
Oruta: Privacy-Preserving Public Auditing for
Shared Data in the Cloud

Boyang Wang †,††, Baochun Li †† and Hui Li †
† State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an, China

†† Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
Email:{bywang,bli}@eecg.toronto.edu, lihui@mail.xidian.edu.cn

Abstract—With cloud storage services, it is commonplace for
data to be not only stored in the cloud, but also shared across
multiple users. However, public auditing for such shared data
— while preserving identity privacy — remains to be an open
challenge. In this paper, we propose the first privacy-preserving
mechanism that allows public auditing on shared data stored in
the cloud. In particular, we exploit ring signatures to compute
the verification information needed to audit the integrity of
shared data. With our mechanism, the identity of the signer
on each block in shared data is kept private from a third party
auditor (TPA), who is still able to verify the integrity of shared
data without retrieving the entire file. Our experimental results
demonstrate the effectiveness and efficiency of our proposed
mechanism when auditing shared data.
Index Terms—Public auditing, privacy-preserving, shared

data, cloud computing

I. INTRODUCTION

Cloud service providers manage an enterprise-class infras-
tructure that offers a scalable, secure and reliable environment
for users, at a much lower marginal cost due to the sharing
nature of resources. It is routine for users to use cloud storage
services to share data with others in a group, as data sharing
becomes a standard feature in most cloud storage offerings,
including Dropbox and Google Docs.
The integrity of data in cloud storage, however, is subject

to skepticism and scrutiny, as data stored in an untrusted
cloud can easily be lost or corrupted, due to hardware failures
and human errors [1]. To protect the integrity of cloud data,
it is best to perform public auditing by introducing a third
party auditor (TPA), who offers its auditing service with
more powerful computation and communication abilities than
regular users.
The first provable data possession (PDP) mechanism [2] to

perform public auditing is designed to check the correctness of
data stored in an untrusted server, without retrieving the entire
data. Moving a step forward, Wang et al. [3] (referred to as
WWRL in this paper) is designed to construct a public auditing
mechanism for cloud data, so that during public auditing, the
content of private data belonging to a personal user is not
disclosed to the third party auditor.
We believe that sharing data among multiple users is per-

haps one of the most engaging features that motivates cloud
storage. A unique problem introduced during the process of
public auditing for shared data in the cloud is how to preserve
identity privacy from the TPA, because the identities of signers

on shared data may indicate that a particular user in the group
or a special block in shared data is a more valuable target than
others.
For example, Alice and Bob work together as a group and

share a file in the cloud. The shared file is divided into a
number of small blocks, which are independently signed by
users. Once a block in this shared file is modified by a user
in the group, this user needs to sign the new block using her
private key. The TPA needs to know the identity of the signer
on each block in this shared file, so that it is able to audit
the integrity of the whole file based on requests from Alice or
Bob.

Fig. 1. Alice and Bob share a file in the cloud, and the TPA audit the
integrity of data with existing mechanisms.

As shown in Fig. 1, after performing several auditing tasks,
some private and sensitive information may reveal to the TPA.
On one hand, most of the blocks in shared file are signed by
Alice, which may indicate Alice is a important role in this
group, such as a group leader. On the other hand, the 8-th
block is frequently modified by different users. It means this
block may contain high-value data, such as a final bid in an
auction, that Alice and Bob need to discuss and change it
several times.
As described in the above example, the identities of signers

on shared data may indicate which user in the group or block
in shared data is a more valuable target than others. Such
information is confidential to the group and should not be
revealed to any third party. However, no existing mechanism
in the literature is able to perform public auditing on shared
data in the cloud while still preserving identity privacy.
In this paper, we propose Oruta1, a new privacy-preserving

1Oruta: One Ring to Rule Them All.

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.46

295

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.46

295

public auditing mechanism for shared data in an untrusted
cloud. In Oruta, we utilize ring signatures [4], [5] to construct
homomorphic authenticators [2], [6], so that the third party
auditor is able to verify the integrity of shared data for a
group of users without retrieving the entire data. Meanwhile,
the identity of the signer on each block in shared data is
kept private from the TPA. In addition, Oruta can continue to
support data privacy and dynamic operations on data during
public auditing. A high-level comparison between Oruta and
existing mechanisms in the literature is shown in Table I. To
our best knowledge, this paper represents the first attempt
towards designing an effective privacy-preserving public au-
diting mechanism for shared data in the cloud.

TABLE I
COMPARISON WITH EXISTING MECHANISMS

PDP [2] WWRL [3] Oruta
Public auditing Yes Yes Yes
Data privacy No Yes Yes
Identity privacy No No Yes

The remainder of this paper is organized as follows. In
Sec. II, we present the system model and threat model. In
Sec. III, we briefly introduce cryptographic primitives used
in Oruta. The detailed design and security analysis of Oruta
are presented in Sec. IV and Sec. V. Sec. VI evaluates the
performance of Oruta. Finally, we discuss related work in
Sec. VII, and conclude this paper in Sec. VIII.

