

Oruta: Privacy-

Preserving Public Auditing

for Shared Data in the Cloud

Supraja

.M

M.tech.,(CSE).

T. Sudha(HOD)

N. Padmaja (Guide)

Sri Padmavati Mahila University

Tirupathi, India

Sri Padmavati Mahila University

 Tirupathi, India

Sri Padmavati Mahila University

 Tirupathi, India

We believe that sharing data among multiple users is

perhaps one of the most engaging features that motivates

cloud storage. A unique problem introduced during the

process of public auditing for shared data in the cloud is

how to preserve identity privacy from the TPA, because

the identities of signers on shared data may indicate that a

particular user in the group or a special block in shared data

is a higher valuable target than others.

Abstract—With cloud storage services, it is common

place for data to be not only stored in the cloud, but also

shared across multiple users. However, public auditing

for such shared data — while preserving identity

privacy— remains to be an open challenge. In this

paper, we propose the first privacy-preserving

mechanism that allows public auditing on shared data

stored in the cloud. In particular, we exploit ring

signatures to compute the verification information

needed to audit the integrity of shared data. With our

mechanism, the identity of the signer on each block in

shared data is kept private from a third party auditor

(TPA), who is still able to publicly verify the integrity of

shared data without retrieving the entire file. Our

experimental results demonstrate the effectiveness and

efficiency of our proposed mechanism when auditing

shared data.

mechanism for cloud data, so that during public auditing,

the content of private data belonging to a personal user is not

disclosed to the third party auditor.

keywords—Public auditing, privacy-preserving,shared data, cloud

computing.

For example, Alice and Bob work together as a group and

share a file in the cloud. The shared file is divided into a

number of small blocks, which are independently signed

by users. Once a block in this shared file is modified by a

user, this user needs to sign the new block using her

public/private key pair. The TPA needs to know the

identity of the signer on each block in this shared file, so

that it is able to audit the integrity of the whole file based

on requests from Alice or Bob.

Fig. 1. Alice and Bob share a file in the cloud.

 As shown in Fig. 1, after performing several

auditing tasks, some private and sensitive information

may reveal to the TPA. On one hand, most of the blocks

in shared file are signed by Alice, which may indicate

that Alice is a important role in this group, such as a

group leader. On the other hand, the 8-th block is

frequently modified by different users. It means this

block may contain high-value data, such as a final bid in

an auction, that Alice. and Bob need to discuss and

change it several times. As described in the example

above, the identities of signers on shared data may

indicate which user in the group or block in shared data is

a higher valuable target than others. Such information is

confidential to the group and should not be revealed to

any third party. However, no existing mechanism in the

1 INTRODUCTION

Cloud service providers manage an enterprise-class

infrastructure that offers a scalable, secure and

re-liable environment for users, at a much lower

marginal cost due to the sharing nature of resources.

It is routine for users to use cloud storage services to

share data with others in a team, as data sharing

becomes a standard feature in most cloud storage

offerings, including Dropbox and Google Docs.

The integrity of data in cloud storage, however, is

subject to skepticism and scrutiny, as data stored in an

untrusted cloud can easily be lost or corrupted, due to

hardware failures and human errors [1]. To protect the

integrity of cloud data, it is best to perform public

auditing by introducing a third party auditor (TPA),

who offers its auditing service with more powerful

computation and communication abilities than regular

users.

The first provable data possession (PDP) mechanism

[2] to perform public auditing is designed to check the

correctness of data stored in an untrusted server,

without retrieving the entire data. Moving a step

forward, Wanget al. [3] (referred to as WWRL in this

paper) is designed to construct a public auditing

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

1

literature is able to perform public auditing on shared

data in the cloud while still preserving identity privacy.

 2.2 Threat Model

2.2.1 Integrity Threats

 Two kinds of threats related to the integrity of shared

data are possible. First, an adversary may try to corrupt

the integrity of shared data and prevent users from using

data correctly. Second, the cloud service provider may

inadvertently corrupt (or even remove) data in its

storage due to hardware failures and human errors.

Making matters worse, in order to avoid jeopardizing its

reputation, the cloud server provider may be reluctant to

inform users about such corruption of data.

