
OS-Controlled Cache Predictability for Real-Time Systems

Jochen Liedtke∗ Hermann Ḧartig∗∗ Michael Hohmuth∗∗

Abstract

Cache-partitioning techniques have been invented to make
modern processors with an extensive cache structure use-
ful in real-time systems where task switches disrupt ca-
che working sets and hence make execution times un-
predictable. This paper describes an OS-controlled
application-transparent cache-partitioning technique. The
resulting partitions can be transparently assigned to tasks
for their exclusive use. The major drawbacks found in
other cache-partitioning techniques, namely waste of mem-
ory and additions on the critical performance path within
CPUs, are avoided using memory coloring techniques that
do not require changes within the chips of modern CPUs
or on the critical path for performance. A simple filter
algorithm commonly used in real-time systems, a matrix-
multiplication algorithm and the interaction of both are
analysed with regard to cache-induced worst case penal-
ties. Worst-case penalties are determined for different
widely-used cache architectures. Some insights regarding
the impact of cache architectures on worst-case execution
are described.

∗ IBM T. J. Watson Research Center, 30 Saw Mill River Road,
Hawthorne, NY 10532, and GMD — German National Research Center
for Information Technology, SET-RS, 53754 Sankt Augustin, Germany,
email: jochen@watson.ibm.com

∗∗ TU Dresden, Dept. of Computer Science, 01062 Dresden, Ger-
many, email: hermann.haertig@inf.tu-dresden.de

Copyright 1997 IEEE. Published in the Proceedings of RTAS’97,
June 9-11, 1997 in Montreal, Canada. Personal use of this material is
permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Tele-
phone: + Intl. 908- 562-3966.

1 Introduction

The primary distinguishing requirement for real-time sys-
tems is that deadlines must be met. To meet deadlines,
worst-case execution times need to be known.

Access times in modern memory hierarchies vary
greatly. Pentium’s first-level cache allows 2 accesses per
cycle. Cache misses in first-level and second-level caches
may require 50 or more cycles if the cache line to be re-
placed needs to be written back before it can be filled.
These large differences make the approach of using dis-
abled caches in deriving worst-case estimates completely
obsolete.

Realistic worst-case execution times in systems with ex-
tensive caches are increasingly hard to determine since they
depend on reference locality which is strongly influenced
by thread switches and address-space switches. In particu-
lar, the impact of externally-triggered context switches (in-
terrupts) is nearly unpredictable.

For these reasons, caching architectures are currently
not commonly used in real-time systems. However, if in-
creasingly real-time applications find their way into stan-
dard workstations, realistic worst-case behaviour needs to
be asserted.

This observation has attracted a number of researchers
to invent cache-partitioning techniques that allow to ded-
icate partitions of caches to applications. However, the
currently proposed techniques either require changes in
the critical path of a CPU’s implementation or waste large
amounts of memory.

This paper describes a cache-partitioning technique that
isolates tasks from cache disruptions by other tasks and
the operating system. The technique enables partitioning
caches and assignment of partitions to tasks. We describe
an experimental environment to measure the worst-case ef-
fect of cache disruptions due to task switches in an asyn-
chronous system. Section 5 discusses experimental results
of applying the partitioning technique to some simple algo-
rithms commonly used in real-time systems.



2 Rationale

2.1 Predictability

In real-time systems, the optimization criterion is not the
average but theworst-caseexecution time. Since a real-
time task has to meet its deadline under all circumstances,
always enough resources for the worst-case must be sched-
uled. The real-time load is thus limited by the sum of worst-
case execution times, worst-case memory consumption etc.

The closer the worst-case costcmax of a task gets to its
best-case costcmin, the better predictable the system is. We
usecmax/cmin to describe theunpredictabilityof a task.
Since we always discuss time costs, the unpredictability
can be regarded as the worst-case slow-down factor.

A reduced unpredictability (increased predictability) of
cached memory systems is required for better real-time
properties of such systems, in particular if time-sharing and
real-time applications should coexist in the system. We
concentrate on the unpredictability that arises from concur-
rent execution of multiple tasks, not on the influence of of
different input data to a single task.

The reader is assumed to be familiar with currently used
cache architectures. Detailed descriptions can be found in
[13; 2; 16; 14; 4].

2.2 The operating system’s view

It is anapplication-specificproblem to make a single task
run-alone predictable. In contrast, it is anoperating-
systemproblem to preserve this predictability for a given
set of multiple run-alone-predictable tasks. Conventional
scheduling techniques can be applied if the tasks behave
sufficiently deterministic in time. However, all methods
rely on the assumption that the tasks’ execution times are
independent of each other: given two tasksα and β, it
is assumed that an interleaved execution with2k context
switches between them will execute inTα|β = Tα + Tβ +

2kTs, whereTα andTβ are the run-alone execution times of
the tasks andTs is the context-switch time.

Introducing caches violates this assumption, since in an
interleaved execution,α andβ compete for cache lines. In
one activation interval,α might use cache lines which have
been originally used byβ. In its next activation interval,
β has to refill the lines and perhaps even to save them to
memory prior to refill. Accordingly,β imposes cache-miss
overhead onα’s next activation interval. Although all is
done by hardware, “invisible” to the programs, it needs a
substantial amount of time.