II. PROBLEM STATEMENT

A. System Model

As illustrated in Fig. 2, our work in this paper involves three
parties: the cloud server, the third party auditor (TPA) and
users. There are two types of users in a group: the original user
and a number of group users. The original user and group users
are both members of the group. Group members are allowed
to access and modify shared data created by the original user
based on access control polices. Shared data and its verification
information (i.e. signatures) are both stored in the cloud server.
The third party auditor is able to verify the integrity of shared
data in the cloud server on behalf of group members.

Fig. 2. Our system model includes the cloud server, the third party auditor
and users.

In this paper, we only consider how to audit the integrity of
shared data in the cloud with static groups. It means the group
is pre-defined before shared data is created in the cloud and
the membership of users in the group is not changed during
data sharing. The original user is responsible for deciding who
is able to share her data before outsourcing data to the cloud.
Another interesting problem is how to audit the integrity of
shared data in the cloud with dynamic groups — a new user
can be added into the group and an existing group member
can be revoked during data sharing — while still preserving
identity privacy. We will leave this problem to our future work.
When a user (either the original user or a group user)

wishes to check the integrity of shared data, she first sends
an auditing request to the TPA. After receiving the auditing
request, the TPA generates an auditing message to the cloud
server, and retrieves an auditing proof of shared data from
the cloud server. Then the TPA verifies the correctness of the
auditing proof. Finally, the TPA sends an auditing report to
the user based on the result of the verification.

B. Threat Model
1) Integrity Threats: Two kinds of threats related to the

integrity of shared data are possible. First, an adversary may
try to corrupt the integrity of shared data and prevent users
from using data correctly. Second, the cloud service provider
may inadvertently corrupt (or even remove) data in its storage
due to hardware failures and human errors. Making matters
worse, in order to avoid jeopardizing its reputation, the cloud
server provider may be reluctant to inform users about such
corruption of data.
2) Privacy Threats: The identity of the signer on each block

in shared data is private and confidential to the group. During
the process of auditing, a semi-trusted TPA, who is only
responsible for auditing the integrity of shared data, may try to
reveal the identity of the signer on each block in shared data
based on verification information. Once the TPA reveals the
identity of the signer on each block, it can easily distinguish
a high-value target (a particular user in the group or a special
block in shared data).

C. Design Objectives
To enable the TPA efficiently and securely verify shared

data for a group of users, Oruta should be designed to achieve
following properties: (1) Public Auditing: The third party
auditor is able to verify the integrity of shared data for a group
of users without retrieving the entire data. (2) Correctness:
The third party auditor is able to correctly detect whether there
is any corrupted block in shared data. (3) Unforgeability: Only
a user in the group can generate valid verification information
on shared data. (4) Identity Privacy: During auditing, the TPA
cannot distinguish the identity of the signer on each block in
shared data.

III. PRELIMINARIES
In this section, we briefly introduce cryptographic primitives

and their corresponding properties that we implement in Oruta.

296296

A. Bilinear Maps
Let G1, G2 and GT be three multiplicative cyclic groups of

prime order p, g1 be a generator of G1, and g2 be a generator
of G2. A bilinear map e is a map e: G1×G2 → GT with the
following properties:

• Computability: there exists an efficiently computable
algorithm for computing map e.

• Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp,
e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g1, g2) �= 1.

B. Complexity Assumptions
Definition 1: Discrete Logarithm Problem. For a ∈ Zp,

given g, h = ga ∈ G1, output a.
The Discrete Logarithm assumption holds in G1 if no t-

time algorithm has advantage at least ε in solving the Discrete
Logarithm problem in G1, which means it is computational
infeasible to solve the Discrete Logarithm problem in G1.
Definition 2: Computational Co-Diffie-Hellman Prob-

lem. For a ∈ Zp, given g2, ga2 ∈ G2 and h ∈ G1, compute
ha ∈ G1.
The co-CDH assumption holds in G1 and G2 if no t-time

algorithm has advantage at least ε in solving the co-CDH
problem in G1 and G2.

C. Ring Signatures
The concept of ring signatures is first proposed by Rivest

et al. [4] in 2001. With ring signatures, a verifier is convinced
that a signature is computed using one of group members’
private keys, but the verifier is not able to determine which
one. This property can be used to preserve the identity of the
signer from a verifier.

D. Homomorphic Authenticators
Homomorphic authenticators (also called homomorphic ver-

ifiable tags) are basic tools to construct data auditing mecha-
nisms [2], [3], [6]–[9]. Besides unforgeability (only a user with
a private key can generate valid signatures), a homomorphic
authenticable signature scheme, which denotes a homomorphic
authenticator based on signatures, should also satisfy the
following properties:
Let (pk, sk) denote the signer’s public/private key pair, σ1

denote a signature on block m1 ∈ Zp, σ2 denote a signature
on block m2 ∈ Zp.

• Blockless verification: Given σ1 and σ2, two random
values α1, α2 ∈ Zp and a block m′ = α1m1 + α2m2 ∈
Zp, a verifier is able to check the correctness of block
m′ without knowing block m1 and m2.

• Non-malleability Given σ1 and σ2, two random values
α1, α2 ∈ Zp and a block m′ = α1m1 + α2m2 ∈ Zp,
a user, who does not have private key sk, is not able
to generate a valid signature σ′ on block m′ by linearly
combining signature σ1 and σ2.

