thus, the governing equations of continuum mechanics need to be cast in the framework
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of nonlinear elasticity (no assumption of infinitesimal strain) and to use an anisotropic description

based on the direction of the fibers and collagen sheets compound that form the tissue [4, 5]. In

contrast to other hyperelastic materials such as rubber, a key intrinsic feature of living tissues is that

they not only passively balance external forces but they actively deform without the need of external

loads. Experimental studies [6, 7] have demonstrated that several ionic channels in the myocardium

are activated by cell stretch and volume changes. Conversely, the fibers of the heart muscle are able

to contract in response to active mechanisms mainly driven by the release of intracellular calcium

at the microscopic level [8].

This phenomenon is usually modeled either by incorporating the activation as an additive con-

tractile force in the stress tensor in the current or reference configuration [4, 9–11] (hereafter, this

strategy will be referred to as the active stress model), or more recently, by assuming that an inter-

mediate elastic configuration exists between the initial and current states, which translates in a

multiplicative decomposition of the deformation gradient into active and passive factors [12–14]

(we will refer to this as the active strain model). Both models need a precise description of an

activation function driving the kinematics of the mechanical contraction. The active strain formu-

lation has been previously applied to isotropic and transversely isotropic constitutive laws [12, 13],

but a deeper explanation of the method from both mathematical and modeling viewpoints is still

missing. Transversely isotropic and fully orthotropic models for active contraction can be found in

the literature [5, 15] but addressing active stress formulations mainly. Here, we will explore some

consequences of adopting an active strain framework, where a key advantage is that the proper-

ties of frame invariance and rank-one ellipticity are naturally inherited from those of the passive

constitutive law [16].

Numerical solutions for incompressible and nearly incompressible linear elasticity problems

are usually based on finite element methods. The fulfillment of the inf–sup condition [17] is

required at both continuous and discrete levels, ensuring the unique solvability and stability of

the problem. When it comes to nonlinear elasticity, a standard approach consists in applying

a linearization via the Newton method; and at each Newton iteration, the linearized problem

should verify the corresponding stability condition [18, 19]. In the context of activated elastic

materials, we found that these conditions are satisfied for physiological values assumed by the

activation function.

The main objectives of this paper deal with the establishment, implementation, and testing of an

orthotropic model for cardiac contraction on the basis of an active strain decomposition. Our model

addresses the coupling of an active transversely isotropic mechanical description at the cell level,

with an orthotropic constitutive law for incompressible tissue at the macroscopic level. The funda-

mental idea used in this approach consists in the definition of a new strain energy function that is

able to describe the active deformations dictated by the definition of an active deformation gradient.

Moreover, the main differences with the active stress model are addressed in detail showing how the

active strain naturally modifies passive constitutive laws. In addition, finite element discretizations

using Taylor–Hood and MINI elements are proposed and illustrated with several numerical exam-

ples that allow not only an assessment of the performance of the methods but also shed some light

on the applicability of the model in comparison with experimental observations.

We have arranged the contents of this paper as follows. In Section 2, we summarize some

notions for general elasticity problems, and we provide a precise weak formulation. We describe the

main building blocks for the cardiac finite elasticity, including both active stress and active strain

approaches. In particular, we introduce the active strain formulation in the framework of orthotropic

constitutive laws. Section 3 presents a theoretical comparison between active strain and active stress

analyzing the final form of the stress tensor for some possible material laws, and we also discuss

the fulfillment of strong ellipticity. In Section 4, we show that the linearization of the considered

system leads naturally to a saddle point problem, for which we provide a well-posedness analysis.

Section 5 describes the finite element methods used and the incremental load algorithm essential

to ensure convergence of the Newton scheme. In Section 6, we collect numerical experiments

in two and three dimensions, which confirm the discussion in Section 3, and allow us to com-

pare the two active strain and stress formulations. Some conclusions and extensions are discussed

in Section 7.
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2. MATHEMATICAL MODEL FOR CARDIAC MECHANICS

2.1. Hyperelastic behavior of passive myocardium

In the sequel, x will denote the current position of a material particle of a bounded body B that was

originally placed at X in the reference configuration B0 � R
d , d D 2, 3. The motion of the elastic

body is defined using the smooth one-to-one map ' W B0 ! B � R
d , '.X/ D X C u.X/, where

u denotes the displacement vector u D x � X. Strain measures can be obtained from the deforma-

tion gradient tensor F D I C ru: the right and left Cauchy–Green deformation tensors C D FT F,

B D FFT , respectively, where I is the second-order identity tensor and r stands for the gradient

with respect to material coordinates. By J D det F, we denote the volume map. The constitutive law

for an isotropic material can be written using the isotropic invariants

I1 WD trC, I2 WD 1

2
.I 2

1 � trC2/, I3 WD det C D J 2.

Following [20], for any fixed directions i and j, we define the direction-dependent invariants

I4,i D i � .Ci/, I5,i D i � .C2i/, I8,ij D i � .Cj/. (2.1)

In a macroscopic description of the cardiac tissue, we assume that the material is hyperelastic; and

hence, the measures of stress are obtained by differentiating a pseudo-strain energy W with respect

to strain.

The myocardium is a compressible medium, as observed by Kamgoué et al. [21], because it is

perfused with blood. During a contraction cycle, the small vessels supplying oxygen to the cells are

squeezed, and the blood is let out so that the total volume (including the blood chambers) is not

preserved. This phenomenon can be modeled by considering the tissue as a mixture of incompress-

ible solid and incompressible fluid [22]. However, in the present study, we focus on the hyperelastic

incompressible behavior of the heart muscle, neglecting viscoelastic and poroelastic effects. For the

incompressibility of the material to be incorporated, an isochoric strain energy can be defined as

Winc D W.u/� p.J � 1/,

where W.u/ describes the material properties and p D p.X/ is the Lagrange multiplier arising

from the imposition of the constraint J D 1. We will use a constitutive law proposed by Holzapfel

and Ogden [20] for myocardial tissue. It takes into account material orthotropy (see also [2, 5]) that

is due to the presence of preferred directions of alignment for cardiac cells and layers of collagen

in the tissue. The invariant-based nature of this law allows invariance with respect to the frame of

reference, and it generalizes other constitutive models. Neo-Hookean, exponential and polynomial

laws [1] can be retrieved by modifying the material parameters at the level of the stress tensor. The

energy function is given by

W.u/D a

2b
exp.bŒI1 �d�/C

X

iDf ,s

ai

2bi

�
exp.bi ŒI4,i � 1�2/� 1

�
C af s

2bf s

exp.bf sI
2
8,f s �1/, (2.2)

where the sub-indices f and s refer to the fibers and collagen sheets axes, f0 and s0, respectively

(Figure 1).

The quantities a, af , as , af s , b, bf , bs , bf s are experimentally fitted material parameters

(Table I), and the invariants in (2.1) can be expressed as

I4,f WD f � f, I4,s WD s � s, I8,f s WD f � s, (2.3)

where f WD Ff0 and s WD Fs0 are vectors representing the directions of fibers and sheets in the

deformed configuration. The Cauchy stress tensor T D J�1.@W=@F/FT assumes the form

T D a exp.bŒI1 � d�/B � pI C 2af .I4,f � 1/ exp.bf ŒI4,f � 1�2/f ˝ f

C 2as.I4,s � 1/ exp.bsŒI4,s � 1�2/s ˝ s C 2af sI8,f s exp.bf sI
2
8,f s/Œf ˝ s C s ˝ f�.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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n0

s0

f0

Figure 1. Sketch of portion of the cardiac tissue. Here, f0, s0 and n0 denote the fibers, sheets, and
sheet–normal directions, respectively.

Table I. Parameter values for the Holzapfel–Ogden material law [20, 23].

a af as af s b bf bs bf s

0.496 ŒKPa� 15.193 ŒKPa� 3.283 ŒKPa� 0.662 ŒKPa� 20.417 11.176 7.209 9.466

As a measure of stress in the reference configuration, we use the first Piola–Kirchhoff tensor

P D @W=@F D JTF�T , representing the force per unit of undeformed area acting on the deformed

body B. When B is under a given load ` per unit volume in the reference configuration, according

to the principle of stationary potential energy, the total energy satisfies
Z

B0

W.u,p/D
Z

B0

` � u.