The additional overhead, the interference costI, de-
pends on the dynamic cache usage ofα and β and the
points in time(t1, t2, . . . t2k) when context switching oc-
curs: Tα|β = Tα + Tβ + 2k Ts + I (α, β, t1, t2, . . . t2k). In
practice, more than two tasks have to be coordinated by

the operating system. Accordingly, the complexity of the
I-function increases.

In an open real-time system, even run-alone unpre-
dictable and unforeseen interactive (non real-time) tasks
have to be included. For example, a workstation being part
of a video conference should be able to combine audio and
video tasks with interactive spreadsheet handling. Here, the
real-time components must execute predictably, indepen-
dently of the non-real-time tasks. Traditionally, a priority
scheme ensures that the real-time tasks get resources first.
The other tasks get only time slices and memory frames
which are not required for the real-time tasks. Unfortu-
nately, the priority strategy relies also on the same assump-
tion of non-interference; respectively it requires to bound
the interference cost reasonably.

Concluding, a basic problem is to manage the entire sys-
tem in such a way thatI is limited by a fixed and safe upper
bound being reasonably small.

Since we aim at general-purpose operating systems,
closed as well as open real-time systems, any solution has
to be transparent to user programs and must accept any
given binary. Furthermore, it must work for dynamically
changing sets of tasks with partially unknown behaviour.

This suggests reducing or at least limiting the interfer-
ence. Ideally, the additional cost for taskα is at mostI ′(α)
per context switch towardsα anddoes not depend on the
other tasks. Even ifβ was unknown and the complete inter-
ference costI (α, β, t1, t2, . . . tk) ≤ k I ′ (α) + k I ′ (β) there-
fore would be unpredictable,α could be scheduled in such
a way that it terminates in time2 Tα + k I ′ (α) + 2kTs or
earlier. Simply select a time slice length ofTα/k + I ′(α) +

Ts. Then allocate the odd slices toα and the even slices to
β where the last time slice may be arbitrary long to cover
all remaining execution time ofβ.

3 Cache partitioning

The basic idea to reduce interference iscache partition-
ing: ensure that tasksα and β use always different ca-
che lines. If the intersection of both cache working sets
is empty, there is no interference at all,I ′(α)=0. Since the
associated cache line (respectively its set) of an object is
determined by some bits of its memory address, this goal
can be achieved by placing code and data of both tasks ac-
cordingly in memory.

3.1 Cache partitioning by main-memory
management

An operating system can to a certain extent determine the
physicaladdress of code and data by mapping virtual to
physical memory. The nice features: it is completely trans-



parent to user programs, i.e. can be applied to any program,
and can be done dynamically, i.e. can be changed at any
time. Its disadvantages: since it is based on mapping vir-
tual pages to physical page frames, it can only be applied to
physically-indexed caches and offers only page granularity.

We describe the technique for second-level caches
which usually are physically indexed. A page size of2p

divides a direct-mapped cache in cache banks of also2p

bytes each. To index an element within a bank, the least
significantp bits are used. If the cache has a size of2c, the
nextc − p bits in the address select the cache bank.1 The
remaining most-significant part of the address is used for
tag comparison.

L1 Cache —–

L2 Cache —0– —1– —2– —3– —4– —5– —6– —7–

Main
Memory

000– 001– 002– 003– 005– 006– 007–
010– 011– 012– 015– 016– 017–
020– 021– 022– 024– 025– 026– 027–
030– 031– 032– 035– 036– 037–
040– 041– 042– 045– 046– 047–
050– 051– 052– 055– 056– 057–
060– 061– 062– 065– 066– 067–
070– 071– 072– 075– 076– 077–

Figure 1:Cache Partitioning.

The direct-mapped second-level cache in figure 1 con-
sists of 8 banks. Only the second least-significant digit of
the physical addresses (octal numbers denote the physical
page frame number in the figure) controls the bank selec-
tion. Thus bank 2 can hold only cache lines of physical
page frames 002, 012, 022. . .This divides main memory in
a set of classes, calledcolors, whose members are all phys-
ical page frames which select the same cache bank.

Hence, cache conflicts can only occur between page
frames of the same color. To avoid cache conflicts between
any two tasks, it is sufficient to ensure that no color is used
by both tasks. In figure 1, all page frames of the colors 3
and 4 except frame 003 and 024 are unused. Cache banks 3
and 4 therefore work exclusively for these two page frames.

A cache bank can be assigned to a task, a group of tasks,
a region of an address space, or any other unit by assigning
colors of main memory to that unit. By assigning one or
more colors exclusively to one unit, this unit can be pro-
tected from second-level cache conflicts with other units.

A µ-kernel like L4 [8] permits even physical mem-
ory management at user level. Thus the above-mentioned
strategy could easily be implemented by a memory server
which gives frames of special colors only to dedicated tasks

1For ann-way set-associative cache, usen2c as cache size. Corre-
spondingly, the bank size isn2p.

and all other frames to the pagers which implement usual
timesharing. To avoid interference with theµ-kernel, the
colors corresponding to its code (12K) have not been used
for special allocation.

However, the main drawback as already observed by
Wolfe [15] remains: If a certain percentage of the com-
plete cache is to be assigned to a task, the same percentage
of the main memory has to be reserved for that task. If a
time-critical algorithm needs 50% of the available cache to
meet its deadlines, also 50% of the main memory must be
reserved for it.

3.2 Free coloring to separate cache and main
memory management

Wasting main memory by cache partitioning can be
avoided if the operating system can assign any color to any
physical main-memory frame.

