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ABSTRACT 
Motivation: Traditional methods to identify potential binding 
sites of known transcription factors still suffer from large 
number of false predictions. They mostly use sequence in-
formation in a position-specific manner and neglect other 
types of information hidden in the proximal promoter regions. 
Recent biological and computational researches, however, 
suggest that there exist not only locational preferences of 
binding, but also correlations between transcription factors.  
Results: In this paper, we propose a novel approach, 
OSCAR, which utilizes one-class SVM algorithms, and in-
corporates multiple factors to aid the recognition of transcrip-
tion factor binding sites. Using both synthetic and real data, 
we find that our method outperforms existing algorithms, 
especially in the high sensitivity region. The performance of 
our method can be further improved by taking into account 
locational preference of binding events. By testing on expe-
rimentally-verified binding sites of GATA and HNF transcrip-
tion factor families, we show that our algorithm can infer the 
true co-occurring motif pairs accurately, and by considering 
the co-occurrences of correlated motifs, we not only filter out 
false predictions, but also increase the sensitivity. 
Availability: An online server based on OSCAR is available 
at http://bioinfo.au.tsinghua.edu.cn/oscar. 
Contact: zhangxg@tsinghua.edu.cn 

1 INTRODUCTION  
Identification of transcription factor binding sites (TFBSs) 
and the corresponding motifs plays a pivotal role in the un-
derstanding of the transcriptional regulation mechanism. 
Recently, the advent of DNA microarray techniques and 
ChIP-chip experiments has significantly improved our abili-
ty to identify those important cis-regulatory elements. How-
ever, since these experimental procedures are expensive and 
time-consuming, computational methods are still needed for 
predicting TFBSs. 

The task of computational identification of TFBSs can be 
divided into two main categories. One is motif discovery, i.e. 
to discover a motif as well as its putative sites in a collection 
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of genomic sequences that are expected to be bound by the 
same factor. Many state-of-the-art algorithms, such as 
MEME (Bailey and Elkan, 1994), Bioprospector (Liu et al., 
2001), YMF (Sinha and Tompa, 2002) etc. (for a recent 
review, see Tompa et al., 2005), were designed to this end. 
The other task is motif search, i.e. to scan potential binding 
sites of a known transcription factor, often, on a genomic 
scale. Several tools like MatInspector (Quandt et al., 1995) 
and MATCHTM (Kel et al., 2003) were developed to search 
for putative TFBSs in DNA sequences by using position 
weight matrices (PWMs; Stormo et al., 1982) in 
TRANSFAC® (Wingender et al., 2000) or JASPAR (Albin 
et al., 2004) databases. In this paper, we focus on the latter 
task, which is to recognize the putative binding sites of 
known transcription factors. 

Previous works to predict new putative TFBSs based on 
known binding sites still suffer from large number of false 
predictions when applied in a genomic scale. Most com-
monly used tools ignore the extra information in and beyond 
the TFBSs, such as the conservation of the binding site loca-
tions and the co-occurrences of other motifs in the promoter 
sequences. There is ample evidence that many cis-
regulatory elements show preferred locations (Frith et al., 
2003; FitzGerald et al., 2004; Xie et al., 2005), and precise 
organizations (Boyer et al., 2005; Odom et al., 2006) within 
promoter sequences. A search of the binding sites on the 
entire genome without such information usually returns a 
large number of sites, many of which are not functional in 
vivo, although they would probably bind to the transcription 
factor if they were in proper genomic contexts. 

Recently, many classification algorithms, such as support 
vector machines (SVMs), have been applied to discriminate 
false predictions from the true ones in TFBS recognition 
(Holloway, 2005; Sun et al., 2006) and other applications. 
Jaakkola et al. (2000) proposed a discriminative framework 
with a variant of support vector machines to detect protein 
homology, which can potentially be applied to the detection 
of TFBSs. Special string kernels in SVMs were also de-
signed to process the regulatory regions of genes, in order to 
recognize a given class of promoter region, and simulta-
neously identify a collection of relevant, discriminative se-
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quence motifs (Leslie et al., 2004; Sharan et al., 2005; Son-
nenburg et al., 2005a, 2005b; Rätsch et al., 2005; Vert et al., 
2005). However, as with other classification techniques, a 
set of known positive and negative samples must be sup-
plied to the SVMs. With limited instances of experimental-
ly-verified binding sites, it is hard to determine a “negative” 
set of sequences, to which a transcription factor will certain-
ly not bind (Hong et al., 2005). In fact, there exists no site 
(separated from its context) that will never be bound by a 
transcription factor, but only sites that are unlikely to be 
bound. In this sense, recognition of TFBSs may not be well 
characterized as a standard two-class classification problem. 