Blockless verification allows a verifier to audit the correct-
ness of data stored in the cloud server with a special block,
which is a linear combination of all the blocks in data. If

the combined block is correct, the verifier believes that the
blocks in data are all correct. In this way, the verifier does
not need to download all the blocks to check the integrity
of data. Non-malleability indicates that an attacker cannot
generate valid signatures on arbitrary blocks by combining
existing signatures.

IV. HOMOMORPHIC AUTHENTICABLE RING SIGNATURES
A. Overview
As we introduced in previous sections, we intend to utilize

ring signatures to hide the identity of the signer on each block,
so that private and sensitive information of the group is not
disclosed to the TPA. However, traditional ring signatures [4],
[5] cannot be directly used into public auditing mechanisms,
because these ring signature schemes do not support blockless
verification. Without blockless verification, the TPA has to
download the whole data file to verify the correctness of
shared data, which consumes excessive bandwidth and takes
long verification times. Therefore, we first construct a new
homomorphic authenticable ring signature (HARS) scheme,
which is extended from a classic ring signature scheme [5],
denoted as BGLS. The ring signatures generated by HARS is
able not only to preserve identity privacy but also to support
blockless verification.

B. Construction of HARS
HARS contains three algorithms: KeyGen, RingSign and

RingVerify. In KeyGen, each user in the group generates her
public key and private key. In RingSign, a user in the group
is able to sign a block with her private key and all the group
members’ public keys. A verifier is allowed to check whether
a given block is signed by a group member in RingVerify.
Scheme Details. Let G1, G2 and GT be multiplicative

cyclic groups of order p, g1 and g2 be generators of G1

and G2 respectively. Let e : G1 × G2 → GT be a bilinear
map, and ψ : G2 → G1 be a computable isomorphism with
ψ(g2) = g1. There is a hash function H1: {0, 1}∗ → G1.
The global parameters are (e, ψ, p,G1, G2, GT , g1, g2, H1).
The total number of users in the group is d.
KeyGen. User ui randomly picks xi ∈ Zp and computes

wi = gxi

2 ∈ G2. Then, user ui’s public key is pki = wi and
her private key is ski = xi.
RingSign. Given all the d users’ public keys

(pk1, ...,pkd) = (w1, ..., wd), a block m ∈ Zp, the
identifier of this block id and the private key sks for some
s, user us randomly chooses ai ∈ Zp for all i �= s, where
i ∈ [1, d], and let σi = gai

1 . Then, user us computes

β = H1(id)g
m
1 ∈ G1, (1)

and sets

σs =

(
β

ψ(
∏

i�=s w
ai

i)

)1/xs

∈ G1. (2)

And the ring signature on block m is σσσ = (σ1, ..., σd) ∈ G
d
1.

RingVerify. Given all the d users’ public keys
(pk1, ...,pkd) = (w1, ..., wd), a block m, an identifier

297297

id and a ring signature σσσ = (σ1, ..., σd), a verifier first
computes β = H1(id)g

m
1 ∈ G1, and then checks

e(β, g2)
?
=

d∏
i=1

e(σi, wi). (3)

If the above equation holds, then the given block m is signed
by one of these d users in the group. Otherwise, it is not.

C. Security Analysis of HARS
Now, we discuss some important properties of HARS,

including correctness, unforgeability, blockless verification,
non-malleability and identity privacy.
Theorem 1: Given any block and its ring signature, a

verifier is able to correctly check the integrity of this block
under HARS.

Proof: To prove the correctness of HARS is equivalent
of proving Equation (3) is correct. Based on properties of
bilinear maps, the correctness of this equation can be proved
as follows:
d∏

i=1

e(σi, wi) = e(σs, ws) ·
∏
i�=s

e(σi, wi)

= e(

(
β

ψ(
∏

i�=s w
ai

i)

) 1

xs

, gxs

2) ·
∏
i�=s

e(gai

1 , g
xi

2)

= e(
β

ψ(
∏

i�=s g
xiai

2)
, g2) ·

∏
i�=s

e(gaixi

1 , g2)

= e(
β∏

i�=s g1
aixi

, g2) · e(
∏
i�=s

gaixi

1 , g2)

= e(β, g2).

Theorem 2: For an adversary, it is computational infeasi-
ble to forge a ring signature under HARS.

Proof: Due to space limitations, we only provide the
sketch of the proof in this paper. The full proof of this theorem
can be found in our technical report [9].
By following the security model and the game defined in

BGLS [5], we can prove that, if a (t′, ε′)-algorithm A can
generate a forgery of a ring signature on a group of users
of size d. Then there exists a (t, ε)-algorithm that can solve
the co-CDH problem with t ≤ 2t′ + 2cG1

(qH + dqs + qs +
d) + 2cG2

d and ε ≥ (ε′/(ê+ êqs))
2, where A issues at most

qH hash queries and at most qs ring-signing queries, ê =
limqs→∞(1 + 1/qs)

qs , exponentiation and inversion on G1

take time cG1
, and exponentiation and inversion on G2 take

time cG2
. However, due to the assumption that the co-CDH

problem is hard in G1 and G2, it is computational infeasible
to find a (t′, ε′)-algorithm A that can generate a forgery of a
ring signature under HARS.
Then, based on Theorem 1 and 2, we show that HARS is

a homomorphic authenticable ring signature scheme.
Theorem 3: HARS is a homomorphic authenticable ring

signature scheme.