2.2.2. Privacy Threats

 The identity of the signer on each block in shared data is

private and confidential to the group. During the process of

auditing, a semi-trusted TPA, who is only responsible for

auditing the integrity of shared data, may try to reveal the

identity of the signer on each block in shared data based on

verification information. Once the TPA reveals the identity

of the signer on each block, it can easily distinguish a

high-value target (a particular user in the group or a special

block in shared data).

2.3 Design Objectives

 To enable the TPA efficiently and securely verify

shared data for a group of users, Oruta should be designed to

achieve following properties:

(1) Public Au-diting: The third party auditor is able to

publicly verify the integrity of shared data for a group of users

without retrieving the entire data.

(2) Correctness: The third party auditor is able to correctly

detect whether there is any corrupted block in shared data.

(3) Unforgeability: Only a user in the group can generate

valid verification information on shared data.

(4) Identity Privacy: During auditing, the TPA cannot

distinguish the identity of the signer on each block in

shared data.

3 PRELIMINARIES

 In this section, we briefly introduce cryptographic primitives and

their corresponding properties that we implement in Oruta.

3.1 Bilinear Maps

 We first introduce a few concepts and properties re-lated to

bilinear maps.

 1) G1, G2 and GT are three multiplicative cyclic

 groups of prime order p;

 2) g1 is a generator of G1, and g2 is a generator of G2;

 3) ψ is a computable isomorphism from G2 to G1,

2 PROBLEM STATEMENT

2.1 System Model

As illustrated in Fig. 2, our work in this paper involves

three parties: the cloud server, the third party auditor

(TPA) and users. There are two types of users in a group:

the original user and a number of group users. The original

user and group users are both members of the group.

Group members are allowed to access and modify shared

data created by the original user based on access control

polices [8]. Shared data and its verification information

(i.e. signatures) are both stored in the cloud server. The

third party auditor is able to verify the integrity of shared

data in the cloud server on behalf of group members.

Fig. 2. Our system model includes the cloud server, the

third party auditor and users.
In this paper, we only consider how to audit the

integrity of shared data in the cloud with static groups.

It means the group is pre-defined before shared data is

created in the cloud and the membership of users in

the group is not changed during data sharing. The

original user is responsible for deciding who is able to

share her data before outsourcing data to the cloud.

Another interesting problem is how to audit the

integrity of shared data in the cloud with dynamic

groups — a new user can be added into the group and

an existing group member can be revoked during data

sharing — while still preserving identity privacy. We

will leave this problem to our future work.
 When a user (either the original user or a

group user) wishes to check the integrity of shared

data, she first sends an auditing request to the TPA.

After receiving the auditing request, the TPA

generates an auditing message to the cloud server, and

retrieves an auditing proof of shared data from the

cloud server. Then the TPA verifies the correctness of

the auditing proof. Finally, the TPA sends an auditing

report to the user based on the result of the

verification.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

2

 with ψ(g2) = g1;

4) e is a bilinear map e: G1 × G2 →

GT with the

following properties:

 Computability: there exists an efficiently

computable

algorithm for computing the map.

 Bilinearity: for all u ∈

G1, v ∈

G2 and a, b ∈

Zp,

e(ua,

vb) = e(u, v)ab.

 Non-degeneracy: e(g1, g2) ≠

1.

These properties further imply two additional properties:

(1) for any u1, u2 ∈

G1 and v ∈

G2, e(u1 · u2, v) = e(u1, v)

· e(u2, v); (2) for any u, v ∈

G2, e(ψ(u), v) = e(ψ(v), u).

3.2 Ring Signatures

 The concept of ring signatures is first proposed by

Rivest

et al. [4] in 2001. With ring signatures, a verifier

is

convinced that a signature is computed using one of

group

members’ private keys, but the verifier is not able

to

determine which one. This property can be used to

preserve

the identity of the signer from a verifier.

The ring signature scheme introduced by Boneh et al.

[5]

(referred to as BGLS in this paper) is constructed on

bilinear

maps. We will extend this ring signature scheme

to construct

our public auditing mechanism.