Therefore, the Euler–Lagrange equations written in a mixed form read: Find u 2 V ,p 2 Q

such that
Z

B0

P.u,p/ W rv D
Z

B0

` � v 8v 2 V ,

Z

B0

.J � 1/q D 0 8q 2Q.

(2.4)

System (2.4) is completed with homogeneous Dirichlet boundary data on �D � @B0 for displace-

ments and stress free boundary conditions on �N D @B n �D . Here, V D ŒH 1
D.B0/�

d D fv 2
H 1.B0/

d W vj�D
D 0g and QD L2.B0/ are admissible spaces for displacement and pressure fields,

respectively. Notice that the incompressibility constraint has not yet been enforced in the momentum

equation.

The solvability of (2.4) is ensured under certain conditions on the total energy (such as

differentiability in the Gâteaux sense) as presented in detail in the early paper of Le Tallec

[24, Th. 3.1].

2.2. Active response based on a stress decomposition

A common approach to include the dynamics of the active forces within the tissue consists in adding

their contribution directly to the stress tensor. Let

PA D TAf ˝ f0

represent an active stress, microscopically due to biochemical reactions inside the sarcomeres, of

magnitude TA in the direction of the fibers in the reference configuration. Multi-axial active stresses

have been also proposed in [5, 15], to capture observed experimental results. Nonetheless, we will

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788

DOI: 10.1002/cnm



ACTIVE STRAIN MODEL FOR CARDIAC BIOMECHANICS 765

not define here active forces in the sheets and sheet–normal directions because there is still no clear

mechanism that is responsible for their production.

The fact that active forces are not conservative in general [25] implies that no potential can be

defined for them; and therefore, a strain energy cannot be formulated. And for this reason, in the fol-

lowing, we will not consider this case. Nevertheless, some consistently derived variants have been

proposed as active energy functions (see e.g. [10, 15, 26]) to model the active biomechanical defor-

mations and/or to study the overall solvability of the mechanical problem in relation with strong

ellipticity conditions.

In the active stress model, it is assumed that P D PA C PP . Such assumption is widely used for

simulations of the electromechanical activity of the heart [4, 9, 11]. Here,

PP D  1F � pJF�T C 4,f f ˝ f0 C 4,ss ˝ s0 C 8,f s.f ˝ s0 C s ˝ f0/, (2.5)

and

 1 D a

2
exp.bŒI1 � 3�/,  4,i D ai .I4,i � 1/ exp.bi ŒI4,i � 1�2/,  8,f s D af sI8,f s exp.bf sI

2
8,f s/I

that is, PP is the passive part of the stress given by @W=@F.

The active tension TA is usually modeled considering the crossbridge dynamics inside the sarcom-

eres. It will, in general, depend on the calcium concentration available for binding with troponin and

on the length of the sarcomeres [27,28]. In this study, we consider TA to be given, and we impose the

force in the fibers direction by using the same tensorial component as in the passive law (2.5). Sev-

eral other models have been proposed in the literature for the tensorial component (a crucial point in

the modeling of the electro-mechanical activity of cardiac tissue), but only a few of them address the

correct stability conditions to guarantee the existence of solutions, as discussed in [16]. Our choice

is intended to allow the preservation of ellipticity conditions of the passive strain energy function.

2.3. The active strain formulation

We assume that the deformation gradient F for the active strain model admits a Lee’s multiplicative

decomposition [29], that is,

F D FEFA, (2.6)

where FE is a passive elastic deformation, and FA is an active factor to be prescribed (see Figure 2,

left). The latter represents at a macroscopic level, the contraction of the sarcomeres depend-

ing on the calcium release, electrical excitation, and related phenomena taking place at cell and

sub-cell scales.

Similar factorizations of the deformation gradient have been proposed, for instance, in the sub-

ject of finite elastoplasticity and applications in growth modeling [29–32] or mechano-chemical

Figure 2. Decomposition of the deformation process under the active strain assumption (left), where B0,
BE and B denote a body in its reference, local incompatible intermediate, and current configuration;
and exemplification of the deformations at the cell level induced by the active components f , n, and

s (right).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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interactions [33] and more recently in cardiac electromechanics [12–14]. However, (2.6) is not to

be confused with the product of deviatoric and dilational responses F D Fvol
QF, where det QF D 1,

implying that the deformation induced by Fvol is (the only one) influencing the changes of volume

in the material [31]. Furthermore, F is given by the gradient of a vector map, whereas FE and FA are

not, in general, because there is no physiological motion corresponding to the shortening of fibers

without enforcing muscle contraction.

To construct the active part of the deformation, we start from considerations at the cell level.

Defining the variables f , s and n (see Figure 2, right) as the relative displacements in the direc-

tions f0, s0, n0, (fibers, sheets, and sheets-normal directions) of a single cell, respectively, we write

the local deformation as

FA D I C f f0 ˝ f0 C ss0 ˝ s0 C nn0 ˝ n0.

Its determinant and inverse read

det FA D .1C f /.1C s/.1C n/,

F�1
A

D I � f

1C f

f0 ˝ f0 � s

1C s

s0 ˝ s0 � n

1C n

n0 ˝ n0.
(2.7)

The factors i , i 2 ff , s,ng denote active strain functions that, in the context of the coupling of car-

diac elastostatics with electrophysiology, carry the relevant information of the electrical propagation

through the tissue and kinematics of its micro-structure.

In [12–14], the contribution of the terms depending on s and n is neglected for simplicity. Anal-

ogously, for most of the active stress models [9,34], the active tension is assumed to act exclusively

along the fibers direction. Here, we opt for the inclusion of the active contributions in the remain-

ing directions but under the assumption that n D s; that is, we consider transverse isotropy at the

microscopic level. Such consideration is motivated by the fact that, at the cell level, there is only one

clear preferred direction: the one along which the myocytes contract. The myocyte, however, has

still an anisotropic active mechanical response. We stress that this does not correspond to a modeling

simplification but to imposing some physiological conditions. In fact, the general orthotropic behav-

ior is due to the sum of the constituents of the cardiac muscle, cells and collagen, among others; the

latter not contributing to any substantial active component. These ideas, contained in (2.6), imply

a coupling of an orthotropic passive behavior described by (2.2) and a transversely isotropic active

contraction at the cell level. Moreover, because intact myocytes, basically made of water, are con-

strained by the presence of sarcolemma, their motion can be considered isochoric at physiological

pressure; that is, their volume can be considered constant [35,36]; and hence, we assume (following

also [32]) that

JA D 1, (2.8)

which, in addition, allows us to express s as a function of f . Clearly, this condition represents

incompressibility only in a formal way, provided that (2.6) is a virtual decomposition. From (2.7)

and (2.8), we deduce that s D 1=
p
1C f � 1; and therefore, the constraint f > �1 is naturally

understood. Moreover, if f is negative, then s is positive and vice versa. In addition, if f ! 1,

then s ! �1, which agrees with the physiological bound s > �1. This behavior is shown in

Figure 3 (left). Moreover, because a cardiomyocyte shortens up to a 70% of its rest length [37, 38],

we consider the bound �0.3 < f � 0. Condition (2.8) is not regarded as a constraint associated to

the system to be solved, but it is rather a constitutive relation given along with (2.6).

Given that f represents the coupling between electrophysiology and cardiac elasticity, its evo-

lution can be described via, for example, simple activation models based on ordinary differential

equations [14, 28]; however, for the subsequent elastostatic analysis, as for TA in the active stress

case, we consider it as a space-dependent parameter.

Decomposition (2.6) implies that an intermediate (only virtual) configuration exists between

the actual and reference states. In this intermediate state, we define the stored energy function as

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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Figure 3. Active strain: behavior of the active strain function s as a function of f (left); contribute of
the active strain in the direction of the fibers described by the function g.f /: the solid line represents the

physiologically relevant region (right).

bW D W.FE/, which is then transformed in the reference configuration into the new strain energy

function Wstrain, able to describe active deformations, through the relation

Wstrain D JA bW D W.FF�1
A
/.

Even if we assume JA D 1, the energies Wstrain.FF�1
A
/ and W.F/ actually differ.