Free coloring[7] is based on the idea to provide multi-
ple physical addresses per frame. The same memory frame
numbera is addressed by physical addressesa00xxx, a01xxx,
. . .a77xxx, wherexxx denotes the offset part of the address.
Hence, the physical frame can be used under any color from
0 to 77.

The simple and intuitive implementation is shown in the
following figure, wherecpu busdenotes the processor’s
physical address bus andmemory busdenotes the physi-
cal address bus of the memory system. This requires only
proper wiring on a motherboard. It does neither affect ca-
che addressing nor virtual-to-physical address translation.
Performance is not reduced since the described mechanism
is static and lies outside the critical path of a memory ar-
chitecture.

cpu bus: a
c

p

� �
? ?

memory bus: a p

Figure 2:Free Coloring.

Instead of mapping a virtual addressvxxx to the physical
addressaxxx, the operating system mapsvxxx to a03xxx when it
decides use the memory frame of numbera with color 03.

Note that the mentioned mechanism can be imple-
mented without changing the secondary cache architec-
ture and with standard memory chips. However,c-bits
wider second-level tags are required for accessing the same
amount of memory as in a conventional system. For the
same reason, main memory is limited to2n−c bytes, where
n is the physical-address width.



3.3 Applications of the technique

There are several ways to apply the partitioning techniques
(whether combined with free coloring or not). The first and
obvious application is to isolate one task or a set of co-
operating tasks. Thus the worst-case execution time of the
task can be determined without respect to cache usage of
other tasks and the operating system.

Another type of application is a long running task that
has to meet a deadline and is preempted by other tasks for
a known number of times. The effect of the interrupt tasks’
cache accesses can be isolated by assigning a separate ca-
che partition to the interrupt handler tasks. (Of course,
this does not apply for the very first interrupt or the startup
phase of the application. Then, the assigned cache partition
is still cold. From the predictability point of view, these
effects are either negligible or can be eliminated by preex-
ecuting the interrupt handlers respectively the application
when they are installed.)

The experiments described in section 5 deal with both
scenarios and their interaction.

Partitioning caches effectively reserves partitions of a
cache for a unit that needs certain worst-case assurances.
The reserved partition is no longer available for the re-
mainder of the system and may considerably slow it down.
However, the technique can be used to determine the
amount of caches needed that sufficiently bound worst-case
execution times. Such results then can be used to determine
the size of caches for a given real-time application.

4 Expectations

There is an obvious counter-argument against the effective-
ness of the described method: it cannot eliminate the un-
predictability of the first-level cache. Further topics to be
discussed include memory consumption and cache locking.

4.1 Cache penalties

It is a widespread misconception that programs in the worst
case execute as slow as if the caches were disabled. This
is not true. Most programs’ worst-case execution times are
much better with caches than without, even if neither data
nor instructions are accessed twice.

Caches increase memory bandwidth significantly even
in no-hit situations. First, cache lines are larger than one
word, typically 8 words. Second, due to multi-word-wide
buses and burst memory accesses, loading an 8-word cache
line requires much less time than 8 single-word loads; fac-
tors of 2 to 4 are realistic. Third, caches often use bypass
techniques so that the processor can resume execution as
soon as the first word (which induced the cache miss) ar-

20

40

60

80

100

120

[ns]

first-level
cache miss
per word

20

second-level
cache miss
per word

42

add imul fmul

dpess/8

8

25

11

110

33

dopt/8

Figure 3:Expected Delays on Pentium, 90 MHz.

rives. The remaining cache fill can execute in parallel to
instruction execution.

Figure 3 illustrates cache miss penalties on a 90-MHz
Pentium with write-through caches. The optimistic penalty
dopt is the delay for a cache miss if the memory system
was not busy, i.e. the time between detecting the miss and
delivering the first word. The pessimistic penaltydpess is
the maximum delay if the memory system is busy on a refill
while the miss occurs. For both cases, we assume that the
bus is currently not used for writes and that no other bus
masters are active.

We have to take into consideration that a program usu-
ally does not access only one word per cache line. For the
addressed real-time applications, it seems reasonable that
every word of an accessed cache line will be read during
program execution. Thus the average delay per data word
will be betweendopt/8 anddpess/8 for 8-word caches. Fig-
ure 3 relates these average delays to the time required for
integer addition integer multiplication and floating-point
multiplication.

Unprecise estimations

A typical real-time task receives a signal, then does some
calculations and finally falls asleep, waiting for the next
signal. In the startup phase, directly after receiving the sig-
nal, the cache-miss cost will be dominated by instruction-
cache misses. Once all required code is loaded, the working
phase begins.

In many cases, the working phase will be a simple loop.
For a first estimation, we assume a short loop needing two
words from memory and 150 ns execution time per iter-
ation, i.e. a multiplication, some additions, compares and
jumps. If only first-level cache misses occur, we can opti-
mistically expect a maximum delay of2 × 8/150 ≈ 11%
and pessimistically a delay of2× 20/150 ≈ 26%.

Note that for a given program, the real maximum delay
is completely determined by its own cache access pattern.



In particular, it can be determined by the method described
in section 5, and it will not float between the optimistic and
the pessimistic value. If the loop is constructed in such a
way that at most one cache miss per iteration can occur, a
cache-line fill (8 × 20 = 160 ns) can nearly be completed
before the next cache miss. So we can expect a worst-case
delay of about 12%.