Proof: To prove HARS is a homomorphic authenticable
ring signature scheme, we first prove that HARS is able to
support blockless verification, which we defined in Section III.
Then we show HARS is also non-malleable.
Given all the d users’ public keys (pk1, ...,pkd) =

(w1, ..., wd), two identifiers id1 and id2, two ring signatures
σσσ1 = (σ1,1, ..., σ1,d) and σσσ2 = (σ2,1, ..., σ2,d), and two
random values y1, y2 ∈ Zp, a verifier is able to check the
correctness of a combined block m′ = y1m1 + y2m2 ∈ Zp

without knowing block m1 and m2 by verifying:

e(H1(id1)
y1H1(id2)

y2gm
′

1 , g2)
?
=

d∏
i=1

e(σy1

1,i · σ
y2

2,i, wi).

Based on Theorem 1, the correctness of the above equation
can be proved as:

e(H1(id1)
y1H1(id2)

y2gm
′

1 , g2)

= e(H1(id1)
y1gy1m1

1 , g2) · e(H1(id2)
y2gy2m2

1 , g2)

= e(β1, g2)
y1 · e(β2, g2)

y2

=

d∏
i=1

e(σ1,i, wi)
y1 ·

d∏
i=1

e(σ2,i, wi)
y2

=

d∏
i=1

e(σy1

1,i · σ
y2

2,i, wi).

If the combined block m′ is correct, the verifier also believes
that block m1 and m2 are both correct. Therefore, HARS is
able to support blockless verification.
Meanwhile, an adversary, who does not have any user’s

private key, cannot generate a valid ring signature σσσ′ on the
combined block m′ by combining σσσ1 and σσσ2 with y1 and y2.
Because if an element σ′

i in σσσ′ is computed as σ′
i = σy1

1,i ·
σy2

2,i, the whole ring signature σσσ′ = (σ′
1, ..., σ

′
d) cannot pass

Equation (3) in RingVerify.
More specifically, if block m1 and m2 are signed by the

same user, for example, user us, then σ′
s can be computed as

σ′
s = σy1

1,s · σ
y2

2,s =

(
βy1

1 β
y2

2∏
i�=s w

y1a1,i

1,i ·w
y2a2,i

2,i

)1/xs

.

For all i �= s, σ′
i = σy1

1,i ·σ
y2

2,i = g
(y1a1,i+y2a2,i)
1 , where a1,i and

a2,i are random values. When ring signature σσσ′ = (σ′
1, ..., σ

′
d)

is verified with the combined block m′ using Equation (3):
d∏

i=1

e(σ′
i, wi) = e(βy1

1 β
y2

2 , g2) �= e(β′, g2),

which means it always fails to pass the verification. Because
βy1

1 β
y2

2 = H(id1)
y1H(id2)

y2gm
′

1 is not equal to β′ =
H(id′)gm

′

1 .
If block m1 and m2 are signed by different users, for

example, user us and user ut, then σ′
s and σ′

t can be presented
as

σ′
s =

(
βy1

1∏
i�=s w

y1a1,i

i

)1/xs

· g
y2a2,s

1 ,

298298

σ′
t = g

y1a1,t

1 ·

(
βy2

2∏
i�=t w

y2a2,i

i

)1/xt

.

For all i �= s and i �= t, σ′
i = σy1

1,i · σ
y2

2,i = g
(y1a1,i+y2a2,i)
1 ,

where a1,i and a2,i are random values. When ring signature
σσσ′ = (σ′

1, ..., σ
′
d) is verified with the combined block m′ using

Equation (3):
d∏

i=1

e(σ′
i, wi) = e(βy1

1 β
y2

2 , g2) �= e(β′, g2),

which means it always fails to pass the verification. Therefore,
an adversary cannot output valid ring signatures on combined
blocks by combining existing signatures, which indicates that
HARS is non-malleable. Because HARS is not only blockless
verifiable and but also non-malleable, it is a homomorphic
authenticable signature scheme.
Following the theorem in [5], we show that a verifier cannot

distinguish the identity of the signer among a group of users
under HARS.
Theorem 4: For any algorithm A, any group U with d

users, and a random user us ∈ U , the probability Pr[A(σσσ) =
us] is at most 1/d under HARS, where σσσ is a ring signature
generated with user us’s private key sks.

Proof: For any h ∈ G1, and any s, 1 ≤ s ≤ d,
the distribution {ga1

1 , ..., gad

1 : ai
R
← Zp for i �= s, as

chosen such that
∏d

i=1 g
ai

1 = h} is identical to the dis-
tribution {ga1

1 , ..., gad

1 :
∏d

i=1 g
ai

1 = h}. Therefore, given
σσσ = (σ1, ..., σd), the probability algorithm A determines σs,
which reveals the identity of the signer, is at most 1/d.

V. PRIVACY-PRESERVING PUBLIC AUDITING FOR SHARED
DATA IN THE CLOUD

A. Overview
Using HARS and its properties we established in the previ-

ous section, we now construct Oruta, our privacy-preserving
public auditing mechanism for shared data in the cloud. With
Oruta, the TPA can verify the integrity of shared data for a
group of users without retrieving the entire data. Meanwhile,
the identity of the signer on each block in shared data is kept
private from the TPA during the auditing.