3. ACTIVE STRESS VERSUS ACTIVE STRAIN FOR DIFFERENT MATERIALS

For the sake of clarity, in what follows, we omit the terms involving the incompressibility constraint,

because they are not relevant to the discussion and can be added at a later stage without loss of gen-

erality. Moreover, we keep the same notation for stress tensors under active stress or strain. We

underline that the active strain and active stress models actually coincide in the case of infinitesimal

deformations [13].

3.1. Linear dependence on the deformation gradient

Let us first consider the case of a passively isotropic neo-Hookean material, with energy function

W D �

2
.I1 � 3/, (3.1)

and passive first Piola–Kirchhoff stress tensor given by

PP D �F, (3.2)

so that in the active stress formulation we have

P D �F C TAf ˝ f0. (3.3)

The energy in the elastic configuration, under active strain, is bW D �=2.IE1 � 3/, where IE1 repre-

sents the first invariant computed in the intermediate configuration, that is, IE1 D tr.FET FE/. Then,

when applying the active strain decomposition, we pull back the energy from the intermediate to the

reference configuration to obtain

Wstrain D �

2

�
.1C f /I1 �

�
f C f

f C 2

.1C f /2

�
I4,f � 3

�
, (3.4)

where IE1 has been transformed thanks to the formula

IE1 D I1 � f

f C 2

.1C f /2
I4,f � s

s C 2

.1C s/2
I4,s � n

n C 2

.1C n/2
I4,n,

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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and the fact that I1 D I4,f C I4,s C I4,n and n D s . Not surprisingly, the energy function

has changed, because during active contraction, the material properties of the muscle actually

change. Defining

�f � f

f C 2

.1C f /2
DW g.f /,

from (3.4), we can write the stress in the active strain formulation by differentiating the new energy

function with respect to the deformation gradient, to obtain

P D �.1C f /F C�g.f /f ˝ f0. (3.5)

From this perspective, we compare (3.3) and (3.5). First, the active strain approach is consistent with

passive models in the sense that imposing f D 0, we recover (3.2). Including the active terms, we

see that �g.f / plays a similar role as TA, and its magnitude in the fiber direction is not increasing

linearly with f as depicted in Figure 3 (right). The major difference in both strategies is found in

the factor .1C f / in front of F, which cannot be retrieved in the active stress formulation, and that

can be interpreted as a local change of the material properties in the presence of active contraction.

More precisely, this softening of the material obeys to the fact that the first term describes the defor-

mation in all directions, whereas the second term accounts for the deformation in the direction of

f0. From this term, we observe, once again, the bound f > �1.

3.2. Materials described by exponential laws

Next, we consider the case of an exponential constitutive relation of the form

W D a

2b
exp.bŒI1 � 3�/, (3.6)

which introduces the nonlinearity of the material but still describes isotropic behavior. The Piola

stress in the active stress approach reads

P D a exp.bŒI1 � 3�/F C TAf ˝ f0,

whereas, for the active strain model, using the same argument as before, we obtain

Wstrain D a

2b
exp.bŒIE1 � 3�/I (3.7)

and therefore,

P D a exp.bŒIE1 � 3�/
�
1C f

	
F C a exp.bŒIE1 � 3�/g.f /f ˝ f0. (3.8)

The first term in (3.8) represents the behavior of the material in all directions, whereas the second

term, responsible for the active contraction in the fibers direction, is not linear anymore with respect

to F. In this example, the active behavior and the passive behavior are not split, and their particu-

lar action cannot be easily identified. Moreover, there is a mixed dependence on the isotropic and

fiber-dependent active deformations given by IE1 , which is a linear combination of I1 and I4,f .

3.3. Orthotropic Holzapfel–Ogden materials

Under the active stress formulation, using the orthotropic law (2.2), we obtain

P D 2 1F C
�
2 4,f C TA

	
f ˝ f0 C 2 4,ss ˝ s0 C 8,f s.f ˝ s0 C s ˝ f0/.

To obtain the new energy for the active strain model, we use the relations

IE4,f D .1C f /
�2I4,f , IE4,s D .1C f /I4,s , IE8,f s D .1C f /

�1=2I8,f s ,

to have

P D 2.1C f / 
E

1 F C 2
h
.1C f /

�2 E

4,f C g.f / 
E

1

i
f ˝ f0

C 2.1C f / 
E

4,ss ˝ s0 C .1C f /
�1=2 E

8,f s.f ˝ s0 C s ˝ f0/, (3.9)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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where

 E

1 D a

2
exp.bŒIE1 �3�/,  E

4,i D ai .I
E

4,i �1/ exp.bi ŒI
E

4,i �1�2/,  E

8,f s D af sI
E

8,f s exp.bf sŒI
E

8,f s�
2/.

The straightforward transformation of the anisotropic invariants (2.3) suggests that under active

strain, the stress tensor will resemble the one obtained with active stress in the fibers and sheets

directions. Nonetheless, we expect a different behavior, because the active strain is modifying the

contribution of each anisotropic term. In particular, because f is assumed negative, we expect an

increase in the material stiffness in the fibers direction, a softening in the sheets direction, and an

increased shear stress (stress in the components involving the two directions). This will be observed

numerically in Sections 6.1, 6.6, and 6.7.

3.4. Strong ellipticity in the active strain and stress formulations

In mechanical analysis, strict convexity of the energy function may be too restrictive, not allowing

the system to reproduce some physical solutions, and it is usual to require other weaker conditions,

such as strong ellipticity (see e.g. [10, 39]):

@Pij

@Fpq

uiupwjwq > 0, 8 kuk , kwk D 1 such that F�T W u ˝ w D 0. (3.10)

We start from the exponential constitutive law (3.6), which is known to satisfy the strong

ellipticity condition.

Lemma 3.5

The exponential energy function for active response (3.7) is strongly elliptic for f 2 .�1, 1/.

Proof

Note, first of all, that for f ! �1 the energy goes to infinity, as we are requiring one dimension to

go to zero. So suppose f ¤ �1. The condition JA > 0 requires also that f > �1. In the active

strain model, condition (3.10) directly leads to

.1C f /
h
1C b.1C f / .u � Fw/2 C b g.f / .u � Fw/ .u � Ff0/ .w � f0/

i

C g.f /
h
b.1C f / .u � Fw/ .u � Ff0/ .w � f0/C b g.f / .u � Ff0/

2 .w � f0/
2 C .w � f0/

2
i
> 0.

Grouping the arguments in the square brackets, we arrive at

b
�
.1C f / .u � Fw/C g.f / .u � Ff0/ .w � f0/

�2 C .1C f /C g.f /.w � f0/
2 > 0. (3.11)

Inequality (3.11) is always valid for contraction (i.e., �1 � f � 0), because all terms are positive.

In case of dilation, instead, we have that f > 0 and then g.f / takes negative values. Recalling

the Schwarz inequality �.w � f0/
2 � � kwk kf0k D �1, it is not difficult to see that if f > 0, then

.1C f /C g.f /.w � f0/
2 � .1C f /C g.f /D 1

.1C f /2
> 0,

yielding strong ellipticity for all f > �1. �

Lemma 3.6

Under the active stress assumption, the strong ellipticity is always satisfied for muscle contraction

(TA � 0). In case of dilation (TA < 0), strong ellipticity holds for

� TA < a exp.bŒI1 � 3�/Œb .u � Fw/2 C 1�. (3.12)

Proof

Concerning the active stress model, condition (3.10) leads to

a exp.bŒI1 � 3�/
h
b .u � Fw/2 C 1

i
C TA.w � f0/

2 > 0,
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which holds for all non-negative values of TA. The bound for TA < 0 follows directly from

Schwarz inequality. �

In our specific problem, we do not focus on active elongation, because dilation is mainly due to

the passive response of the material subject to the blood pressure entering the ventricles. Nonethe-

less, we observe that the active strain formulation is able to preserve the strong ellipticity condition

of the passive constitutive law (see also [16] for a more general proof), whereas the active stress

model presents some constraints. With the example presented earlier, we show that the active stress

model introduces effects that can modify the original properties of the passive material constitutive

law; and therefore, the tensorial form of the active stress tensor must be chosen carefully to allow

a considerable range of deformations. As in [5], an orthotropic active stress may be considered by

imposing dilation in the sheets and sheets-normal directions.