In the presence of second-level cache misses, an op-
timistic estimation for the worst-case delay gives2 ×
25/150 ≈ 33%. However, since the accordingdpess= 8 ×
42 = 336 ns exceeds the 150 ns of one iteration, additional
time might be required every second cache miss. If ca-
che misses occur in two adjacent iterations (while the next
6 iterations hit in the cache), we could expect additional
(336− 150)/8/150 ≈ 15%.

All these calculations are unprecise. Nevertheless,
rough estimations are very important to understand the in-
teraction in the entire system and to get an impression about
the expectable order of magnitude. Furthermore, the exper-
imental results can then be used to validate or invalidate our
understanding. The presented rough estimations show:

1. First-level cache penalties will be significantly lower
than second-level penalties. This prediction contrasts
to the well-known fact that first-level cache misses are
more important foraverageperformance than second-
level misses. The relative cost (miss:hit) is lower for
a secondary cache (typically 3:1) than for a primary
cache (typically 10:1). However, theworst-caseper-
formance is determined by the absolute cost which is
three times higher for a second-level miss than for a
first-level miss.

2. Worst-case delays on Pentium will be surprisingly
low, 30–40% during the working phase. As we will
see later, much higher penalties must be expected for
second-level write-back caches.

Loading a 100-word program can lead to penalties from 2
µs (first-level misses only) up to 4µs. (For comparison,
interrupt latency of the L4µ-kernel is about 2µs.) This
startup overhead is responsible for the unpredictability for
runs of few loop iterations, although the worst-case abso-
lute time delay remains small. The startup overhead can be
ignored for larger numbers of iterations.

4.2 Further penalty sources

Cache partitioning can improve predictability but cannot
eliminate all uncertainties. For example, the number of in-
terrupts in a real-time system needs to be known for penalty
estimates. Occurrences can be controlled by techniques to
disable interrupts and by scheduling techniques. In modern
µ-kernel-based systems, interrupts are transformed to mes-

sages and task-scheduling techniques (priorities, deadline
scheduling) are used to control them.

A single TLB miss is approximately twice as expen-
sive as a single cache miss. Nevertheless, worst-case TLB
cost is limited by the number of pages which belong to
the working set. Many processors use their data caches for
parsing the page tables in the case of a TLB miss. Accord-
ingly, they profit from partitioning the second-level cache.

Worst-case memory penalties are caused by unpre-
dictable memory refresh cycles, DMA and in shared-
memory multiprocessor systems even bus locks by other
processors. Refresh typically degrades secondary-cache fill
and write back. The maximum overhead depends on the
memory architecture. 20% will be a safe upper bound for
almost all architectures, 10% for most architectures. This
value has to be multiplied by the worst-case miss rate. Ca-
che partitioning makes miss rates highly predictable and
thus limits refresh penalties as well. The same holds for
delays caused by simultaneous activity of other processors
or DMA. In particular, a program which fits completely
into its secondary-cache partition will never suffer from the
mentioned penalties.

5 Experiments

The first experiments consider the scenario of a high-
priority real-time task running for frequent short intervals.
In between these active intervals, other tasks execute un-
predictably. The objectives of the experiment are (a) to
determine the worst-case delay imposed on the response
time of the real-time task that is caused byprior cache
usage of other tasks and the operating system and (b) to
demonstrate the effectiveness of partitioning to limit this
worst-case penalty in comparison to minimal-interference
execution. First the minimal-interference execution time
cmin, then worst-case execution timescmax in partitioned
and unpartitioned execution are determined

The second class of experiments considers a lower-
priority real-time task being interrupted by a high-priority
task at a constant rate. Again, we measurecmin andcmax

for partitioned and unpartitioned execution. Finally, both
experiments are combined.

5.1 Experimental environment

The experiments are based on the L4µ-kernel. By means
of a user-level memory server (“pager”), a real-time spe-
cific memory management policy has been implemented to
partition the cache as explained in section 3.1. The men-
tioned pager offers an OS interface and an application in-
terface:



size cache associativity write colors
line strategy

486 L1 8 K 16 B 4-way through 1
33 MHz L2 256 K 16 B direct mapped through 64

Pent L1 8+8 K 32 B 2-way through 1
90 MHz L2 256 K 32 B direct-mapped through 64

Pent L1 8+8 K 32 B 2-way back 1
133 MHz L2 256 K 32 B direct-mapped back 64

PPro L1 8+8 K 32 B 4-way + 2-way back 1
133 MHz L2 256 K 32 B 4-way back 16

Table 1: Cache Systems.

• The system operator or an automatic scheduler can al-
locate colors to tasks or group of tasks for exclusive
use.

• Any application can determine the color of any of its
pages whithin the set of colors that have been granted
to it by the operating system for exclusive use.

Using the second interface is optional. Although partition-
ing will be done transparently in most cases, coloring of
different objects inside the application can be customized
for specifically cache-optimized alogrithms like the matrix
multiplication described on section 5.4.

The experiments are done on machines based on Intel
486, Pentium and Pentium Pro CPUs (trademarks), all with
first-level and second-level caches. Table 1 shows the dif-
ferent cache architectures. The chipset of the older (90
MHz) Pentium machine supports only the write-through
cache policy whereas the newer Pentium machine (133
MHz) supports also write-back. Execution times are mea-
sured by a 1-µs-timer (486) respectively by the processor’s
timestamp register (Pentium, Pentium Pro) which counts
processor cycles. Both timer and timestamp register can be
read in user mode without OS intervention.