In this paper, we exploit the one-class SVM, rather than 
two-class approaches, to estimate the support of probability 
distribution of known TFBSs, i.e. the region where most 
known (positive) samples live in the feature space. Our me-
thod, named OSCAR (One-class Support vector machine for 
Cis-element Accurate Recognition), simultaneously consid-
ers the nucleotide composition of all the positions within a 
binding site, and further incorporates locational preferences 
and co-occurrences of DNA motifs. We first demonstrate 
that our novel approach outperforms existing algorithms on 
synthetic data. Applying our method to promoter regions in 
the Eukaryotic Promoter Database (EPD; Praz et al., 2002) 
with annotated TFBSs from TRANSFAC®, we find that the 
performance of our algorithm can be further improved by 
considering the locational preferences of binding events. We 
also show that the mutual interactions of transcription fac-
tors can be identified and exploited by using our method. 
Furthermore, the application of our method to recognize the 
binding sites of GATA and HNF transcription factor fami-
lies indicates that the integration of co-occurrence informa-
tion not only decrease false positives, but also increase the 
sensitivity of the prediction. 

2 MATERIALS AND METHODS 
2.1 Databases for identification of TFBSs 
In this study we used two databases: (1) TRANSFAC® (re-
lease 9.4; Wingender et al., 2000) is a database that pro-
vides data on transcription factors and their binding sites in 
promoters of eukaryotic genes as well as a library of PWMs. 
It also offers an additional profile, called “non-redundant 
profile for vertebrates”, by categorizing PWMs into groups 
on the basis of the linked transcription factors and selecting 
just one "best" matrix from each group. (2) The Eukaryotic 
Promoter Database (EPD; Praz et al., 2002) is an annotated 
non-redundant collection of eukaryotic promoters, for which 
the transcription start site (TSS) has been determined expe-
rimentally. The annotation part of an entry includes descrip-
tion of the initiation site mapping data, cross-references to 
other databases including TRANSFAC®.  

2.2 One-class SVM and basic OSCAR algorithm 

One-class Support Vector Machine (Schölkopf et al., 2001) 
was proposed to estimate the support of a high-dimensional 
distribution, i.e. the region where most of the data live in the 
high-dimensional feature space. It returns a prediction func-
tion f that takes the value +1 in a “small” region capturing 
most of the data points, and -1 elsewhere.  

Given known binding sites of a particular transcription 
factor, we first encode each site s with length L into a binary 
string x with length 4L. The nucleotide at each position of 
the binding site is mapped into a 4-dimension vector in {0, 
1}-space with following rule: A 0001a , C 0010a , 
G 0100a , and T 1000a . To determine whether a DNA 
sequence s0 with length L is a putative binding site of the 
transcription factor, s0 is transformed into a binary string x0 
in the same way, and the prediction function is given as 

0sign(( ) )f w x ρ= ⋅ − ,                          (1) 
where the weight w  and parameter ρ  are determined by 
the one-class SVM training algorithm given below. Note 
that w  can be denoted in a matrix form: , 4i j i jw × +=M , 
where 1,...,i L= ,  and 1,..., 4j =  correspond to four nuc-
leotides. Regarding the parameter ρ  in prediction function 
(1) as a threshold, we come to a scoring scheme similar to 
PWM-based methods, yet in our method nucleotide prefe-
rences at different positions within a binding site are consi-
dered simultaneously in SVM model. 

To be more specific, consider the training data 
1,..., l ∈Φx x , where xi is a binary string encoded by a known 

binding site, Φ  is a {0, 1}-vector space with 4L dimension, 
and l is the number of known binding sites. One-class SVM 
solves the following quadratic programming problem: 

2
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subject to  ( ) ,  0i i iw ρ ξ ξ⋅ ≥ − ≥x .              (3) 
Here, (0,1)ν ∈  is a user-defined parameter. 