Similar results hold for neo-Hookean materials, imposing b D 0 in (3.11), (3.12), and identifying

a with �. Let us now consider the orthotropic law (2.2), which does not fulfill the strong ellipticity

condition [20]. First, we readily see that the active strain and active stress formulations modify the

inequality to be verified.

In the active strain model, the same considerations as before are valid for the isotropic term, and

we only need to examine the anisotropic part of the energy function. After differentiating, we find

that the following conditions should hold
�

1

.1C f /2
C 2bf .I

E

4,f � 1/2
�
.u � Ff0/

2 C
�

I4,f

.1C f /2
� 1

�
> 0,

Œ.1C f /C 2bs.I
E

4,s � 1/2�.u � Fs0/
2 C ŒI4,s.1C f /� 1� > 0.

(3.13)

If we consider, for a moment, only passive behavior (i.e. f D 0), the first inequality in (3.13) is not

satisfied in general, in the case of compression (I4,f < 1). However, it turns out that the active strain

formulation reverses this condition: because f is negative during active contraction, the quantity

I4,f =.1 C f /
2 � 1 will be positive (if no passive compression is imposed). On the other hand,

the term I4,s.1C f / � 1 will assume negative values. In this sense, the active strain formulation

‘regularizes’ the passive law in the direction f0 and ‘penalizes’ it in the direction s0. Regarding the

last term of the energy function (2.2), we find that

Œ1C 2bf s.I
E

8,f s/
2� Œ.u � Ff0/ .w � s0/C .u � Fs0/ .w � f0/�

2 C I8,f s.w � f0/.w � s0/ > 0.

The active stress model acts only in the fiber direction; and hence, the same conditions of the passive

law hold for the terms depending on I1, I4,s and I8,f s . Concerning the fiber terms, we obtain

2af exp.bf ŒI4,f � 1�2/
˚�
1C 2bf .I4,f � 1/2

�
.u � Ff0/C .I4,f � 1/

�
C TA > 0. (3.14)

The active tension TA is positive under active contraction, which entails a ‘regularization’ of the

energy in the fiber direction. This helps the fulfillment of (3.14).

In summary, by acting differently on (3.10), both models are able to regularize the fibers-related

part of the energy function. Nevertheless, in the full orthotropic case, strong ellipticity is not

guaranteed in general.

4. CONSISTENT LINEARIZATION AND WELL-POSEDNESS ANALYSIS

We introduce the following linearized problem from (2.4) (by assuming homogeneous Dirichlet

data in, at least, a small region of the boundary), considered around a generic state . Ou, Op/: Find

u 2 V , p 2Q such that

Z

B0

�
@P. Ou, Op/
@F

W ru

�
W rv C

Z

B0

p
@P. Ou, Op/
@p

W rv DRu. Ou, Op, v/

Z

B0

q OJ OF�T W ru DRp. Ou, q/,

(4.1)
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for all v 2 V , q 2Q, where Ru and Rp are

Ru. Ou, Op, w/D
Z

B0

` � v �
Z

B0

OP W rv, Rp. Ou, q/D
Z

B0

q. OJ � 1/.

Let us consider the active strain model first. Using (3.9) in the first equation of (4.1) and expanding

the derivatives, we arrive at

Aiso CAiso,f CAf CAs CAf ,s CAp DRu. Ou, Op, w/,

where

Aiso D
Z

B0

4b O E

1 .1C f /
h
.1C f / OF W ru C g.f /Of � ruf0

i
OF W rw C 2.1C f / O E

1 ru W rw

Aiso,f D
Z

B0

4b E

1 g.f /
h
.1C f / OF W ru C g.f /Of � ruf0

i
Of � rwf0 C 2g.f / O E

1 ruf0 � rwf0

Af D
Z

B0

4bf

�
OIE
4,f

� 1
�

O E

4,f
C 2af exp.bf Œ OIE

4,f
� 1�2/

.1C f /4

�
Of � ruf0

� �
Of � rwf0

�

C
2 O E

4,f

.1C f /2
ruf0 � rwf0

As D
Z

B0

4bs. OIE4,s � 1/ E

4,s C 2as exp.bsŒ OIE4,s � 1�2/
.1C f /�2

.Os � rus0/ .Os � rws0/

C
2 O E

4,s

.1C f /�1
rus0 � rws0

Ap D �
Z

B0

Op OJ . OF�T W ru/. OF�T W rw/C
Z

B0

Op OJ OF�T ruT W rw OF�1 �
Z

B0

p OJ OF�T W rw

Af ,s D
Z

B0

2bf s
OIE
8,f s

O E

8,f s
C af s exp.bf s

OI 2,E
8,f s

/

1C f

�
Of � rus0 C Os � ruf0

� �
Of � rws0 C Os � rwf0

�

C
Z

B0

O E

8,f sp
1C f

.ruf0 � rws0 C rus � rwf0/ .

We define two bilinear forms a.�, �/ and b.�, �/ by

a.u, w/ WD Aiso CAiso,f CAf CAs CAf ,s , b.w, q/ WD Ap ,

and we readily notice that a.�, �/ is symmetric. Equations (4.1) can be recast in the mixed form:

Given . Ou, Op/, find u 2 V , p 2Q such that

a.u, v/C b.v,p/DRu. Ou, Op, w/ 8v 2 V ,

b.u, q/DRp. Ou, q/ 8q 2Q.
(4.2)
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Because (4.2) holds for any state, in particular, it does for . Ou, Op/ D .0, 0/, and assuming

` D 0 yields

2ab

Z

B0

.1C f / exp

�
b2

f

2f � 3
.1C f /2

� �
.1C f /divu C g.f /f0 � ruf0

�
divw

C a

Z

B0

.1C f / exp

�
b2

f

2f � 3
.1C f /2

�
ru W rw

C a

Z

B0

g.f / exp

�
b2

f

2f � 3
.1C f /2

�
ruf0 � rwf0

C 2ab

Z

B0

exp

�
b2

f

2f � 3
.1C f /2

�
g.f /

�
.1C f /divu C g.f /f0 � ruf0

�
f0 � rwf0

C
Z

B0

�
4af bf Œf C g.f /�

2 C 2af

	
.1C f /

�4

� exp.bf Œf C g.f /�
2/ .f0 � ruf0/ .f0 � rwf0/

C
Z

B0

2af

�
f C g.f /

�
exp.bf Œf C g.f /�

2/

.1C f /2
ruf0 � rwf0 �

Z

B0

p divw

C
Z

B0

.4asbs
2
f

C 2as/

.1C f /�2
exp.bs

2
f / .s0 � rus0/ .s0 � rws0/C

2asf exp.bs
2
f
/

.1C f /�1
rus0 � rws0

C
Z

B0

af s

1C f

.f0 � rus0 C s0 � ruf0/ .f0 � rws0 C s0 � rwf0/DRu.0, 0, w/,

for all w 2 V , and
Z

B0

q div u D 0, for all q 2Q.

Hence, we have the problem: Given . Ou, Op/D .0, 0/, find u 2 V , p 2Q such that

a.u, v/C b.v,p/DRu.0, 0, w/ 8v 2 V ,

b.u, q/D 0 8q 2Q.
(4.3)

Proposition 4.1

Problem (4.3) is well-posed and admits a unique solution for every f in the physiological range.