For the first set of experiments, a high-priority real-time
task is activated with a constant rate. To eliminate inter-
rupts as a source for the variation of the response time, in-
terrupts are disabled during the active periods of the real-
time task.

To determinecmin of the real-time task, all other appli-
cations are stopped and interrupts remain disabled. To de-
terminecmax, acache flooderruns as a low-priority job: It
accesses memory in a systematic pattern such that all avail-
able cache lines are accessed and modified. To ensure that
the flooder in any case (even on the relatively slow 486)
floods the complete cache between subsequent activations
of the real-time task, we chosed an activation frequency
of only 12.5 Hz. In this extreme situation, we get always
worst-case behaviour. Higher frequencies up to 100 kHz

show the same worst-case behaviour, but worst cases occur
less frequently.2

The measurements were done without and with parti-
tioning. In the first case, the flooder had access to all lines
of the secondary cache, in the second case only to those
that were not assigned to the real-time task. The real-time
task had as many cache lines as it needed. The maximum
times were taken as worst-case penalty.

5.2 Filter

The algorithm used in the real-time task is a digital filter.
Digital filters are used to inhibit certain frequency compo-
nents in a digitized signal. The used filter algorithm works
as follows: At a discrete time stept, a samplext of a sig-
nal is fed into the filter. The filter uses an array ofn + 1
coefficientsci and a buffer holding then previous inputs.
The filter output is computed as

∑
cixt−i. The numbern

and the coefficientsci determine the characteristics of the
filter. To vary the problem size and hence the cache load,
an increasingn is used.

The diagrams in figure 4 show the unpredictability
cmax/cmin. For better intuitive understanding, unpre-
dictability of 1.5 is shown as “+50%”. The measurements
are made for various problem sizes (number of coefficients)
from n=4 up to n=8192. Solid lines show the unpre-
dictability (worst-case penalty) of unpartitioned execution,
dotted lines show unpredictability of partitioned execution.
Basically, dotted lines quantify the first-level cache influ-
ence.

Figure 4 shows the penalties of the filter running on 486,
Pentium and Pentium Pro processors.

1. As expected, small problem sizes suffer under signifi-
cantly larger penalties than larger sizes. Accordingly,
the partitioning effect is much higher for small sizes.

2. The measuredunpartitionedunpredictability is con-
sistent with our expectations. For largern, it is about
+35% on Pentium.

3. The measuredpartitioned unpredictability is consis-
tent with our expectations, e.g. +10% forn=256. Af-
ter reading2× 1024 data words, the cache is full and
further reads sufferpredictablyfrom first-level misses:
The current run always removes the data from the ca-
che that is required for the next run.

4. Unpartitioned execution on Pentium Pro has substan-
tially larger penalties than on Pentium and 486, even
for large problems. First- and second-level cache on

2Only when the time left for flooding is no longer sufficient to access
as much memory as the real-time task accesses per activation interval, the
absolute worst-case costs can decrease. However note that flooding 1 K
costs only 10µs on the 90-MHz Pentium.



4 16 64 256 1024 4096

problem size

486 (33 MHz)

+20%

+40%

+60%

+80%

+100%

+120%

+140%

+160%

+180%

+200%

+220%

+240%

+260%

+280%

......................................................................................................................................................................................................................................................................................................................................................
........................................................................................................................... .................

...................................... unpartioned

............. ............. single-writer partioned

........ partioned

4 16 64 256 1024 4096

problem size

Pentium (90 MHz)

+20%

+40%

+60%

+80%

+100%

+120%

+140%

+160%

+180%

+200%

+220%

+240%

+260%

+280%
..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..................................................................

4 16 64 256 1024 4096

problem size

PentiumPro (133 MHz)

+20%

+40%

+60%

+80%

+100%

+120%

+140%

+160%

+180%

+200%

+220%

+240%

+260%

+280%
.............
.............
..............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................

.............
.............
............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

Figure 4:Unpredictabilitycmax/cmin (worst-case penalties) for filter.

Pentium Pro use a write-back strategy so that in the
worst case a cache line has to be written back to mem-
ory. Although write buffers permit to fill the cache
line prior to write the old content, this feature has
limited effect in burst situations. Furthermore, the
memory supports burst-mode reads but no burst-mode
writes. Writing back a cache line needs therefore 3
times longer than filling it.

5.3 Single-writer partitioning

We observed that write-back cache architectures are def-
initely more sensitive to worst-case penalties than write-
through architectures. Therefore, it seemed reasonable also
to experiment with a somehow weaker strategy.

Assume that colorx is assigned to a real-time task. Dif-
ferent to strict partitioning, all page frames of colorx which
are not used by the real-time task can be used by other
tasks, butonly read-only mapped. Then other tasks can use
the critical cache bankx, but they will never make it dirty.
Pentium Pro permits to enforce a write-through strategy on
a per-page-basis. Thus mapping pages read/write, but with
write-through cache strategy, gives the same effect. The
dashed line in figure 4 shows the worst-case penalty for

1 4 16 64 256

DCT problem size

+20%

+40%

+60%

+80%

.....................................................................................................................................................................................................................................................................

.............
............. .............

............. ............. ............. ............. ........................................

4 16 64 256 1024 4096

FFT problem size

+20%

+40%

+60%

+80% .............................................................................................................................................................................................................................................................................................................................................................................................................

.............
.............
.............
.............
.............
.............
.............
.............

.............
.............

............. ............. ............. ............. ............. .....

................................................................