For the jx ’s that the equalities in (2) hold at the solutions 
of w  and ρ , we have ( )jwρ = ⋅x  and jx  is named a 
“support vector”. Since non-zero slack variables iξ  are pe-
nalized in the objective function, we can expect that the 
prediction function (1) will be positive for most samples 
contained in the training set, while the regularization term 

w  will still be small. The actual trade-off between these 
two goals is controlled by ν . In fact, Schölkopf et al. (2001) 
have proved that ν  is an upper bound on the fraction of 
outliers and a lower bound on the fraction of support vectors.  

   To solve w  and ρ  from problem (2) and (3), we use 
the LIBSVM package (Chang and Lin, 2001) for the im-
plementation of a one-class SVM. In our applications, one-
class SVM is used to construct prediction functions with 
training sets containing only experimentally-verified bind-
ing sites of known transcription factors. The algorithmic 
framework of a one-class SVM not only enables us to ex-
ploit the nucleotide composition of known binding sites, but 
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also allows us to consider their locational preferences and 
effects of TFBS co-occurrences.  

2.3 Incorporating locational preference 
Binding sites of many transcription factors show preferred 
locations within promoter regions, which are influenced by 
nucleosome occupancy (Segal et al., 2006), chromotin struc-
ture and other factors. The locational preferences of binding 
events can be conducive to the recognition of functional 
binding sites in genome. A one-class SVM can serve as a 
good algorithmic frame, which allows us to exploit this type 
of information when the relative locations to the TSS of 
known binding sites are available. To encode such informa-
tion, we first divide the promoter regions that contain the 
binding sites in training data into K consecutive intervals 
relative to TSS, where K and the length of each interval are 
user-defined parameters. We recommend choosing the in-
terval length from 150 bp to 300 bp, which is approximately 
the total length of a nucleosome unit and the linker region. 
The location of a known binding site, if available, is de-
scribed by a binary string with length K, in which a non-
zero value indicates the occurrence of binding sites in the 
corresponding interval (see examples in Figure 1). This ad-
ditional string is concatenated to the original string that de-
picts the nucleotide composition of a binding site, as the 
training vector of the one-class SVM. Note that if the loca-
tion of binding site is not known, the additional string will 
be all zero, and the corresponding method will become the 
basic OSCAR algorithm.  

To search for putative binding sites of the transcription 
factor in a promoter region, the region is divided into inter-
vals according to its TSS in the same way as described 
above. The sites in different intervals are encoded accor-
dingly, and determined by the prediction function in the 
one-class SVM. To distinguish the algorithm that incorpo-
rates locational preferences from the basic OSCAR algo-
rithm, we call this one OSCAR-L.  

 
Figure 1. Illustration for encoding locational preferences in 

OSCAR-L. The arrow indicates transcription start site (TSS); co-
lored intervals delineate the division of the promoter region; boxes 
denote the locations of binding sites, and the locational coding of 
each site is given below. 

2.4 Exploiting co-occurrence information 
Gene regulation is often achieved by a precise organization 
of multiple transcription factors. Some transcription factors 
are by nature moderately or poorly specific in their DNA 
binding and achieve higher specificity only in the context of 
other binding partners. In this subsection, we further extend 

OSCAR to recognize putative binding sites with a proximal 
binding of other co-factors. We call this method OSCAR-C. 

First, a set of M candidate motifs which may co-occur 
with a specific transcription factor (named “primary TF” 
here) is obtained from the database or predefined by the user. 
To search for the binding sites of the primary TF in a pro-
moter region, M additional bits are added to the previous 
binary string, each of which indicates whether the corres-
ponding candidate motif appears in this region. In the train-
ing process, the occurrences of a candidate motif in a pro-
moter region can be determined from the annotations in the 
database. While in the predictions when we do not have the 
knowledge about the binding of candidate motifs, the pre-
diction function obtained by the OSCAR-L algorithm de-
scribed in the above subsection can be used to identify the 
occurrences of candidate motifs. 

