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ORTHOTROPIC ALMOST CYLINDRICAL BEAMS:
BENDING BY A TRANSVERSE LOAD

CONSTANTIN [. BORS

(Received July 2, 1970)

We shall consider a beam bounded by two planes x; = 0, x5 = h and a surface
F given by

(1 FIx(l = kx3), x,(1 — kx3)] =0,

where k is a small parameter, the square and higher powers of which can be neglected.

Such beams are called “almost cylindrical beams” [1].

Many results are known in connection with beams of the shape (1).

Homogeneous and composite beams have been taken into account in the isotropic
case [ 1], [2], [3] etc. as well as in the anisotropic case [4], [5], [6], [7] etc.

In this Note we will study the problem of bending by a transverse load when the
material of the beam is orthotropic.

The solution of the problem will be given in two steps.

First, the problem will be reduced to Almansi’s problem.

Second, the complete solution will be given. A solution of this problem correspond-
ing to the first step was given in the paper [6] but by a complicated method. Here,
the first step is performed in a very simple way and, moreover, it may be easily
generalized to the case when the surface % is of the form

) SIxi(1 = k), x,(1 — k6)] = 0,

where 6 = 6(x;) is a given function of x;.

1. GENERAL EQUATIONS

We suppose that the surface & is free from tractions and that there are no body
forces. We denote by ¥~ the region occupied by the beam.



Under these assumptions the stress components o;; must satisfy the equilibrium
equations

(3) o, =0 in 77%)
and the boundary conditions
(4) o;in; = 0 on 9’-,

where n; are the direction cosines of the exterior normal to the surface #.

The tractions applied at the end at x; = h are equivalent with a transverse load
F, acting in the direction of x;.

We shall suppose that the material of the beam is orthotropic so that Hooke’s
law may be written in the form
011 = Ay + Hy,, + Gyss,
(5a) 632 = Hyyy + By, + Fyss,
Gy + Fyas + Cyass

i

033
(Sb) 01 = Dy, 023= Ly, 03 = My,

where A, B, ..., L,M are moduli of elasticity.

We express the components of strain y;; in terms of stress components by

| =

Vi1 = - ("11011 + V205, — "1“33) s

M= m

(62) Y22 =

("12‘711 + V22025 — "2‘733) s
1

Y3z = E("Vso'u = V3055 + ‘733),

1 1
(6b) Yi2 = b“(fu s Va3 = “L‘Uzs s> Va1 = M%l s

where the coefficients of strain E, v;;, v; can be expressed in terms of moduli of elasti-
city [8].
The components y;; are given in terms of displacement components u; by
i = u;; (not summed) , y;; =u;; + u;,; (i )

*) The index j after comma indicates partial differentiation with respect to x;. We use also
the summation convention over the repeated indices.
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and they must satisfy the compatibility conditions of Saint-Venant
(73) Yiv22 F Yaza1 T Viz2a2e -
(7b) (=7230 + 512 + Vlz‘z),x = Vi1.23 -
By means of the transformation [1]
(8) ¢ = »\'1(1 —kx3), o= Xl = kx3), = x5,
xy = 1 + k(), x; = (1 + k¢, Xy =1,
the surface (1) becomes
() J(&n) =0,
which is a cylindrical surface &, in the space &, n, .

We denote by S the domain of the cross-section of the cylindrical surface (9) and
by I' the boundary of S.

We can easily prove the following formulae

(10a)

TR ek L e k(e )
and .
(10b) ng=cosa, n,=cosf, ny= —k(écosa + ncosp),

where cos o, cos f§ are the direction cosines of the exterior normal to the curve I

We shall take the axes &, #, { such that the axis { is the central line of the beam (9)
and the axes ¢ and 5 are the principal axes of inertia of the end at { = 0. In this case
we have

(11) fﬁdédn=0, HﬂddeIZO, Hﬁndfdn=0'
N h

S

We shall try to find the solution of the above problem supposing that the displace-
ments u; are of the form

(1) wy =~ 4 a[3(h = 0) (& — van®) + $HE = 30T + ku$,
wy = T+ alh — ) vadn + kul,
uy = 19(&n) — a[x(&n) + (h = 1) & + kus,

where u? are complementary unknown displacements, t and a are constants which
must be determined from the end conditions. Further, q)(é, n) is the function of torsion

3



of the beam (9) defined by

~2 2

(13a) Mof(;p-i-L?ip:O in S,
¢ on?