B. Reduce Signature Storage
Another important issue we should consider in the construc-

tion of Oruta is the size of storage used for ring signatures.
According to the generation of ring signatures in HARS, a
block m is an element of Zp and its ring signature contains d
elements of G1, where G1 is a cyclic group with order p. It
means a |p|-bit block requires a d × |p|-bit ring signature,
which forces users to spend a huge amount of space on
storing ring signatures. It is very frustrating for users, because
cloud service providers, such as Amazon, will charge users
based on the storage space they used. To reduce the storage
for ring signatures and still allow the TPA to audit shared
data efficiently, we exploit an aggregated approach from [6].
Specifically, we aggregate a blockmmmj = (mj,1, ...,mj,k) ∈ Z

k
p

in shared data as
∏k

l=1 η
mj,l instead of computing gm1 in

Equation (1), where η1, ..., ηk are random values of G1. With
the aggregation, the length of a ring signature is only d/k of
the length of a block. Generally, to obtain a smaller size of a
ring signature than the size of a block, we choose k > d. As
a trade-off, the communication cost of an auditing task will
be increasing with an increase of k.

C. Support Dynamic Operations
To enable each user in the group to easily modify data and

share the latest version of data with the rest of the group,
Oruta should also support dynamic operations on shared data.
An dynamic operation indicates an insert, delete or update
operation on a single block. However, since the computation of
a ring signature includes an identifier of a block (as presented
in HARS), traditional methods, which only use the index of a
block as its identifier (e.g. the index of blockmmmj is j), are not
suitable for supporting dynamic operations on shared data. The
reason is that, when a user modifies a single block in shared
data by performing an insert or delete operation, the indices
of blocks that after the modified block are all changed, and
the changes of these indices require users to re-compute the
signatures of these blocks, even though the content of these
blocks are not modified.

Insert

Index Block V R
1 mmm1 δ r1
2 mmm′

2
3δ/2 r′

2

3 mmm2 2δ r2
4 mmm3 3δ r3
.
.
.

.

.

.
.
.
.

.

.

.

n+ 1 mmmn nδ rn

Index Block V R
1 mmm1 δ r1
2 mmm2 2δ r2
3 mmm3 3δ r3
.
.
.

.

.

.
.
.
.

.

.

.

n mmmn nδ rn

Fig. 3. Insert block mmm′

2
into shared data using an index hash table as

identifiers.

Update
Index Block V R
1 mmm′

1
δ r′

1

2 mmm2 2δ r2
3 mmm4 4δ r4
4 mmm5 5δ r5
.
.
.

.

.

.
.
.
.

.

.

.

n− 1 mmmn nδ rn

Index Block V R
1 mmm1 δ r1
2 mmm2 2δ r2
3 mmm3 3δ r3
4 mmm4 4δ r4
5 mmm5 5δ r5
.
.
.

.

.

.
.
.
.

.

.

.

n mmmn nδ rn

Delete

Fig. 4. Update blockmmm1 and delete blockmmm3 in shared data using an index
hash table as identifiers.

By utilizing index hash tables [8], our mechanism can allow
a user to efficiently perform a dynamic operation on a single
block, and avoid this type of re-computation on other blocks.
Different from [8], in our mechanism, an identifier from the
index hash table is described as idj = {vj , rj}, where vj is
the virtual index of blockmmmj , and rj is a random generated by
a collision-resistance hash function H2 : {0, 1}∗ → Zq with
rj = H2(mmmj ||vj). Here, q is a much smaller prime than p.
The collision-resistance of H2 ensures that each block has a
unique identifier. The virtual indices are able to ensure that all
the blocks in shared data are in the right order. For example,

299299

if vi < vj , then block mmmi is ahead of block mmmj in shared
data. When shared data is created by the original user, the
initial virtual index of block mmmj is computed as vj = j · δ,
where δ is a system parameter decided by the original user.
If a new block mmm′

j is inserted, the virtual index of this new
block mmm′

j is v′j = (vj−1 + vj)/2. Clearly, if block mmmj and
block mmmj+1 are both originally created by the original user,
the maximal number of inserted blocks that is allowed between
blockmmmj and blockmmmj+1 is δ. Examples of different dynamic
operations on shared data with index hash tables are described
in Figure 3 and 4.

D. Construction of Oruta
Now, we present the details of our public auditing mech-

anism, Oruta. It includes four algorithms: KeyGen, SigGen,
ProofGen and ProofVerify. In KeyGen, users generate their
own public/private key pairs. In SigGen, a user (either the
original user or a group user) is able to compute ring signatures
on blocks in shared data. ProofGen is operated by the TPA
and the cloud server together to generate a proof of possession
of shared data. In ProofVerify, the TPA verifies the proof and
sends an auditing report to the user.
Note that the group is pre-defined before shared data is

created in the cloud and the membership of the group is
not changed during data sharing. Before the original user
outsources shared data to the cloud, she decides all the group
members, and computes all the initial ring signatures of all the
blocks in shared data with her private key and all the group
members’ public keys. After shared data is stored in the cloud,
when a group member modifies a block in shared data, this
group member also needs to compute a new ring signature on
the modified block.
Scheme Details. Let G1, G2 and GT be multiplicative

cyclic groups of order p, g1 and g2 be generators of groups
G1, G2, respectively. Let e : G1 × G2 → GT be a bilinear
map, and ψ : G2 → G1 be a computable isomorphism with
ψ(g2) = g1. There are three hash functionsH1: {0, 1}∗ → G1,
H2 : {0, 1}∗ → Zq and h : G1 → Zp. The global
parameters are (e, ψ, p, q,G1, G2, GT , g1, g2, H1, H2, h). The
total number of users in the group is d.
Shared data M is divided into n blocks, and each block

mmmj is further divided into k elements in Zp. Therefore, shared
data M can be described as a n× k matrix:

M =

⎛
⎜⎝

mmm1

...
mmmn

⎞
⎟⎠ =

⎛
⎜⎝

m1,1 . . . m1,k

...
. . .

...
mn,1 . . . mn,k

⎞
⎟⎠ ∈ Zn×k

p .

KeyGen. User ui randomly picks xi ∈ Zp and computes
wi = gxi

2 . User ui’s public key is pki = wi and her private
key is ski = xi. The original user also randomly generates a
public aggregate key pak = (η1, ..., ηk), where ηl are random
elements of G1.
SigGen. Given all the d group members’ public keys

(pk1, ...,pkd) = (w1, ..., wd), a block mmmj = (mj,1, ...,mj,k),
its identifier idj , a private key sks for some s, user us
computes the ring signature of this block as follows:

1) She first aggregates block mmmj with the public aggregate
key pak, and computes

βj = H1(idj)
k∏

l=1

η
mj,l

l ∈ G1. (4)

2) After computing βj , user us randomly chooses aj,i ∈ Zp

and sets σj,i = g
aj,i

1 , for all i �= s. Then she calculates

σj,s =

(
βj

ψ(
∏

i�=s w
aj,i

i)

)1/xs

∈ G1. (5)

The ring signature of block mmmj is σσσj = (σj,1, ..., σj,d).
ProofGen. To audit the integrity of shared data, a user

first sends an auditing request to the TPA. After receiving an
auditing request, the TPA generates an auditing message [2]
as follows:
1) The TPA randomly picks a c-element subset J of set

[1, n] to locate the c selected blocks that will be checked
in this auditing process, where n is total number of
blocks in shared data.

2) For j ∈ J , the TPA generates a random value yj ∈ Zq.
Then, the TPA sends an auditing message {(j, yj)}j∈J to the
cloud server.
After receiving an auditing message {(j, yj)}j∈J , the cloud

server generates a proof of possession of selected blocks as
follows:
1) Chooses a random element rl ∈ Zq, and calculates λl =

ηrll ∈ G1, for l ∈ [1, k].
2) Computes μl =

∑
j∈J yjmj,l + rlh(λl) ∈ Zp, for l ∈

[1, k].
3) Aggregates signatures as φi =

∏
j∈J σ

yj

j,i, for i ∈ [1, d].
After the computation, the cloud server outputs an auditing
proof {λλλ,μμμ,φφφ, {idj}j∈J }, and sends it to the TPA, where λλλ =
(λ1, ..., λk), μμμ = (μ1, ..., μk) and φφφ = (φ1, ..., φd).
ProofVerify. With an auditing message {(j, yj)}j∈J , an

auditing proof {λλλ,μμμ,φφφ, {idj}j∈J }, public aggregate key
pak = (η1, ..., ηk), and all the group members’ public keys
(pk1, ...,pkd) = (w1, ..., wd), the TPA verifies the correctness
of this proof by checking the following equation:

e(
∏
j∈J

H1(idj)
yj ·

k∏
l=1

ημl

l , g2)

?
=

(
d∏

i=1

e(φi, wi)

)
· e(

k∏
l=1

λ
h(λl)
l , g2). (6)

If the above equation holds, then the TPA believes that the
blocks in shared data are all correct, and sends a positive
auditing report to the user. Otherwise, it sends a negative one.

E. Security Analysis of Oruta
Now, we discuss security properties of Oruta, including its

correctness, unforgeability, identity privacy and data privacy.
Theorem 5: During an auditing task, the TPA is able to

correctly audit the integrity of shared data under Oruta.

300300

Proof: To prove the correctness of Oruta is equivalent of
proving Equation (6) is correct. Based on properties of bilinear
maps and Theorem 1, the right-hand side (RHS) of Equation
(6) can be expanded as follows:

RHS =

⎛
⎝ d∏

i=1

e(
∏
j∈J

σ
yj

j,i, wi)

⎞
⎠ · e(k∏

l=1

λ
h(λl)
l , g2)

=

⎛
⎝∏

j∈J

(
d∏

i=1

e(σj,i, wi)
yj)

⎞
⎠ · e(k∏

l=1

η
rlh(λl)
l , g2)

=

⎛
⎝∏

j∈J

e(βj , g2)
yj

⎞
⎠ · e(k∏

l=1

η
rlh(λl)
l , g2)

= e(
∏
j∈J

(H1(idj)

k∏
l=1

η
mj,l

l)yj , g2) · e(

k∏
l=1

η
rlh(λl)
l , g2)

= e(
∏
j∈J

H1(idj)
yj ·

k∏
l=1

η
∑

j∈J
mj,lyj

l ·

k∏
l=1

η
rlh(λl)
l , g2)

= e(
∏
j∈J

H1(idj)
yj ·

k∏
l=1

ημl

l , g2).