Proof

This system assumes the form of a typical saddle-point problem where the bilinear form a.�, �/ is

symmetric. From classical results (see e.g. [17]), it is known that the conditions for well-posedness

of (4.3) are continuity of a.�, �/ in V , coercivity of a.�, �/ in Vdiv D fw 2 V W divw D 0g, and the

fulfillment of the inf–sup condition for the bilinear form b.�, �/ and the spaces V ,Q:

inf
q2Q

sup
v2V

b.v, q/

jjvjjqjj � C ,

for some constant C > 0. Because in our case b.�, �/ is the usual bilinear form associated to the

divergence operator, this condition is known to be satisfied. To prove continuity of a.�, �/, recall that

for v 2 V , jjdiv vjjL2.ˇ0/ � jjrvjjL2.B0/. Because f0 is a unit vector, it holds jjf0 � rvf0jjL2.B0/ �
K1jjrvjjL2.ˇ0/ and jjrvf0jjL2.ˇ0/ �K2jjrvjjL2.ˇ0/, for some constantsK1 andK2. Similar results

hold for the terms involving the direction s0. In the end, the functions depending on f appearing

in the integrals are always positive and finite for physiological regimes (�0.3 � f � 0). These

arguments lead to

ja.u, w/j �M.f /kuk
H

1.B0/
kwk

H
1.B0/

8u, w 2 H 1.B0/,

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788

DOI: 10.1002/cnm



ACTIVE STRAIN MODEL FOR CARDIAC BIOMECHANICS 773

where we indicated the dependence of the continuity constant M on f . In order to prove the

coercivity bound, it suffices to note that all terms in the bilinear form are positive. �

Repeating the same argument for the active stress formulation implies that for . Ou, Op/ D .0, 0/,

equations (4.1) become

Na.u, v/C Nb.v,p/D NF .v/ 8v 2 V ,

Nb.u, q/D 0 8q 2Q,

where

Na.u, w/ WD 2ab

Z

B0

divu div w C a

Z

B0

ru W rw C 4as

Z

B0

.s0 ˝ s0 W ru/ .s0 ˝ s0 W rw/

C .4af C TA/

Z

B0

.f0 ˝ f0 W ru/ .f0 ˝ f0 W rw/

C 2af s

Z

B0

Œ.s0 ˝ f0 C f0 ˝ s0/ W ru� Œ.s0 ˝ f0 C f0 ˝ s0/ W rw�

Nb.w, q/ WD �
Z

B0

q div w, NF .w/ WD �a
Z

B0

div w � TA
Z

B0

.f0 ˝ f0 W rw/ ,

for all w 2 V , q 2Q. Analogously to the active strain case, we obtain

j Na.u, w/j �
�
2abC aC TA C 4af C 4as C 4af s

	
jjujj

H
1.B0/

jjwjj
H

1.B0/
,

for all u, w 2 V ; and finally, the positivity of all terms yields the coercivity of Na.�, �/ in H 1

div.B0/.

5. DISCRETIZATION BY FINITE ELEMENTS

Introducing the finite dimensional spaces V h � V , dimV h D Nh, and Qh � Q, dimQh D Mh,

for the approximation of displacement and pressure, respectively, we write the Galerkin problem

associated to (4.2) as follows: Find uh 2 V h, ph 2Qh such that

a.uh, vh/C b.vh,ph/D F.vh/ 8vh 2 V h,

b.uh, qh/DG.qh/ 8qh 2Qh.

We use for displacements piecewise d�linear elements enriched with cubic bubble functions, or

alternatively, piecewise d�quadratic elements for displacements, and piecewise d�linear elements

for pressure (giving rise to MINI and Taylor–Hood elements, that is, P
b
1 � P1 and P2 � P1, respec-

tively). These finite element pairs are known to satisfy the discrete inf–sup condition and perform

fairly robustly for linear elasticity problems, as well as for large deformation analysis [19].

5.1. Newton method

We state the following Newton scheme for (4.2)

ak.ukC1, v/C bk.v,pkC1/D Fk.v/ 8v 2 V ,

bk.ukC1, q/DGk.q/ 8q 2Q,

where the notation ak.�, �/, bk.�, �/, Fk.�/, and Gk.�/ emphasizes a direct dependence on the solution

at Newton step k. Using the abridged notation Pk D P.uk ,pk/, we have

ak.ukC1, v/D
Z

B0

�
@Pk

@F
W rukC1

�
W rv , bk.ukC1, q/D

Z

B0

qJkF�T
k W rukC1.
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Let f�lgNh

lD1
and f�ngMh

nD1 denote the basis for the spaces V h and Qh, respectively. Then, at every

Newton iteration, our problem reads

um
kC1ak.�

m,�l/C pn
kC1.�

l , �n/D Fk.�
l/ l D 1, : : : ,Nh,

um
kC1bk.�

m, �n/DGk.�
n/ nD 1, : : : ,Mh,

where the convention of the sum for the repeated indexes applies. In matrix form, we obtain
�

Ak B
T
k

Bk 0

� �
UkC1

PkC1

�
D

�
Fk

Gk

�
, (5.1)

where the matrices Ak and Bk are defined as Alm
k

D ak.�
m,�l/ and Bmn

k
D bk.�

m, �n/. The

vector Fk includes the contribution due to the boundary conditions, whereas for Gk , we have

Gn
k

D
R
B0
�n.1� Jk/, with Jk D det F.uk/. Defining the total relative residual as

"k D jjuk � uk�1jjH 1

jjukjjH 1

C jjpk � pk�1jjL2

jjpkjjL2

, (5.2)

we use the stopping criteria "k < �, with a given tolerance �; and at each Newton iteration, we solve

(5.1) with the UMFPACK method [40] for the two-dimentional examples and the MUMPS routines

[41] for examples in three dimensions.

5.2. The homotopy argument

Even though the linear problems from Section 4 admit unique solutions, the associated Newton

schemes may not converge for any allowed value of f or TA. As a matter of fact, for large defor-

mation problems, such initial guess is far from the actual solution. A remedy consists in moving

smoothly from .0, 0/ to the desired state. A Newton method combined with an incremental step

method, or homotopy argument (see e.g. [42]) will be used. We show the development for the active

strain case, but analogous arguments apply to the active stress approach.

First, we make explicit in (4.1) the dependence on the quantity to increment (in this case, the

active strain f ). The initial value of f should be small enough to guarantee the convergence of

the Newton method; that is, the deformed configuration should be close enough to .uh
0 ,ph

0 /. Then,

the new solution .uh
kC1

,ph
kC1

/ represents the updated initial state that can be used for the next

Newton procedure

Oaf C�f

k
.uh

kC1, vh/C bk.v
h,ph

kC1/D OF f C�f

k
.vh/ 8vh 2 V h,

bk.u
h
kC1, qh/DGk.q

h/ 8qh 2Qh,

where�f represents an increment of the active force and Oaf C�f

k
.�, �/, OF f C�f

k
.�/ stand for the

bilinear and linear forms computed with incremented activation f C�f . For the convergence of

this procedure to be ensured, this �f should be taken such that the configuration at .uh
kC1

,ph
kC1

/

represents a small deformation with respect to that at .uh
k

,ph
k
/. Note that the initial value of the

activation may depend on different factors (geometry, constitutive law, etc). For instance, a linear

material could not require this kind of procedure, whereas a Holzapfel–Ogden material may need a

large number of iterations.

In practice, some cases will require to start with small forces and perform a check on the rela-

tive residual at the first Newton iteration. More specifically, given f (or TA), its increment�f (or

�TA), and the Newton and homotopy tolerances �, � , we follow Algorithm 1 in the succeeding texts.

As it will be clear from the numerical tests presented in Section 6, this algorithm performs quite well

in the active strain formulation, whereas it may require several hundreds incremental iterations for

the active stress model. To avoid this, we modify slightly the algorithm requiring �min < "1 < �max.

If "1 > �max, we half the increment; and if "1 < �min, we double it. Special care must be taken when

choosing the interval Œ�min, �max�; otherwise, the residual may jump above and below the chosen

tolerances without entering the second iteration.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788

DOI: 10.1002/cnm



ACTIVE STRAIN MODEL FOR CARDIAC BIOMECHANICS 775

6. NUMERICAL EXAMPLES

We report in this section the results of numerical tests relative to some of the cases discussed in

Section 3. We first start with a brief qualitative comparison between active strain and active stress

formulations. Then, we proceed with some two-dimentional examples (Sections 6.2–6.4), which

are not intended to assess the axial isotropy or plane stress/strain characteristic of the underlying

phenomenon, but we rather include them to show the main features of the proposed formulation in

these simple settings and to illustrate the performance of the numerical method under different dis-

cretization choices for both models studied. These simulations are implemented with a code using

FreeFem++ [43], and numerical simulations for some three-dimentional examples in simple and

anatomical settings have been carried out with a custom code in COMSOL Multiphysics (COMSOL

Multiphysics 4.2 (2011), COMSOL INC. 1 New England Executive Park, Suite 350, Burlington,

MA 01803, USA) [44]. All computations were ran on workstations with 64-bit processors Intel

Core i7 using Nehalem microarchitectures and 4 GB of RAM.