The candidate motif set may contain irrelevant motifs, 
and lead to over-fitting of the algorithm. Thus, the accuracy 
of prediction might be improved through the exclusion of 
candidate motifs with little relevance to the binding of the 
primary TF. Besides, knowing which candidate motifs are 
relevant can give insight to the interactions between tran-
scription factors. Therefore, a criterion similar to SVM-RFE 
(Guyon et al., 2002) is proposed to perform the selection of 
co-occurring candidate motifs according to their contribu-
tions in predicting the binding of the primary TF. Assume 
that mw  is the weight corresponding to the occurrence of the 
mth candidate motif in prediction function, we use 2

mw  as 
the ranking score to select relevant candidate motifs. Let J 
denote the objective function in (2), which becomes 

2(1/ 2) w  when data points are separable from the origin. 
Our ranking criterion is then explained by the OBD algo-
rithm (LeCun et al., 1990), which approximates the change 
in objective function due to the removal of the ith feature by 
expanding objective function J in the Taylor series to the 
second order: 

2
2

2( ) ( )m m
m m

J JJ m w w
w w
∂ ∂

Δ = Δ + Δ
∂ ∂

,                     (4) 

where 1,...,m M= . At the minimum of J, the first order 
term can be neglected. With 2(1/ 2)J w= , Equation (4) 
becomes 2( ) ( )mJ m wΔ = Δ , where m mw wΔ =  corresponds to 
removing the mth feature. 

Given a cut-off on the ranking list, we can obtain candi-
date motifs relevant to the binding of the primary TF. The 
indicators for the binding of selected motifs are used in the 
one-class SVM algorithm together with other features, and 
an integrated prediction function is finally obtained. 

3 EXPERIMENT RESULTS 
3.1 Results on synthetic data 
We begin by evaluating our methods on synthetic data. To 
this end, we retrieve the binding sites of transcription factors 
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from TRANSFAC® (release 9.4) non-redundant profiles, 
and 63 vertebrate transcription factors with more than 10 
annotated binding sites are selected. To avoid over-fitting 
effects in evaluating algorithms, Leave-One-Out Cross Va-
lidation (LOOCV) is performed together with the synthetic 
procedure: for a set with N known binding sites of a tran-
scription factor, we first randomly implant a site into an 
artificial sequence that is generated according to uniform 
nucleotide compositions, and then we apply the basic 
OSCAR algorithm, which uses the remaining N-1 sites as 
training data, to predict putative binding sites in the synthet-
ic sequence. This step is repeated N times with each site 
implanted into a random sequence. To make comparisons, 
we test the performance of three other methods: simple 
PWM based on log-odds ratio (LOPWM), MATCHTM (Kel 
et al., 2003) and P-Match (Chekmenev et al., 2005), which 
are closely interconnected with TRANSFAC® database. 
MATCHTM is a representative PWM-based tool for search-
ing putative transcription factor binding sites in DNA se-
quences, while P-Match is a newly developed tool that 
combines pattern matching and weight matrix approaches.  

In synthetic data, the locations of binding events are 
known with certainty, which enable us to evaluate the pre-
dicting ability of different tools according to known binding 
sites in simulated sequences. A predicted position is a true-
positive (TP) prediction if it coincides with a known binding 
site, and it is a false-positive (FP) prediction otherwise. To 
assess the performance of algorithms, we calculate the true 
positive rate (TPR, also known as “sensitivity”), which is 
the ratio of the number of true positives to the total number 
of known binding sites, and false positive rate (FPR), which 
is the ratio of the number of false positives to the total num-
ber of non-site positions. A curve of FPR versus TPR can be 
plotted while a threshold parameter is varied. This curve, 
which is called ROC (Receiver Operating Characteristics) 
curve, is a comprehensive and objective way to compare the 
performance of methods as a tradeoff between specificity 
and sensitivity. ROC curves are obtained by setting ν  of 
one-class SVM in a range from 0.1 to 0.9. To evaluate 
MATCH and P-Match, we vary the two cut-offs of each 
algorithm in a complete range of values, and report the max-
imum TPR achieved at a given FPR. 