3.3 Homomorphic Authenticators

 Homomorphic authenticators (also called homomor-

phic

verifiable tags) are basic tools to construct data

auditing

mechanisms [2], [3], [6]. Besides unforgeability

(only a user

with a private key can generate valid signa-

tures), a

homomorphic authenticable signature scheme,

which denotes a

homomorphic authenticator based on

signatures, should also

satisfy the following properties:

 Let (pk, sk) denote the signer’s public/private key

pair, σ1

denote a signature on block m1 ∈

Zp, σ2 denote a

signature on block m2 ∈

Zp.

 • Blockless verification: Given σ1 and σ2, two ran-dom

values α1, α2 ∈

Zp and a block m′

= α1m1 +

α2m2 ∈

Zp, a

verifier is able to check the correctness

of block m′

without

knowing block m1 and m2.

 • Non-malleability Given σ1 and σ2, two random

values α1,

α2 ∈

Zp and a block m′

= α1m1 + α2m2 ∈

Zp, a user, who does

not have private key sk, is not

able to generate a valid signature

σ′

on block m′

by

linearly combining signature σ1 and σ2.

Blockless verification allows a verifier to audit the

correctness

of data stored in the cloud server with a

single block, which is a

linear combination of all the

blocks in data. If the combined

block is correct, the

verifier believes that the blocks in data are

all correct. In

this way,

the verifier does not need to download

all the

blocks to check the integrity of data. Non-malleability

indicates that an attacker cannot generate valid

signatures on

invalid blocks by linearly combining

existing signatures.

 Other cryptographic techniques related to

homomor-phic authenticable signatures includes

aggregate

sig-natures [5], homomorphic signatures [10]

and

batch-verification signatures [11]. If a signature

scheme is

blockless verifiable and malleable, it is a

homomorphic

signature scheme. In the construction of

data auditing

mechanisms, we should use homomorphic

authenticable

signatures, not homomorphic signatures.

4 HOMOMORPHIC AUTHENTICABLE RING

SIGNATURES

4.1 Overview:

In this section, we introduce a new ring signature

scheme,

which is suitable for public auditing. Then, we

will show

how to build the privacy-preserving public

auditing

mechanism for shared data in the cloud based

on this new

ring signature scheme in the next section.

As we introduced

in previous sections, we intend to

utilize ring signatures to

hide the identity of the signer

on each block, so that private

and sensitive information

of the group is not disclosed to

the TPA. However,

traditional ring signatures [4], [5]

cannot be directly

used into public auditing mechanisms,

because these

ring signature schemes do not support

blockless

verification. Without blockless verification, the

TPA has

to download the whole data file to verify the

correctness

of shared data, which consumes excessive

bandwidth

and takes long verification times.

Therefore, we first construct a new homomorphic

authenticable ring signature (HARS) scheme, which is

extended from a classic ring signature scheme [5], de-

noted as BGLS. The ring signatures generated by HARS

is

able not only to preserve identity privacy but also to

support blockless verification.

4.2 Construction of HARS

 HARS contains three algorithms: KeyGen, RingSign

and RingVerify. In KeyGen, each user in the group

generates her public key and private key. In RingSign, a

user in the group is able to sign a block with her private

key

and all the group members’ public keys. A verifier

is

allowed to check whether a given block is signed by a

group

member in RingVerify.

KeyGen. For a user ui in the group U, she randomly

picks

xi ∈

Zp and computes wi = g2xi ∈

G2. Then, user

ui’s

public key is pki = wi and her private key is ski =

xi.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

3

RingSign.Given all the d users’ public keys

(pk1, ...,

pkd) = (w1, ..., wd), a block m ∈

Zp, the iden-tifier of

this block id and the private key sks for some s,

user us

randomly chooses ai ∈

Zp for all i ≠

s, where i ∈

[1, d],

and let σi = g1ai . Then, she computes

 β = H1(id)g1m ϵ G1 . (1)

and sets

all the d users’ public key (pk1, ..., pkd) = (w1, ..., wd),

and

is given access to the hash oracle and the ring-

signing oracle.

The goal of the adversary is to output a

valid ring signature

on a pair of block/identifier (id, m),

where this pair of

block/identifier (id, m) has never been

presented to the

ring-signing oracle. If the adversary

achieves this goal, then it

wins the game.