............................... unpartioned

............. ...... single-writer partioned

...... partioned

Figure 5:DCT and FFT on Pentium Pro

that case. The worst-case penalty can be limited to about
60% for larger problem sizes.

Two more compute-bound programs, discrete cosine
transformation (DCT) and fast Fourier transformation
(FFT), show similar behaviour (figure 5). However, the
quantitative effects are not as high, since more computa-



tional cycles are required per memory access than in the
filter.

5.4 Matrix multiplication

Now we look at a longer-running real-time task which is
frequently preempted by one or more high-priority real-
time tasks. As long-running task we use a highly-optimized
matrix multiplication,c := ab, wherea andb are64 × 64
matrices of 64-bit floating-point values.

The Pentium’s floating point unit has a 3-cycle latency
per multiplication or addition. However, due to pipelin-
ing, the unit accepts one operation per cycle if no result is
used earlier than 3 cycles after the corresponding operation
started. The achieved performance for the innermost loop
is about 4.5 cycles forcij := cij + aikbkj as long as not
even first-level cache misses occur.

We furthermore optimized the memory/cache perfor-
mance of the algorithm: First, the second matrixb is stored
columnwise to enable stride-1 accesses. Second, we com-
pute the matrix product in steps of8 × 8-submatrices like
shown in figure 6.

�

�

�

�
c :=

�

�

�

�
a ×

�

�

�

�
b

p p p p p p p pp p p p p p p pp p p p p p p pp p p p p p p pp p p p p p p pp p p p p p p pp p p p p p p pp p p p p p p p

Figure 6:Matrix multiplication.

For computing submatrixc1...8,1...8 rowsa1, . . . a8, and
columnsb,1 . . . b,8 are needed. With proper alignment of
a andb, the 8 rows respectively 8 columns occupy in each
case exactly one page. Together, they make optimal use
of the 8K first-level cache: In the run-alone case, any
row or column is loaded only once into the cache so that
the number of cache misses is definitely minimal. The
resulting algorithm needs 5.51 cycles per basic step, i.e.
643 × 5.51 ≈ 1.44 million cycles (10.9 ms) for the entire
matrix multiplication on a 133-MHz Pentium.

Larger matrices profit in the same way when not only
c but alsoa andb are subdivided into submatrices. With
proper row/column alignment, this is consistent with row-
respectively columnwise allocation, since blocking alloca-
tion is needed only in the cache, not in main memory.

A simple and effective method to avoid any cache inter-
ference would be to enable preemption only when switch-
ing to the next submatrix [12]: disable interrupts while a
complete submatrix is computed. Unfortunately, this takes
at least642 × 5.51 cycles, approximately 170µs. Since,

usually, such long interrupt-disabled periods cannot be tol-
erated, we again have to use partitioning. We compare three
different schemes:

1. Unpartitioned:
The matrices are allocated sequentially in physical
memory. For both source matrices together (32 K
each), we use thus 16 colors. Since there is no par-
titioning, these colors are subject to flooding.

2. Partitioned:
We are interested to minimize the number of ex-
clusively allocated colors. Therefore, on Pentium,
we request only 3 colors (out of 64) for the matrix-
multiplication task. We associate the first color to ma-
trix a, the second tob and the third color to the code.
(The color of the result matrix is irrelevant: The ca-
che does not support write allocation, and one write-
through operation per 128 reads is negligible.) Due
to its 4-way second-level cache, 1 color (out of 16) is
sufficient on the Pentium Pro.

3. Single-writer partitioned:
For the matrix-multiplication task, memory is allo-
cated like in the partitioned case. However, the re-
maining page frames of the used colors are available
read-only respectively write-through for flooding.

Figure 7 shows the measured unpredictability for (unin-
terrupted) timeslices from 25µs to 1000µs. For the ex-
periment, first- and second-level caches are flooded after
each timeslice expires.cmax is the matrix multiplication’s
cpu time under presence of these interruptions;cmin is the
cpu time without any interruption. Each experiment is pre-
sented in two diagrams that use different scales and ranges
for better illustration.

The results illustrate that partitioning can have substan-
tial effects even when the allocated second-level cache is
much smaller than the memory working set. Furthermore,
they corroborate that write-back caches (which are in gen-
eral more efficient) combined with single-writer partition-
ing behave nearly as well as write-through caches (which
are in general less efficient).

5.5 Combining short and long running real-
time tasks

In a further experiment, the long-running matrix multipli-
cation is combined with an optimized floating-point ver-
sion of the short-running filter. We measure the real time
required for one matrix multiplication which is interrupted
by the filter at rates from 2 kHz up to 20 kHz.

The filter uses 512 coefficients so that it accesses 2 pages
per activation. In thepartitionedcase, the filter gets two
colors different from the colors allocated to the matrix task.



50 100 150 200 250 300

timeslice [µs]

Pentium (133 MHz) write through

+100%

+200%

+300%

+400%

+500%

+600%

+700%

+800%

+900%

+1000%

+1100%

+1200%

+1300%

+1400%

+1500%

+1600%

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................

300 400 500 600 700 800 900 1000

+60%

+40%

+20%

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

..........................................................................................................................................................................................................................................................................................
.....................................................

50 100 150 200 250 300

timeslice [µs]

Pentium (133 MHz) write back

+100%

+200%

+300%

+400%

+500%

+600%

+700%

+800%

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............
.............
.............
.............
.............
.............
.............
.............
.............

.............
.............