(13b) ¢ = Mycoso — LEcosf on T

and (¢, n) is the flexion function of the same beam (9) defined by

Py Oy . .
(14a) Mégz-+L5’;2~+(le+Lv2—E)g =0 in S,
(14b) Dy = —IM(v;&* — von?)cosa — Lv,éncos B on I

The operator & is given by
(15) .@=Mcosoc~(?—+Lcosﬁi.
ao& on
From the displacements (12) we obtain the following components of stress
Gy = *kG(H1 - lza‘iz) + ktyy .
0y = —kF(H, — "lzaf‘:z) + ktay s
(16) 033 = —a(l — k&) (h — {) E¢ — kC(H, — }a&l?) + ka3,

6y, = k1,3,

-

ch oh .
6,3 = L (a—‘ + 1€ — av2§;7> - kL[(U6 Ly Tf)g’ + 2avy(h — () gr[] + k13,
n

n

oh 1 .
Gy = Ml: Ly — Ea(v,éz - vznl)] -

¢
ohy 1 . ) B
— kM e T h—EC {4 a(h = O (vi& —van®) p + k14,
o
where 7,; are the stresses corresponding to the additional displacements u? and
. . Oh oh
(17) hi(&n) = 19(& n) — ax(&ny, Hy(&n) =< Bg% +1 87’*-

The substitution of stresses (16) into equations (3) shows that the components
7;; must satisfy the equations

’q
(18) Oty Otip | 0Ty (G + M) (?ﬁl — %a@) +
o an ot a¢

+ 2M[tn + a(v,&® = van®) + a(h = )] =0,



Otz | 0735 | 0723 _ (F + L)

> - — 2L(t¢ — 2av,én) = 0,
o¢ on ol on

H,
jal

) O,y 0
a4 s T8 g0k — ) (Mv, + Ly, — E) & + aCEl = 0.
o an o

2. REDUCTION TO ALMANSI’S PROBLEM

Let us take into account the following components of stress
(19) <t = G(H, — }al®), 3, =F(H, —%al®), 1,=0,
C(H, ~ $al*) — 2aE(h — () &,

L[(@ + 215)5 + 2avy(h — 20) fﬂ)jl»

on /

i

*
T33

E3
T23

X
5 =M [((H; - 21’)7)( + a(h = 20) (v,&* — vyn?) — a(h — 1) Cz].

(’)5

It is easy to verify that the stresses (19) represent a solution of equations (18).
Also, we can prove that the corresponding strains }:'; satisfy the conditions of com-
patibility.

Let us now put

(20) Ty =T+ T

From equations (18) we conclude that the new stress components %;; must verify
equations
(21) T = 0%).

If we take into account (16), (19), (20) and (13b), (14b) we find that the new com-
ponents of stress T,; satisfy the following boundaty conditions

,‘1:

—m — a(v, & — vznz)](f cos o + 7 cos ff),
o¢

(22) 7,,coso + T, co8ff = M|:

ol . . .
T, co80 + Ty, cOSP = L[»é]'» + ¢ — avzgn] (g cos x4 + 7 cOs /5) X
n

Ty, cosa + Fr3c08 f = —(D(H, — 219 + 3ay) —
—aE(h — {)(£* cos o + Encos f) on T,
Equations (21) and (22) define Almansi’s problem whose solution is known [9].
*) Here the indices 1, 2, 3 after comma indicate partial differentiation with respect to &, . C.
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3. COMPLETE SOLUTION

Using a method similar to that used in [10] we can solve the problem defined
by (21) and (22) in a simpler way.
To this purpose let us consider the following representation of the stresses 7;;:

(23) fH = ~~»; —_ ]\/I(col + ()l) .
an

. ¢ )
Tyy = ;1;;:27 — L(U)l + 02) N

2
Ty = — j’d)»

ac on

. L/b, . a 5
Ty =Q + - (*"Q + = ’I)g‘,-

2\, v

. Jw a0 Jw
thy = L (220 4 Do)y D20
on an on
Jw 00 %
i, =M [<U§’V1_ 4 ‘A:l) g ffoo:l ,
o¢ o0& aé

where ¢, w,, w, are unknown functions which will be defined below,

I I s
(24) Q=E [(DI + 2’(01 + 0,) + 6(\);‘ a8+ Lbl’f)il +

Vs Vy

N2 52
+ vy l:“f -~ M(w, + 91)] + v, [(

Lty ]
on ?

24
0, = b;fﬂz —cén, 0, = a]§2n + ¢yl .

ay. by, ¢, being some constants which will be chosen in such a way to guarantee

the existence of the functions w, and ¢.
The stresses (23) satisfy equations (21) if the functions w, and o, satisfy the

equations

0* 0* .
(25) M (a—;ﬁ + L% =0 in S
on

and

N2 A2
(26) Y A R T S

£2 2
o on Vs vy

The third equation (22) yields the following boundary conditions for the functions

woand w,:

(27) Do = —ahE(E* coso + Encos f) on [
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and

(28) Dwy, = —D(H; — 2t¢ + 3ay) + aE(E* cos o + &n cos f) -
ja) A
VL cosff on I.
o¢ an

Making use of (11) we can prove that the conditions of existence for the functions
w, and w, are satisfied with arbitrary a,, b, ¢,.

All compatibility conditions (7) will be satisfied by the strains §; if the function
¢ satisfies the equation

('}\4(/) ) ('}4 ('/34(]5
29 ot (2Biy + Baz) oy + By =
( ) B2z ot ( Bz 33) 0E2 on? B1 o
o 0w
= (L/;zz + MBy, + Vz) _";1‘ + (Lﬁu + MByy + "1) “2"1 +
o oy

+ 2[(MByy + vy) by + (LPas + vy) agn] in S.

The first two equations (8) require that

(qz (‘§2
= (7) Ccos ’ ¢

30 — o — ——cos i = M(w, + 0;)cosa +
()M oo p = M(w, +0,)
dh, 1 ) 2 :
+ M=y ia(\;lg — von?) [ (£ cos o + 7 cos f),
2 2
- iui) cos a + 7é cos f = L{w; + 0,) cos f +
o0& on on?
dh, . . .
+ L ?~+1¢ — avyén J(Ecosa + neosB) on T,
n
where
vij Vivj 1
o= - > (L7=1,2), =
B 5 ( ). Pas D

From (30) it is obvious that we can obtain the function ¢ in a similar way to that
corresponding to Airy’s function for the plane problem of orthotropic bodies. It
follows that we can choose the constants a;, b, ¢, in such a way to guarantee the
existence of the function ¢.

As shown in [10], we can find the constants ay, by, ¢, before we know the function
wy.

The solution given here will satisfy all equations and boundary conditions except
the end conditions.

Therefore it still remains to correct the end conditions by superposition of solutions
of some adequate problems for the cylindrical beam (9) but we can solve all needed
additional problems [8], [11].



Some remarks — Making a = 0 we obtain the solution concerning the problem
of torsion.
— A similar method can be developed when 6 = {? in the equation (2).
— The above results can be extended to the case when the material of the beam is
anisotropic with one plane of elastic symmetry perpendicular to the axis x;.
— The results can be generalized also to composite beams.
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Souhrn

ORTOTROPNI SKORO CYLINDRICKE NOSNIKY:
OHYB PRICNYM ZATIZENIM

C. I. Bors

V préci je feSen problém ohybu pfiénym zatiZenim pro ortotropni skoro cylindricky
nosnik pfevedenim na Almansiho problém. PfedloZend metoda je znaéné jednodussi
neZ dosud znamé feSeni.
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