In what follows, the action of body forces has not been considered. Moreover, Newton iterations

were stopped when the total relative residual (5.2) reached the tolerance � D 10�10. For the incre-

mental procedure, we set �min D 5 � 10�3 and �max D 10�1 and imposed the increments �f and

�TA to be 10% of the initial active component Of or OTA, respectively.

6.1. Qualitative comparison between active strain and stress approaches

We start with three cases where the activation is given by expf�4.´ � 1=2/2g in the cylindrical

domain f.x,y, ´/ 2 R
3 W x2 C y2 � 0.25, 0 � ´ � 1g with fibers uniformly aligned in the

´-direction, that is, f0 D .0, 0, 1/. This domain represents a macroscopic piece of tissue made of

myocytes and collagen sheets fully activated along the plane ´ D 1=2. Here, we set the magnitude

of the active strain to �0.3, whereas we tune the maximum value of TA to get the same maximum

vertical displacement in both formulations. In the first two cases, we consider an isotropic behavior,

neo-Hookean law (3.1) for Test A, and exponential (3.6) for Test B, whereas in Test C, we use the

orthotropic law (2.2).

In Figure 4, we present the results for Test A, where the top panels show the active contribu-

tion. Clearly, the behavior of the large deformations for the two formulations is similar, whereas the

pressure profiles (in the bottom panels) show different intensities. We have found that increasing

the complexity of the constitutive relation also increases the differences between the displacements

obtained with the two approaches. In fact, for Test B (Figure 5), such differences become more

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788

DOI: 10.1002/cnm



776 S. ROSSI ET AL.

Figure 4. Test A: Intensity of the active contribution on the current configuration (top) and pressure profiles
on the reference domain (bottom) obtained under active stress (left) and active strain formulations (right).

Neo-Hookean constitutive law with �D 0.385 ŒkPa�.

Figure 5. Test B: Displacement magnitude relative to the reference height of the cylinder on the current
configuration under the exponential isotropic law with aD 0.496 ŒkPa� and b D 7.209, for the active stress

(left) and active strain (right) approaches. The activation is a Gaussian distribution on the ´-axis.

apparent than those appreciated in Test A. The active contribution is a Gaussian function depending

only on the ´-coordinate with apex in the center of the cylinder. The active strain model exhibits a

similar shape on the side boundaries, whereas this cannot be appreciated in the active stress model.

Results for Test C are shown in Figure 6, where we have imposed the sheet direction parallel to the

y-axis. In this test, we find notable differences in displacements for the two approaches, even under

the same conditions as in tests A and B. In particular, the active stress formulation is stiffer in the

sheet direction, which induces a shift of most of the deformations to the sheet–normal direction n0.

The anisotropy here is evident. With the active strain model, instead, we find a decreased anisotropic

behavior, although present, due to the constraint JA D 1. Although this condition seems to over-

constrain the system, it is a natural imposition of the active isochoric motion the cells undergo. A
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Figure 6. Test C: Displacements field for the orthotropic mechanical law where the color bar show the rela-
tive displacement with respect to the reference height of the cylinder under active stress (left) and active strain
(right). The active strain formulation shows a decreased anisotropic behavior although present (maximum

displacement in the sheet direction is roughly 80% than the one in the sheet–normal direction).

comparison with experimental data on the behavior of the cardiac tissue during active contraction

will be important to asses the correctness of this assumption in the model. This would require to

introduce in the active strain the dependence on the sarcomere length, which has been neglected in

the present study. However, because the obtained results are in accordance with the discussion in

Section 3.3 (we note a softening in the sheet direction under active strain, which is not present in the

active stress formulation), we leave this issue for a future study.

6.2. Example 1: Axial contraction of a neo-Hookean square

In this example, the body is a square domain B0 D Œ0, 1� � Œ0, 1� with fibers aligned to the y-

axis, that is, f0 D .0, 1/T . On the bottom side, we impose homogeneous Dirichlet data and stress

free conditions elsewhere. The elastic modulus is � D 0.385 ŒkPa� [30]. We set a smooth active

response (see Figure 7, left) given by TA D OTa expŒ�4.y�1=2/2�, and f D Of expŒ�4.y�1=2/2�,
where OTa and Of are constants representing the maximum value of the activation. We consider

Of 2 f�0.05, �0.1, �0.15, �0.2, �0.25, �0.3g and OTA 2 f0.13, 0.26, 0.39, 0.52, 0.65, 0.78g ŒkPa�,
for different settings. Considering the neo-Hookean constitutive law, the deformations with active

stress and active strain agree very closely, as seen in Figure 7 (top left). Table II shows the num-

ber of Newton iterations needed for convergence. These are roughly constant with respect to the

level of refinement of the mesh. Taylor–Hood elements are evidently much more memory demand-

ing (out of memory for 716,800 degrees of freedom). The values in the table were obtained with

Of D �0.3 and OTA D 0.78 ŒkPa�. As expected, the rate of convergence of the incompressibil-

ity error in the L2-norm is problem dependent. In particular, it depends on the functional form

and maximum values of f and TA. In Figure 7, we illustrate this feature by considering various

values of the active response for active stress and strain formulations. In the active strain case,

we find that kJ � 1kL2.ˇ0/ � Chp1f Cp2 , where .p1,p2/ D .0.6, 0.66/ for MINI elements, and

.p1,p2/D .1, 0.59/ for Taylor–Hood elements. Such relation is no longer linear for the active stress

case. However, comparing the convergence rate with respect to the maximum vertical displacement,

we found that the two formulations do not differ substantially, as expected.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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Figure 7. Example 1: Distribution of the activation and fibers on the reference domain, and comparison of
the contours of the deformed domain for an active stress (gray) and strain (black) approaches (top left), and
rates of convergence of the relative incompressibility error with respect to the active tension (top right), active
response magnitude (bottom left), and maximum vertical displacement (bottom right), for Taylor–Hood

(P2 � P1) and MINI (P b
1

� P1) elements.

Table II. Example 1: Newton iterations with respect to the number of elements in
the mesh, for the active stress and strain formulations using Taylor–Hood (P2 �P1)

and MINI (P b
1

� P1) elements.

P
b
1 � P1 P2 � P1

Number of elements Active strain Active stress Active strain Active stress

100 7 7 7 7
400 7 7 7 7
1600 7 7 7 7
6400 7 7 8 8
25,600 7 7 8 8

102,400 8 8 – –

6.3. Example 2: Neo-Hookean square with localized contraction

In this example, we consider the same domain and boundary data as in Example 1. The fibers are

now aligned with f0 D .
p
2=2,

p
2=2/T , and we impose

TA D
� OTA, if

�
x � 3

4

	2 C .y � 1/2 � 1
4

,

0, otherwise,
f D

�
Of , if

�
x � 3

4

	2 C .y � 1/2 � 1
4

,

0, otherwise,
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where we set OTA D 0.96 ŒkPa� and Of D �0.3. In Table III, we show the number of Newton

iterations needed for convergence. The incremental load technique discussed in Section 5.2 was

not required in Example 1, whereas here, because of the discontinuity of the activation functions

(see Figure 8, left), for finer meshes, at least two incremental iterations were needed, implying an

increased overall computational time. We found that Taylor–Hood elements are outperformed by

MINI elements, which do not need incremental iterations. In Figure 8 (right), we display the rela-

tive incompressibility error. As expected from the preceding consideration, MINI elements exhibit

a better behavior, and the convergence reaches O.h0.5/. With this example, we also see that the

convergence order is problem dependent.

6.4. Example 3: Comparison with an exact solution in two-dimentional, neo-Hookean material

Consider the same square domain as in Examples 1 and 2 with the fibers direction f0 D .0, 1/T .

The displacement

u D
�˛
2
y2, 0

�T

, F D
�
1 ˛y

0 1

�
, (6.1)

satisfies the incompressibility constraint.

Table III. Example 2: Newton iterations with respect to the number of elements,

under active stress and active strain, using P2 �P1 and P
b
1

�P1 elements. The plus
signs indicate the need of incremental iterations.