.............
.............
.............
.............

............. ............. ............. ............. ............. ............. ............. .............

..........................................................................................................

300 400 500 600 700 800 900 1000

+60%

+40%

+20%

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

.....................................................................................................................................................................................................................................................................................................

.............
............. .............

............. ............. ............. ............. ............. ............. ............. ............. .........

.......................................................

50 100 150 200 250 300

timeslice [µs]

PentiumPro (200 MHz) write back

+200%

+300%

+400%

+500%

+600%

+700%

+800%

...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.............
.............
.............

.............
............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

.................................................................

.................................................................... unpartioned

............. ............. ............. single-writer part.

.............. partioned

300 400 500 600 700 800 900 1000

+60%

+40%

+20%

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

..............................................................................................................................................................................................................................................................................................................................................

....... ............. ............. ............. ............. ............. ............. ............. ............. ............. ..................................................................

Figure 7:Unpredictabilitycmax/cmin for 64× 64 matrix multiplication.Different scales on lower and upper diagrams!

To simulate a reasonably badunpartitionedcase, the two
source matrices are allocated like in the partitioned case,
but the filter uses exactly the same colors so that any filter
activation invalidates all matrix data in both caches. Since
both algorithms basically read data and do not modify it,
this is a bad case but by far not the worst case.

Nevertheless, figure 8 shows that partitioning can have
significant effects. The shaded bars in the small diagram
show the ratio of the times required for unpartitioned and
partitioned allocation. The maximum effect, a slowdown
factor of nearly 3, occurs at 5 kHz. Partioning becomes
less effective when the filter-activation rate is decreased:
The cache used by the matrix multiplication is flushed less
frequently so that the matrix algorithm’s average cache-hit
rate increases. However, partitioning becomes also less ef-
fective when the filter-activation rate increases beyond 5
kHz: Interrupt handling, task setup and first-level cache
misses (which take the same time in both schemes) need
more and more time relative to the decreasing timeslice
length.

Note that the ratios which are shown as shaded bars are
not unpredictabilities: Here we compare a concrete good
case and and a concrete bad case, not the theoretical best
and worst case. On a first glance, it might therefore sur-
prise that the measured maximum ratio of 2.8 (+180%) is

greaterthan the matrix multiplication’s unpredictability in
the write-through experiment. The reason: partitioning im-
proves not only the matrix multiplication but also the filter
algorithm. Recall that the filter is activated with a con-
stant rate. In any timeslice, first the filter is served com-
pletely, then the matrix multiplication gets the remaining
time. Now partitioning has two effects: (a) the matrix mul-
tiplication needs less time in total and (b) it gets more time
per timeslice since the filter also runs faster.

Partitioning might have surprisingly high effects when
multiple real-time tasks are combined.

6 Related work

Mogul and Borg [9] study theaverageimpact of context
switches in time sharing systems for several cache archi-
tectures. They report an increase of the CPI (cycles per
instruction) of about 0.1 to 0.5 for the first 50,000 cycles
after a context switch for one of the simulated architectures
(64-K-instruction and 64-K-data first-level cache). From
then on, the impact is below an increase of 0.05, from
about 150,000 cycles it is negligible. In their summary
of experiments, they report an overhead ratio due to con-
text switches under 5% for most of studied architectures
and benchmarks. The estimated penalty per switch ranges



20

40

60

80

100

120

140

160

180

200

220

240

260

[ms]

+20%

+40%

+60%

+80%

+100%

+120%

+140%

+160%

+180%

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

20

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

10

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

5

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

3.3

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

2

20 kHz

268.7

10 kHz

130.0

5 kHz

59.3

3.3 kHz

29.1

2 kHz

18.4

unpartitioned

.................................
unpart/part

209.1

64.1

21.2
16.3 13.6

partitioned

Figure 8:MM time on Pentium, 133 MHz.

from 10µs to 400µs on DEC 5000 which is roughly com-
parable to the switching overhead of about 70µs in other
Unix-based systems. However, they consider their results
as very optimistic. Our work also studies the impact of
context switches on execution time. However, we look at
the worst-case impact on execution times. Their and our
results together could be used to relate average and worst-
case penalties. However, the addressed applications, the
underlying hardware and operating systems differ signifi-
cantly. In particular, we address very high context-switch
(interrupt) frequency, and we use an operating system with
small context switching overhead in contrast to the high
switching overhead of Unix-inherited systems.

The question of how to increase the predictability of ca-
che based systems in real-time environments has attracted
some attention:

Li et al. [6] analyze the cache interference within a
single task. A genuine approach to estimate worst-case
penalty in the presence of multiple tasks is to presched-
ule all context switches and consider the cache to be in a
worst-case state after a switch. Niehaus et al. [11] propose
this approach for the Spring real-time system. Our work
addresses a more open environment where not all context
switches can be prescheduled.

Kirk [5] describes SMART,Strategic Memory Alloca-
tion for Real Time. Essentially, he proposes to use extra
information for the cache line mapping function, e.g. user
id or high significant address bits. The drawback of the
proposed technique is the need for extra mapping hardware
that potentially adds extra cycles in the critical path. Our
technique doesnot need extra cyclesfor recoloring and al-
lows cache partitioning to be based on software.