THEOREM 2: Suppose A is a (t′, ǫ′)-algorithm that can

generate a forgery of a ring signature on a group of

users of

size d. Then there exists a (t, ǫ)-algorithm that

can solve the

co-CDH problem with t ≤

2t′+2cG1 (qH

+dqs+qs+d)+2cG2 d

and ǫ

≥

(ǫ′/(e + eqs))2, where A

issues at most qH hash

queries and at most qs ring-

signing queries, e =

limqs→∞(1+ 1/qs)qs , exponentiation

and inversion on G1

take time cG1 , and exponentiation

and inversion on G2 take

time cG2 .

Proof: The co-CDH problem can be solved by solving

two

random instances of

the following problem: Given

g1ab, g2a

(and g1,g2), compute g1b. We shall construct an

algorithm B

that solves this problem. This problem is

easy if a = 0. In what

follows, we assume a ≠

0.

5 PRIVACY-PRESERVINGPUBLIC

AUDITING FOR SHARED DATA IN THE

CLOUD

5.1 Overview

Using HARS and its properties we established in the previous

section, we now construct Oruta,our privacy-preserving public

auditing mechanism for shared data in the cloud. With Oruta,

the TPA can verify the integrity of shared data for a group of

users without retrieving the entire data. Meanwhile, the

identity of the signer on each block in shared data is kept

private from the TPA during the auditing.

5.2 Reduce Signature Storage

and the ring signature of block m is σ = (σ1, ..., σd) ∈

Gd1.

RingVerify. Given all the d users’ public keys (pk1, ...,

pkd) = (w1, ..., wd), a block m, an identifier id and a

ring signature σ (σ1, ..., σd), a verifier first computes β

= H1(id)g1m ∈ G1, and then checks

If the above equation holds, then the given block m is

signed by one of these d users in the group. Otherwise,

it is not.

4.3 Security Analysis of HARS

 Now, we discuss some important properties of

HARS, including correctness, unforgeability,

blockless verification, non-malleability and identity

privacy.

 THEOREM 1: Given any block and its ring

signature, a verifier is able to correctly check the

integrity of this block under HARS.

 Proof:

equiva-lent

Based on

correctness

follows:

To prove the correctness of HARS is

of proving Equation (3) is correct.

prop-erties of bilinear maps, the

of this equation can be proved as

Now we prove that HARS is able to resistance to

forgery. We follow the security model and the game

defined in BGLS [5]. In the game, an adversary is given

 Another important issue we should consider in the

construction of Oruta is the size of storage used for ring

signatures. According to the generation of ring signatures in

HARS, a block m is an element of Zp and its ring signature

contains d elements of G1, where G1 is a cyclic group with

order p. It means a |p|-bit block requires a d × |p|-bit ring

signature, which forces users to spend a huge amount of space

on storing ring signatures. It is very frustrating for users,

because cloud service providers, such as Amazon, will charge

users based on the storage space they used. To reduce the

storage for ring signatures and still allow the TPA to audit

shared data efficiently, we exploit an aggregated approach

from [6]. Specifically, we aggregate a block mj =

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

4

(mj,1, ..., mj,k) ∈

Zpk in shared data as

Πl=1kηmj,l

instead of computing gm in Equation(1),

where η1 ,….,

ηk are random values of G1. With the

aggregation, the

length of a ring signature is only d/k

of the length of a

block. Similar methods to reduce

the storage space of

signatures can also be found in

[7]. Generally, to obtain a

smaller size of a ring

signature than the size of a block,

we choose k > d.

As a trade-off, the communication cost

will beincreasing with an increase of k.

5.3 Support Dynamic Operations

 To enable each user in the group to easily modify

data in

the cloud and share the latest version of data

with the rest

of the group, Oruta should also support

dynamic

operations on shared data. An dynamic

opera-tion includes

an insert, delete or update

operation on a single block.

However, since the

computation of a ring signature

includes an identifier

of a block (as presented in HARS),

traditional

methods, which only use

the index of a block as

its

identifier, are not suitable for supporting dynamic

operations on shared data. The reason is that, when a

user

modifies a single block in shared data by

performing an

insert or delete operation, the indices

of blocks that after

the modified block are all

changed (as shown in Figure 3

and 4), and the

changes of these indices require users to

re-compute

the signatures of these blocks, even though the

contentoftheseblocksarenot

modified.