Theorem 6: For an untrusted cloud, it is computational
infeasible to generate a forgery of an auditing proof under
Oruta.

Proof: Following the security model and the game defined
in [6], we first define a game, named Game 1, as follows:
Game 1: The TPA sends an auditing message {j, yj}j∈J

to the cloud, the auditing proof on the correct shared data M
should be {λλλ,μμμ,φφφ, {idj}j∈J }, which should pass the verifica-
tion with Equation (6). However, the untrusted cloud generates
a proof on incorrect shared data M ′ as {λλλ,μμμ′,φφφ, {idj}j∈J },
where μμμ′ = (μ′

1, ..., μ
′
k) and μ′

l =
∑

j∈J yjm
′
j,l + rlh(λl) ∈

Zp, for l ∈ [1, k]. Define Δμl = μ′
l−μl for 1 ≤ l ≤ k, and at

least one element of {Δμl}1≤l≤k is nonzero. If this proof still
pass the verification, then the untrusted cloud wins. Otherwise,
it fails.
If the untrusted cloud could win Game 1, we can find

a solution to the Discrete Logarithm problem in G1 with
probability of 1−1/p, which contradicts to the assumption that
the Discrete Logarithm problem is hard in G1. Therefore, for
an untrusted cloud, it is computational infeasible to win Game
1 and generate a forgery of an auditing proof on incorrect
shared data. Due to space limitations, the full proof of this
theorem can be found in our technical report [9].
Now, we show that the TPA is able to audit the integrity

of shared data, but the identity of the signer on each block in
shared data is not disclosed to the TPA.
Theorem 7: During an auditing task, the probability for

the TPA to distinguish the identities of all the signers on the
c selected blocks in shared data is at most 1/dc.

Proof: With Theorem 4, we have, for any algorithm A,
the probability to reveal the signer on one block in shared data
is 1/d. Because the c selected blocks in an auditing task are

signed independently, the total probability that the TPA can
distinguish all the signers’ identities on the c selected blocks
in shared data is at most 1/dc.
Following the similar theorem in [3], we show that our

mechanism is also able to support data privacy.
Theorem 8: Given an auditing proof = {λλλ,μμμ,φφφ, {idj}jJ

}, it is computational infeasible for the TPA to reveal any
private data in shared data under Oruta.

Proof: If the combined element
∑

j∈J yjmj,l, which
is a linear combination of elements in blocks, is directly
sent to the TPA, the TPA can learn the content of data by
solving linear equations after collecting a sufficient number
of linear combinations. To preserve private data from the
TPA, the combined element is computed with random rl as
μl =

∑
j∈J yjmj,l + rlh(λl). In order to still solve linear

equations, the TPA must know the value of rl ∈ Zp. However,
given ηl ∈ G1 λl = ηrll ∈ G1, computing rl is as hard
as solving the Discrete Logarithm problem in G1, which is
computational infeasible. Therefore, give λλλ and μμμ, the TPA
cannot directly obtain any linear combination of elements in
blocks, and cannot further reveal any private data in shared
data M by solving linear equations.

VI. PERFORMANCE
We now evaluate the performance of Oruta. Due to space

limitations, we only provide some experimental results of
Oruta in this paper. Detailed analysis of computation and
communication cost, and further experimental results can be
found in our technical report [9].
In the following experiments,, we utilize the GNU Mul-

tiple Precision Arithmetic (GMP) library and Pairing Based
Cryptography (PBC) library to simulate the cryptographic
operations in Oruta, and all the experiments are tested on
a 2.26GHz Linux system over 1, 000 times. We assume
|p| = 160 bits, |q| = 80 bits, the number of blocks in shared
data is n = 1, 000, 000. According to previous work [2], to
keep the detection probability greater than 99%, we set the
number of selected blocks in an auditing task as c = 460.
If only 300 blocks are selected, the detection probability is
greater than 95%.

0 5 10 15 20
d: the size of the group

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
u
d
it
in
g
ti
m
e
(s
) c=460

c=300

(a) Impact of d on auditing time (s),
where k = 100.

0 50 100 150 200
k: the number of elements per block

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
u
d
it
in
g
ti
m
e
(s
) c=460

c=300

(b) Impact of k on auditing time (s),
where d = 10.

Fig. 5. Performance of Auditing

1) Performance of Auditing: According to the presentation
in Section V, the auditing time of an auditing task is deter-
mined by the number of users in the group, the number of
elements in each block and the number of selected block in

301301

this auditing task. As shown in Fig. 5(a), when k is fixed, the
auditing time of the entire shared data is linearly increasing
with the size of the group. Similarly, when d is fixed in Fig.
5(b), the auditing time of the entire shared data is linearly
increasing with the number of elements in each block. It is
clear in Table II that Oruta can efficiently audit the integrity of
shared data without downloading the entire data. Specifically,
when the size of shared data is 2 GB and c = 300, the
time of auditing the integrity of entire data is 1.32 seconds
and the communication cost is only 10.95 KB. Compare to
the total size of shared data, the communication cost of an
auditing task is quite small. We can also see that, to maintain
a higher detection probability, the TPA needs to consume
more computation and communication overhead to finish the
auditing task on shared data.