Pioneering work on software-based cache-partitioning
techniques has been done by Wolfe [15] and Müller [10].
Both propose to place code and data such that cache con-
flicts are avoided. Wolfe exploited this idea to hand-coded
programs; M̈uller applied it to automatic code generation
and data placement of compiler systems. Wolfe already
hinted at a possible usage of his ideas in virtual memory
management systems. These techniques have two draw-
backs that are not acceptable in our view: First, they have
the side effect as also mentioned by Wolfe that the reser-
vation of a large chunk of cache requires the reservation
of an equally large part of the main memory. The author’s
statement that large cache requirements in general relate to
large requirements of main memory is questionable. The
filter example studied in this paper is of the opposite type.
Second, the technique requires (a) that the set of tasks is
static and (b) that all programs are compiled by the same
compiler prior to the system start or can be recompiled
by the OS. Both preconditions are not fulfilled for many
closed real-time systems and cannot be fulfilled for open
real-time systems. Although the technique can be used in
dedicated and closed systems, it is not applicable to real
time systems in general. In contrast, our technique relies on
the memory management component of an operating sys-
tem to isolate a task with arbitrary address access pattern.
It is completely transparent for the application program-
mer and is not restricted to static environments. In addi-
tion, it allows to clearly separate cache and main-memory
assignments, hence avoids waste of memory. Similar to
Wolfe’s and M̈uller’s work, our approach does not require
processor-chip changes to partition second-level caches.

The technique described in our paper requires knowl-
edge about worst-case execution times in the absence of
external interference. Several publications deal with that
problem. Arnold et al. [1] use a so-called static-simulation
technique to determine worst-case bounds for cached pro-
grams. It relies on estimating the worst-case instruction-
cache performance for each loop and procedure.

Bershad et. al. [3] describedynamic recoloringas a
technique to improve cache performance. When large num-
bers of cache misses are detected by a specific hardware
device, they dynamically remap pages to page frames with
better colors. This could be combined with our technique
of recoloring physical page frames without copying.



7 Summary

This paper describes an experimental environment to de-
termine the worst-case impact of asynchronous cache ac-
tivities on tasks whoseideal, i.e. minimal interference exe-
cution times are known and a partitioning technique to ef-
fectively limit worst-case penalties of second-level cache
interference. It demonstrates the achievable effects for a
digital filter program, discrete cosine transformation, fast
Fourier transformation and matrix multiplication.

More and more complex applications will need to be
examined to finally determine the usefulness of the cache-
partitioning approach in general.

Acknowledgements

The authors thank Peter Hochgemuth for triggering this
work and Robert Baumgartl for providing benchmark
programs. This work has been partially supported
by Deutsche Forschungsgemeinschaft in the Sonderfor-
schungsbereich 358.

References
[1] R. Arnold, F. Müller, and D. Whalley. Bounding worst-case instruction cache

performance. InIEEE Real-Time Systems Symposium, pages 172–181,
1994.

[2] S. Bederman. Cache management system using virtual and real tags.IBM Tech-
nical Disclosure Bulletin, 21(11):4541, April 1979.

[3] B. N. Bershad, D. Lee, T. Romer, and B. Chen. Avoiding conflict misses dy-
namically in large direct-mapped caches. In6th International Confer-
ence on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pages 158–170, San Jose, CA, October 1994.

[4] Intel Corp. Pentium Processor User’s Manual, Volume 3: Architecture and
Programming Manual, 1993.

[5] D. B. Kirk. SMART (strategic memory allocation for real-time) cache design.
In IEEE Real-Time Systems Symposium, pages 229–237, December 1989.

[6] Y. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software. In
IEEE Real-Time Systems Symposium, January 1997.

[7] J. Liedtke. Eine Speicherarchitektur zur Unterstützung farbtreuer Alloka-
tion für verbesserte Cache- und TLB-Ausnutzung. Deutsches Patentamt,
München, October 1995. Patent application 195 38 961.1, P 44 37 866.1,
decisioned to grant (Sep 1996), PCT/EP95/04103 (European Patent Of-
fice, October 1995).

[8] J. Liedtke. Onµ-kernel construction. In15th ACM Symposium on Operat-
ing System Principles (SOSP), pages 237–250, Copper Mountain Resort,
CO, December 1995.

[9] J. C. Mogul and A. Borg. The effect of context switches on cache performance.
In 4th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 75–84, Santa
Clara, CA, April 1991.

[10] F. Müller. Compiler support for software-based cache partitioning. InACM
SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time
Systems, La Jolla, CA, June 1995.

[11] D. Niehaus, E. Nahum, and J. A. Stnakovic. Predictable real-time caching in
the Spring system. InIFAC Systems and Software Workshop, Atlanta,
1991.

[12] J. Simonson and J. H. Patel. Use of preferred peemption points in cache-based
real-time systems. InIEEE International Computer Performance and De-
pendability Symposium, pages 316–325, April 1995.

[13] A. J. Smith. Cache memories.ACM Computing Surveys, 14(3):473–530,
September 1982.

[14] W. H. Wang, J. L. Baer, and H. Levy. Organization and performance of a two-
level virtual-real cache hierarchy. In16th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 140–148, Jerusalem, May
1989.

[15] A. Wolfe. Software-based cache partitioning for real-time applications. In
Third International Workshop on Responsive Computer Systems, Septem-
ber 1993.

[16] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, J. M. Pendleton, S. A. Ritchie,
G. S. Taylor, R. Katz, and D. A. Patterson. An in-cache address transla-
tion mechanism. In13th Annual International Symposium on Computer
Architecture (ISCA), pages 358–365, Tokyo, June 1986.