 5.4 Construction of Oruta

 Now, we present the details of our public auditing

mechanism, Oruta. It includes five algorithms: KeyGen,

SigGen, Modify, ProofGen and ProofVerify. In

Key-Gen, users generate their own public/private key

pairs.

In SigGen, a

user (either the original user or a group

user) is

able to compute ring signatures on blocks in

shared data.

Each user in the group is able to perform

an insert, delete or

update operation on a block, and

compute the new ring

signature on this new block in

Modify. ProofGen is operated

by the TPA and the

cloud server together to generate a proof

of

possession of shared data. In ProofVerify, the TPA

verifies the proof and sends an auditing report to the

user.

 Note

that the group is pre-defined before shared

data is

created in the cloud and the membership of

the group is not

changed during data sharing. Before

the original user

outsources shared data to the cloud,

she decides all the group

members, and computes all

the initial ring signatures of all

the blocks in shared

data with her private key and all the

group members’

public keys. After shared data is stored in the

cloud,

when a group member modifies a block in shared

data,

this group member also needs to compute

a new

ring

signature on the modified block.

ProofGen. To audit the integrity of shared data, a

user first

sends an auditing request to the TPA. After

receiving an

auditing request, the TPA generates an

auditing message [2] as follows:

 1) The TPA randomly picks a c-element subset J

of set [1,

n] to locate the c selected blocks that

will be checked in this

auditing process, where

n is total number of blocks in shared

data.

 2) For j ϵ

J , the TPA generates a random value yj

ϵ

Zq.

Then, the TPA sends an auditing message

{(j, yj)} j ϵ

J to the

cloud server (as illustrated inFig. 7).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

5

by computing d+2 pairing operations in verification

instead of computing d+3 pairing operations with Equation

(6). Specifically, Equation (6) can also bedescribed as

After receiving an auditing message {(j, yj)} j ϵ J , the

cloud server generates a proof of possession of selected

blocks with the public aggregate key pak. More

specifically:

1) The cloud server chooses a random element rl ϵ Zq,

and calculates λl = ηlrl ∈ G1, for l ∈ [1, k].

2) To hide the linear combination of selected blocks using

random masking, the cloud server computes

 3) The cloud server aggregates signatures as

 π j ϵ J σ j,iyj, for i ϵ [1, d].

 After the computation, the cloud server sends an

auditing proof {λ,µ,φ, {idj }j∈J } to the TPA, where

(λ1, ..., λk), µ = (µ1, ..., µk) and φ = (φ1, ..., φd) (as

shown in Fig. 8).

5.5Security Analysis of Oruta

 Now, we discuss security properties of Oruta, including

its correctness, unforgeability, identity privacy and data

privacy.

 THEOREM 3: During an auditing task, the TPA is able to

correctly audit the integrity of shared data under Oruta.

 Proof: To prove the correctness of Oruta is equivalent of

proving Equation (6) is correct. Based on properties of

bilinear maps and Theorem 1, the right-hand side (RHS) of

Equation (6) can be expanded as follows:

THEOREM 4: For an untrusted cloud, it is computational

infeasible to generate an invalid auditing proof that can

pass the verification under Oruta.

Proof: As proved in Theorem ??, for an untrusted cloud, if

co-CDH problem in G1 and G2 is hard, it is computational

infeasible to compute a valid ring signa-ture on an invalid

block under HARS.

ProofVerify. With an auditing proof {λ,µ,φ, {idj }j∈J, an

auditing message {(j, yj)}j∈J , public aggregate key pak

= (η1, ..., ηk), and all the group members’ public keys

(pk1, ..., pkd) = (w1, ..., wd), the TPA verifies the

correctness of this proof by checking the following

equation

 Following a similar theorem in [2], we show that

our scheme is also able to support data privacy.