Number of elements P
b
1 � P1 P2 � P1

Active strain Active stress Active strain Active stress

141 6 6 7 7
517 7 7 7 10
1978 7 7 8 8
6561 7 7 8 + 4 10
25,921 7 8 8 + 4 10 + 4 + 4 + 4

103,041 8 8 – –

Figure 8. Example 2: Distribution of the activation function and fibers on the reference domain, and compar-
ison of the contours of the deformed domain for an active stress (gray) and active strain (black) approaches
(left). Relative incompressibility error with respect to the number of elements for active stress and strain

formulations with P2 � P1 and P
b
1

� P1 elements (right).
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The Pïola–Kirchhoff tensors in both formulations read

Pstress D �F C TAFf0 ˝ f0 � pJF�T ,

Pstrain D �.1C f /F ��
�
f C f

f C 2

.1C f /2

�
Ff0 ˝ f0 � pJF�T ,

and they can be merged in the general stress

P D �.1C f /F �
�
�

�
f C f

f C 2

.1C f /2

�
C TA

�
Ff0 ˝ f0 � pJF�T ,

where

.TA, f /D
�
. OTA, 0/, for active stress,

.0, Of /, for active strain.

We set OTA D 0.96 ŒkPa� and Of D �0.3, and inserting (6.1) in the balance equations, we find

p.x,y/D ˛2

2

�
�

.1C f /2
C TA

�
y2 C ˛

�
�

.1C f /2
C TA

�
xCK,

for some constant K. For the simulation, we use ˛ D 2, K D 0, u D 0 on �D D Œ0, 1� � f0g and

traction data Pn D t on the remaining boundaries, where t D Pexactn is written using the exact stress

tensor computed from (6.1). The value of ˛ determines the magnitude of the deformations, and a too

large value may lead to non-convergence. In such cases, the incremental technique of Sections 5.2

and 5 can be applied to ˛ instead of the activation function.

In Figure 9, we report the relative errors for all fields. For this particular case, a fast convergence

of O.h5.5/ for u, O.h4.8/ for p and O.h5.2/ for J is observed.

6.5. Example 4: Comparison with an exact solution in three-dimentional, Holzapfel–Ogden

material

Let us consider now the constitutive law (2.2) applied to the cylindrical domain

B0 D
�
.x,y, ´/ 2 R

3 W j x2 C y2j � 1

4
, 0� ´� 1

�
,

with the fibers and sheets aligned in the directions f0 D .0, 0, 1/T and s0 D .0, 1, 0/T , respectively.

To check the convergence of the method, we use the exact solution u D .˛´,ˇ´, ı/, which satisfies

the incompressibility constraint, and we set ˛ D 1=4, ˇ D 1=8, ı D 0. The invariants are explicitly

given by

I1 D 3C ˛2 C ˇ2, I4,f D 1C ˛2 C ˇ2, I4,s D 1, I8,f s D ˇ,

Figure 9. Example 3: Relative errors for velocity, pressure, and incompressibility, using Taylor–Hood
(P2 � P1) elements.
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and the transformed invariants read

IE1 D .3C ˛2 C ˇ2/.1C f /C .1C ˛2 C ˇ2/

�
f C f

f C 2

.1C f /2

�
,

IE4,f D .1C ˛2 C ˇ2/

.1C f /2
, IE4,s D .1C f /, IE8,f s D ˇp

1C f

.

We can write the stress tensor of both models as

Pstress D

0
@
2 1 � p ˛ 8,f s ˛

�
2 1 C 2 4f C TA

	

0 2 1 C ˇ 8,f s � p ˇ
�
2 1 C 2 4f C TA

	
C 8,f s

˛p  8,f s C ˇp 2 1 C 2 4f C TA � p

1
A ,

Pstrain D

0
BB@

2 E

1 � p ˛ E

8,f s
˛

�
2 E

1 C 2 E

4f

�

0 2 E

1 C 2 E

4s C ˇ E

8,f s
� p ˇ

�
2 E

1 C 2 E

4f

�
C E

8,f s

˛p  E

8,f s
C ˇp 2 E

1 C 2 E

4f
� p

1
CCA .

In both cases, from div P D 0, we find that p.x,y, ´/ D K, for some constant K. We

impose the Dirichlet boundary conditions u D .0, 0, ı/T on the bottom face, and we set Neu-

mann conditions according to the exact solution on the remaining boundaries, that is, Pn D t, with

t D Pexactn being computed directly from the exact solution. In addition, we set K D 2.689 ŒkPa�,

TA D aD 0.496 ŒkPa�, and f D �0.1. Lower values of f may lead to an ill-conditioned problem

because the functions E

i , i D 1, 4f , 4s, 8f s depend exponentially on the active strain, and this has

no minor effects on the boundary conditions. In Figure 10 (left), we show the qualitative behavior of

the solution, and in Figure 10 (right), the relative incompressibility errors exhibiting a slow conver-

gence rate ofO.h0.65/. In Table IV, we show the Newton iterations needed for convergence. For the

two finest meshes, the active stress formulation requires about twice Newton iterations, because at

least one more incremental iteration is needed. In practice, the active stress formulation will require

even more incremental steps if larger deformations are considered.

Figure 10. Example 4: Numerical solution obtained with the active strain formulation (left), and conver-
gence history for the relative incompressibility errors (right).

Table IV. Example 4: Newton iterations for convergence with the active stress and strain formulations
using Taylor–Hood elements. The plus signs indicate the need of incremental iterations.

Number of elements 214 433 1381 3928 12,765 251,112

Active strain 8 8 9 8 8 8

Active stress 9 9 10 12 9+6 10+6
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6.6. Example 5: Simulations on an idealized biventricular domain

We have constructed an idealized biventricular domain using end-diastolic geometrical data reported

in [45, 46]. The inner surface of the left ventricle (lv) and right ventricle (rv) are described

by the ellipsoids

x2

a2
lv

C y2

b2
lv

C ´2

c2
lv

D 1,
x2

a2
rv

C y2

b2
rv

C ´2

c2
rv

D 1, (6.2)

where alv D blv D 2.4 Œcm�, clv D 4.5 Œcm�, and arv D 3.4 Œcm�, brv D 5.8 Œcm�, crv D 4.7 Œcm�.

The ellipsoids are truncated to have an apex-to-base distance of 6 Œcm�. On the left ventricle, we

impose a wall thickness of 1.5 Œcm� at the base and 0.5 Œcm� at the apex. The right ventricle wall

thickness was set to 0.3 Œcm� near the apex, whereas, at the base, it was set to 0.5 Œcm� near the left

ventricle and 0.4 Œcm� away from it.

We s0 D .x=
p
x2 C y2,y=

p
x2 C y2, 0/ as an approximation for the sheets direction. The fiber

direction f0 is defined orthogonal to s0 in the planes ´ D constant; and it is rotated by an angle of

�45ı with respect to the sheet axis to get an approximate direction on the outer surface. We define

the distance from the outer wall �r , and we use it to rotate the fiber direction through the thickness

of the wall by an angle of 90ı. The radius of the ellipsoids are set by substituting the parametric

equations x D r cos � cos�, y D r cos �sin�, ´ D rsin� in (6.2) and solving for r . Denoting

the outer radii of the left and right ventricles by rlv and rrv, respectively, we define the distances

from the outer walls as �rlv D rlv � R and �rrv D rrv � R, with R D jxj. All this gives the

following relations for the angle of rotation with respect to the sheet axis inside the muscle walls

�lv Dmlv�rlv, and �rv Dmrv�rrv, with mlv D 112.2 and mrv D 392.7.

The final configuration of our idealized biventricular domain is portrayed in Figure 11. The mesh

consists of 1983 tetrahedral elements. We set zero Dirichlet boundary conditions in a small area

on the base wall separating the two ventricles and free stress boundary conditions (Pn D 0) on the

remaining boundaries. We define

TA D OTA exp.�500Œx2 C .y C 0.03/2 C .´/2�/, f D Of exp.�500Œx2 C .y C 0.03/2 C .´/2�/.

The homotopy procedure was required in these simulations. The initial values of the activation are

set to T i
A

D 0.1 ŒKPa� and  i
f

D �0.1, and the final values of the activation were T max
A

D 50 ŒKPa�

and max
f

D �0.3. The active stress formulation required roughly 25 incremental iterations com-

pared with only five iterations needed for active strain, indicating that in this framework, the active

strain may lead to a decreased computational cost.