TABLE II
PERFORMANCE OF AUDITING

System Parameters k = 100, d = 10,
Storage Usage 2GB + 200MB (data + signatures)
Selected Blocks c 460 300
Communication Cost 14.55KB 10.95KB
Auditing Time 1.94s 1.32s

VII. RELATED WORK

Ateniese et al. [2] first proposed provable data possession
(PDP), which allows a client to verify the integrity of her data
stored in an untrusted server without retrieving the entire file.
PDP is the first mechanism that provides public verifiability
(also referred to as public auditing). However, it only supports
static data. To improve the efficiency of verification, Ateniese
et al. [10] constructed a scalable and efficient PDP using
symmetric keys. This mechanism is able to support partially
dynamic data operations. Unfortunately, it cannot support
public verifiability and only offers each user a limited number
of verification requests.
Juels and Kaliski [11] defined another similar model called

proof of retrievability (POR), which is also able to check the
correctness of data stored in an untrusted server. The original
file is added with a set of randomly-valued blocks called
sentinels. The user verifies the integrity of data by asking the
server to return specific sentinel values. Shacham and Waters
[6] designed two improved POR, which are built on pseudo-
random functions and BLS signatures [12].
Wang et al. [7] leveraged the Merkle Hash Tree to construct

a public auditing mechanism, which can support fully dynamic
data. Erway et al. [13] also presented a fully dynamic PDP
based on the rank-based authenticated dictionary. Zhu et al.
[8] exploited index hash tables to support fully dynamic data
during the public auditing process.
More recently, Wang et al. [3] first considered public

auditing for cloud data with data privacy. In this mechanism,
the third party auditor is able to check the integrity of
cloud data but cannot obtain any private data. In addition,
to operate multiple users’ auditing tasks simultaneously, they
also extended their mechanism to enable batch auditing by

leveraging aggregate signatures [5]. Our recent work [14] is
able to audit the integrity of shared data in the cloud for large
groups. Unfortunately, it cannot support public auditing.

VIII. CONCLUSION
In this paper, we propose Oruta, the first privacy-preserving

public auditing mechanism for shared data in the cloud. With
Oruta, the TPA is able to efficiently audit the integrity of
shared data, yet cannot distinguish who is the signer on
each block, which can preserve identity privacy for users. An
interesting problem in our future work is how to efficiently
audit the integrity of shared data with dynamic groups while
still preserving the identity of the signer on each block from
the third party auditor.

ACKNOWLEDGEMENT
We are grateful to the anonymous reviewers for their helpful

comments. This work is supported by the National Sci-
ence and Technology Major Project (No. 2012ZX03002003),
Fundamental Research Funds for the Central Universities
(No. K50511010001), National 111 Program (No. B08038),
Doctoral Foundation of Ministry of Education of China
(No. 20100203110002) and Program for Changjiang Scholars
and Innovative Research Team in University.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-

winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A View of Cloud Computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, April 2010.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” in Proc.
ACM CCS, 2007, pp. 598–610.

[3] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public
Auditing for Data Storage Security in Cloud Computing,” in Proc. IEEE
INFOCOM, 2010, pp. 525–533.

[4] R. L. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret,” in
Proc. ASIACRYPT. Springer-Verlag, 2001, pp. 552–565.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and Verifi-
ably Encrypted Signatures from Bilinear Maps,” in Proc. EUROCRYPT.
Springer-Verlag, 2003, pp. 416–432.

[6] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” in Proc.
ASIACRYPT. Springer-Verlag, 2008, pp. 90–107.

[7] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamic for Storage Security in Cloud Comput-
ing,” in Proc. European Symposium on Research in Computer Security.
Springer-Verlag, 2009, pp. 355–370.

[8] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic
Audit Services for Integrity Verification of Outsourced Storage in
Clouds,” in Proc. ACM Symposium On Applied Computing, 2011, pp.
1550–1557.

[9] B. Wang, B. Li, and H. Li, “Oruta: Privacy-Preserving Public Auditing
for Shared Data in the Cloud,” University of Toronto, Tech. Rep.,
2011. [Online]. Available: http://iqua.ece.toronto.edu/∼bli/techreports/
oruta.pdf

[10] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
Efficient Provable Data Possession,” in Proc. ICST SecureComm, 2008.

[11] A. Juels and B. S. Kaliski, “PORs: Proofs pf Retrievability for Large
Files,” in Proc. ACM CCS, 2007, pp. 584–597.

[12] D. Boneh, B. Lynn, and H. Shacham, “Short Signature from the Weil
Pairing,” in Proc. ASIACRYPT. Springer-Verlag, 2001, pp. 514–532.

[13] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” in Proc. ACM CCS, 2009, pp. 213–222.

[14] B. Wang, B. Li, and H. Li, “Knox: Privacy-Preserving Auditing for
Shared Data with Large Groups in the Cloud,” in Proc. ACNS. Spring-
Verlag, 2012.

302302