 If the above equation holds, then the TPA

believes that the blocks in shared data are all

correct, and sends a positive auditing report to the

user. Otherwise, it sends a negative one.
Discussion. Based on the properties of bilinear maps,

we can further improve the efficiency of verification

5.6 Batch Auditing

 More concretely, we assume there are B auditing tasks

need to be operated, the shared data in all the B auditing

tasks are denoted as M1, ..., MB and the number of users

sharing data Mb is described as db, where 1 ≤ b ≤ B. To

efficiently audit these shared data for different users in a

single auditing task, the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

6

TPA sends an auditing message as {(j, yj)}j∈J to the

cloud server. After receiving the auditing message,

the

cloud server generates an auditing proof

{λb,µb,φb,

{idb,j }j∈J } for each shared data Mb as we

presented

in ProofGen, where 1 ≤

b ≤

B, 1 ≤

l ≤

k,

Here idb,j is described as idb,j = {fb, vj , rj },where fb

is the identifier of shared data Mb, e.g. the name of

shared data Mb. Clearly, if two blocks are in the same

shared data, these two blocks have the same identifier

of shared data. As before, when a user modifies a

single block in shared data Mb, the identifiers of other

blocks in shared data Mb are not changed.After the

computation, the cloud server sends all the B auditing

proofs together to the TPA. Finally, the TPA verifies

the correctness of these B proofs simultaneously by

checking the following equation with all the ΣBb=1 db

users’ public keys:

once the batch auditing of the B auditing proofs fails,

the

TPA divides the set of all the B auditing proofs

into two

subsets, which contains B/2 auditing proofs

in each subset,

and re-checks the correctness of

auditing proofs in each

subset using batch auditing. If

the verification result of one

subset is correct, then

all the auditing proofs in this subset

are all correct.

Otherwise, this subset is further divided into

two sub-

subsets, and the TPA re-checks the correctness of

auditing proofs in the each sub-subsets with batch

auditing

until all the incorrect auditing proofs are

found. Clearly,

when the number of incorrect

auditing proofs increases, the

efficiency of batch

auditing will be reduced. Experimental

results in

Section 6 shows that, when less than 12% of

auditing

proofs among all the B auditing proofs are

incorrect,

batching auditing is still more efficient than

verifying

these auditing proofs one by one.

6 PERFORMANCE

 In this section, we first analysis the computation and

communication costs of Oruta, and then evaluate the

performance of Oruta in experiments.

6.1 Computation Cost

 The main cryptographic operations used in Oruta include

multiplications, exponentiations, pairing and hashing

operations. For simplicity, we omit additions in the

following discussion, because they are much easier to be

computed than the four types of operations mentioned above.

6.2 Communication Cost

The communication cost of Oruta is mainly introduced by

two factors: the auditing message and the auditing proof.

For each auditing essage {j, yj}j2J , the communication cost

is c(|q| + |n|) bits, where |q| is the length of an element of Zq

and |n| is the length of an index. Each auditing = {λ,μ,ɸ,

{idj}jϵJ } contains (k+d) elements of G1, k elements of Zp

and c elememts of Zq, therefore the communication cost

of one auditing proof is (2k + d)|p| + c|q| bits.

6.3 Experimental Results

 We now evaluate the efficiency of Oruta in experiments.

To implement these complex cryptographic operations that

we mentioned before, we utilize the GNU Multiple

Precision Arithmetic (GMP)2 library and Pair-ing Based

Cryptography (PBC)3 library. All the following experiments

are based on C and tested on a 2.26 GHz Linux system over

1, 000 times.

where pkb,i = wb,i. If the above verification equation

holds, then the TPA believes that the integrity of all

the B shared data is correct. Otherwise, there is at

least one shared data is corrupted.

 Based on the correctness of Equation (6), the

correct-ness of batch auditing can be presented as

follows:

 If all the B auditing requests on B shared data are

from the same group, the TPA can further improve the

efficiency of batch auditing by verifying

Note that batch auditing will fail if at least one incorrect

auditing proof exists in all the B auditing proofs. To

allow most of auditing proofs to still pass the

verification when there is only a small number of

incorrect auditing proofs, we can utilize binary search

[3] during batch auditing. More specifically,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