In Figure 12 (left), the pressure profiles on selected sections of the reference configuration are

shown. Both formulations present similar results in accordance with [23]. In the remaining plots

of Figure 12, we observe the magnitude of displacements and corresponding deformed domain

from different angles (the arrows show the fiber vectorial field) for the active strain (top) and stress

(bottom). The structure of the domain and the complex configuration of the fibers determine an

Figure 11. Example 5: Imposed fibers (left) and sheets (right) directions in the undeformed idealized
biventricular domain.
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Figure 12. Example 5: Pressure profiles on selected sections of the reference configuration (left) and two
different views of the displacement magnitude on the deformed domain and fibers distribution on the

undeformed mesh (middle and right), for active strain (top) and active stress (bottom) models.

Figure 13. Example 5: Relative errors on J with respect to the active strain magnitude Of (left) and active

tension OTA(right) for a test on the ideal biventricular domain shown in Figure 11.

apex-based twist together with the contraction. We remark that even if the imposed boundary con-

ditions are not able to reproduce physiological regimes, here we can still appreciate a torsion of the

cardiac muscle. Moreover, with the active strain approach, we obtain a smaller left ventricle diame-

ter contraction. It has decreased from 4.8 Œcm� to 3.2 Œcm�, against the 3.75 Œcm� obtained with the

active stress formulation. Anyhow, both results are in accordance with end-systolic data in [45, 46].

The incompressible nature of the simulation with the imposed boundary conditions requires that

for a decrease in the left ventricle diameter, we obtain an apex-to-base elongation. Conversely, an

apex-to-base contraction would lead to an increase of the ventricles diameter. Such solution can be

retrieved by imposing a vertical fiber direction in the mid-wall.

A sensibility study is reported in Figure 13, where we plot the relative incompressibility error

with respect to the magnitude of the maximum value of the activation functions. More evident

differences are observed between the active stress and strain approaches: Increasing the active strain

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2012; 28:761–788
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magnitude also increases almost ‘linearly’ the magnitude of the deformation, while on the other

hand, increasing the active tension ‘saturates’ the deformations, in the sense given in the picture. As

in consequence, for a larger deformation to be obtained, a very high value for OTA is required, which

of course translates in a substantial increase in the number of incremental load iterations.

6.7. Example 6: Simulations on a canine heart geometry

As a final example, we present simulation results performed on a canine biventricular geometry

reconstructed from segmented MRI images [47] (Figure 14). The apex-to-base distance in the left

ventricle is roughly 5.5 Œcm�, and its diameter varies between 2.1 and 2.4 [cm]. The wall thick-

ness in the left ventricle is approximately 0.5–0.8 [cm], whereas for the right ventricle, it is around

0.4 [cm]. The mesh consists of 30,309 tetrahedral elements. The average direction of the fibers

goes from an angle of 45ı in the epicardium to �45ı in the endocardium; and as in Example 5, the

sheet directions are oriented approximately normal to the endocardium and epicardium. We use the

orthotropic constitutive law with the parameters as in Table I and constant activation f D �0.2. To

mimic the response of active strain, we impose an active tension of TA D 17 ŒkPa�. We fix a small

region in the inter-ventricular base while the rest of the boundary remains free. Taylor–Hood finite

elements are used, and the algorithm converged after 18 Newton iterations for active strain and 21

for active stress, both using incremental steps.

In Figure 15, we depict pressure profiles and several views of the displacement magnitude on

the deformed domain, along with the reference undeformed mesh for a computation with the active

stress and active strain models. A clear contraction of the apex is obtained. The results of both

models agree with experimental observations [12] in terms of torsion of the left ventricle (basal

torsional rotation of around 12ı and apical around �12ı, from a basal view). To further assess the

physiological relevance of our computations, we compare principal and shear strains in the fiber–

sheet–normal coordinates to experimental results performed on canine populations: experiment 1

[3] and experiment 2 [48] (we consider their results obtained at the end-systolic phase, because it

represents a quasi-steady state where the mechanical load of myocytes is near maximal [49]). We see

from Figure 16 a fair agreement between computed and observed data, specially taking into con-

sideration previous comparisons of experiments with numerical results obtained with orthotropic

active stress models [5]. Here, for instance, we observe that the active strain model is closer to

experimental data for the normal strains in the fiber direction f in the endocardial and epicardial

region, while the active stress formulation gives a better approximation in the mid-wall region. In

the directions s and n, the results obtained under active strain are always closer to the observed data

(of both experiments) than those from active stress (see Figure 16, top). In addition, the shear strains

are higher under active strain than under active stress, as mentioned in Section 3.3, whereas it is

unclear which model recovers better the results from experiment 2 (strains in the mixed directions,

Figure 16 bottom).

Figure 14. Example 6: Fibers (left) and sheet (right) distribution in the reference configuration.
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Figure 15. Example 6: Pressure profiles on selected sections of the reference configuration (left) and two
different views of the displacement magnitude on the current configuration and fibers in the undeformed

mesh for an active stress (top) and active strain model (bottom).
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Figure 16. Example 6: Comparison of computed transmural distributions of strains in fiber–sheet coordi-
nates at a basal site and experimental data from end-systolic canine in vivo tests in experiments 1 and 2 (from

[3] and [48], respectively). Wall depth of 0% stands for endocardium and 100% for epicardium.
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7. CONCLUSION

In this paper, we have presented some advances on the modeling of cardiac mechanics in the context

of the recently proposed active strain formulation introducing it in the framework of orthotropic

material laws. We have shown that for isotropic constitutive laws, our model produces similar

results as the active stress approach in terms of displacements and pressure. On the other hand,

for orthotropic materials, the two formulations lead to different responses. The passive myocardium

was assumed to obey the constitutive law given by [20] for volume-preserving deformations. The

macroscopic orthotropic passive mechanics of the tissue was coupled with a transversely isotropic

active component at the cell scale. Moreover, we have performed a thorough qualitative comparison

with the active stress approach from the modeling and numerical viewpoints, considering diverse

configurations and different constitutive laws in two and three spatial dimensions. Our numerical

method is based on a Newton linearization of the original system combined with an incremental

activation technique, and the spatial discretization is carried out using piecewise linear finite ele-

ments for the approximation of the pressure field, whereas for the displacements, we use piecewise

quadratic elements or alternatively piecewise linear finite elements enriched with bubble functions.

Even though we compared our results with torsion and deformations data obtained from medical

images, and experimental tests, the question of whether the active strain formulation gives more

satisfactory results from the standpoint of physiology remains to be addressed in further detail. As

pointed out in [16], the active stress model possesses more flexibility, in the sense that the param-

eters and the tensorial dependence of the active part of the stress tensor can be tuned to represent

experimental data. In the active strain formulation, we do not have such flexibility in the definition

of the active component. This may be regarded as a limitation in the sense that once the form of

the active deformation FA is imposed, it is not possible to adjust stresses to fit data coming from

experimental observations.

The fact that activated tissue possesses different mechanical properties in all directions suggests

that a more general active stress model should be used (as discussed in Section 2.2 and in [5, 15]).

The assumption that the active response may be described as hyperelastic, although not true in

general [25], leads to a simple definition of the active forces: the new active strain energy for

the active stress formulation can be found by fitting data from active uniaxial and biaxial tests.

With the active strain approach, instead, the passive constitutive law is somehow naturally modified

(the active component f modifies directly the material response in all directions), leading to a new

energy function that is able to capture active responses. Moreover, this new energy exhibits similar

stability properties as the original one, whereas an active stress model may lead to instabilities due

to the loss of strong ellipticity.

Regarding numerical aspects, we have found that an active strain formulation does not require any

added computational cost. Moreover, even if the studied models present similar convergence prop-

erties with respect to the mesh size and need a similar number of Newton iterations to converge

for large deformations, the active stress model will require many more incremental active load

iterations. In the end, taking as benchmark the active stress formulation as the most widely used

model for electro-mechanical simulations of cardiac tissue, the active strain model proposed here

has proven to give satisfactory qualitative results and to be a competitive alternative. The framework

developed in this paper allows for a natural coupling with the equations governing the propagation

of electrical potential through the medium in the direction of [12, 14]. A forthcoming contribution

will address the construction of domain decomposition methods that can be used to couple mod-

els with variable mechanical properties (thickness, conductivities, elastic moduli) across the muscle

wall [2, 50].
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