7

7 RELATED WORK

 Provable data possession (PDP), first proposed by

Ateniese et al. [2], allows a verifier to check the

correctness of a client’s data stored at an untrusted

server. By utilizing RSA-based homomorphic

authenticators and sampling strategies, the verifier is

able to publicly audit the integrity of data without

retrieving the entire data, which is referred to as

public verifiability or public auditing. Unfortunately,

their mechanism is only suitable for auditing the

integrity of static data. Juels and Kaliski [13] defined

another similar model called proofs of retrievability

(POR), which is also able to check the correctness of

data on an untrusted server. The original file is added

with a set of randomly-valued check blocks called

sentinels. The verifier challenges the untrusted server

by specifying the positions of a collection of sentinels

and asking the untrusted server to return the

Associated sentinel values. Shacham and Waters [6]

designed twoimproved POR schemes. The first

scheme is built from BLS signatures, and the second

one is based on pseudo random functions.

8 CONCLUSION

 In this paper, we propose Oruta, the first

privacy preserving public auditing mechanism for

shared data in the cloud. We utilize ring signatures to

construct homomorphic authenticators, so the TPA is

able to audit the integrity of shared data, yet cannot

distinguish who is the signer on each block, which can

achieve identity privacy. To improve the efficiency of

verification for multiple auditing tasks, we further

extend our mechanism to support batch auditing. An

interesting problem in our future work is how to

efficiently audit the integrity of shared data with

dynamic groups while still preserving the identity of

the signer on each block from the third party auditor.

REFERENCES

1. M. Armbrust, A. Fox, R. Griffith, A. D.Joseph, R.

H.Katz, A. Kon-winski, G. Lee, D. A. Patterson, A.
Rabkin, I. Stoica, and M. Za-haria, ―A View of Cloud

Computing,‖ Communications of the ACM, vol. 53, no.

4, pp. 50–58, Apirl 2010.
2. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peter-son, and D. Song, ―Provable Data

Possession at Untrusted Stores,‖ in Proc.
ACMConferenceonComputerand Communications

Security (CCS), 2007, pp. 598–610

3. C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-Preserving

Public Auditing for Data Storage Security in Cloud Computing,‖
in Proc. IEEE International Conference on Computer

Communications (INFOCOM), 2010, pp. 525–533.

4. R. L. Rivest, A. Shamir, and Y. Tauman, ―How to Leak a
Secret,‖ in Proc. International Conference on the Theory and

Application of CryptologyandInformationSecurity (ASIACRYPT).

Springer-Verlag, 2001, pp. 552– 565.

5. D. Boneh, C. Gentry, B. Lynn, and H. Shacham,―Aggregate and

Verifiably Encrypted Signatures from Bilinear Maps,‖ in Proc.

In-ternational Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer-Verlag,

2003, pp. 416–432.

6. H. Shacham and B. Waters, ―Compact Proofs of
Retrievability,‖inProc.International Conference on the Theory

and Application of CryptologyandInformationSecurity
(ASIACRYPT). Springer-Verlag, 2008, pp. 90– 107.

7. Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S.Yau,

―Dynamic Audit Services for Integrity Verification of
Outsourced Storage in Clouds,‖ in Proc. ACM Symposium on

Applied Computing (SAC), 2011, pp. 1550–1557.

8. S. Yu, C. Wang, K. Ren, and W. Lou, ―Achieving Secure,
Scalable, and Fine-grained Data Access Control in Cloud

Computing,‖ in Proc. IEEE International Conference on

Computer Communications (INFOCOM), 2010, pp. 534–542.
9. D. Boneh, B. Lynn, and H. Shacham, ―Short Signature from the

Weil Pairing,‖ in Proc. International Conference on the Theory

and Application of Cryptology and Information Security
(ASIACRYPT). Springer-Verlag, 2001, pp. 514–532.

10. D. Boneh and D. M. Freeman, ―Homomorphic Signatures for

Polynomial Functions,‖ in Proc. International Conference on the
Theory and Applications of Cryptographic Techniques

(EUROCRYPT). Springer-Verlag, 2011, pp. 149–168.

11. A. L. Ferrara, M. Green, S. Hohenberger, and M. Ø. Pedersen,
―Practical Short Signature Batch Verification,‖ in Proc. RSA

Con-ference, the Cryptographers’ Track (CT-RSA). Springer-

Verlag, 2009, pp. 309–324.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACI-2015 Conference Proceedings

Volume 3, Issue 18

Special Issue - 2015

8