In Figure 2, the area under the ROC curve indicates that 
OSCAR is able to pick out more true-positive sites given 
fixed number of false predictions in the region of high FPR 
(with a relatively small ν ). In the low FPR region, the per-
formance of OSCAR is comparable with LOPWM and 
MATCH algorithms. This can be explained by the fact that 
the number of support vectors in the training samples in-
creases as ν  becomes larger, and as a result, the weight 
vectors of the basic OSCAR algorithm become similar to 
the entries of traditional PWMs. 

 
Figure 2. ROC curves show the performances of different methods 
on synthetic data. Note that a logarithmic scale transformation on 
the X-axis is used to show the low FPR performances of different 
methods. 

3.2 Results on EPD promoter regions 
To verify our methods on real biological data, we determine 
the locations of TFBSs in TRANSFAC® database according 
to the annotations in EPD (release 85). Among all the tran-
scription factors in TRANSFAC® non-redundant profiles,  
binding sites of 45 vertebrate transcription factors can be 
identified, corresponding to totally 124 promoters in EPD85  
(data available from our website). Promoter regions from 
upstream 1000 bp to downstream 300 bp are retrieved. To 
test the sensitivity of algorithms, we use the LOOCV proce-
dure as follows: for a set with N known binding sites of a 
transcription factor, we obtain a prediction function on N-1 
sites and test the remaining site based on the score. This step 
is repeated N times with each site serving as testing sample. 
TPR is equal to the number of predicted binding sites di-
vided by total number of known sites. For the purpose of 
test, we construct a background set, which presumably con-
tains few true TFBSs, by randomly permuting the sequences 
of promoter regions in the training set with conserved di-
nucleotides (Coward, 1999). Predictions were made on the 
background set by moving a scanning window of the motif 
length at the step of 1 base-pair. The FPR is calculated as 
the ratio of the number of predictions to the total number of 
base-pairs on background sequences. The evaluations of 
LOPWM, MATCH, P-Match and the basic OSCAR algo-
rithms are performed by using the same procedure. Besides, 
we also apply the OSCAR-L algorithm to incorporate the 
locational preference, by dividing each promoter region into 
5 consecutive intervals with equal length of 260 bp. ROC 
curves in Figure 3 show the overall performance of different 
methods on EPD promoters for all 45 transcription factors. 
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Figure 3. ROC curves show the performances of different methods 
on EPD promoter regions, and confirm the advantage of incorpo-
rating locational preference of binding events. Note that a loga-
rithmic scale transformation on the X-axis is used to show the low 
FPR performances of different methods. True positive rate is ob-
tained by LOOCV, and false positive rate is estimated on randomly 
shuffled EPD promoter regions. 

As we can see, OSCAR and P-Match are generally more 
accurate than LOPWM and MATCH in the area of high 
FPR, while OSCAR, LOPWM and MATCH are comparable 
in the low FPR region, which are consistent with observa-
tions in literature (Chekmenev et al., 2005) and the results 
on our synthetic data. As expected, the overall performance 
can be improved by incorporating locational preferences 
into the basic OSCAR algorithm (OSCAR-L). At a given 
sensitivity level, OSCAR-L will result in a smaller false 
positive rate than the basic OSCAR algorithm when aver-
aged over all 45 transcription factors (see Supplementary 
Table 1).  

3.3 Results on GATA and HNF family 
In order to check the ability of our method to reveal known 
TFBSs through identifying and utilizing co-occurring motifs 
(OSCAR-C), we test OSCAR-C and other methods on two 
additional data sets involving GATA factor and HNF factor 
family, which have relatively large numbers of binding sites 
that can be identified on EPD promoters. To apply the 
OSCAR-C algorithm, 141 motifs in TRANSFAC® database 
for vertebrates constitute the candidate motif set. Their co-
occurrences with the binding sites of the primary TF are 
input as additional features to obtain the prediction function. 
To further evaluate the statistical significance of co-
occurring motifs selected by the OSCAR-C algorithm, we 
randomly permute the bases in the promoter sequences, 
while preserving the confirmed sites of the primary factor. 
The permutation is repeated for 100 times, and the OSCAR-

C algorithm is applied to each permutated set. The distribu-
tion of the largest and second largest absolute values of 
weights are used to access the significance of the top two 
motifs on the ranking list, respectively.  
GATA factor binding sites Transcription factors in the 
GATA family are so-called because they bind to the con-
sensus DNA sequence “(A/T)GATA(A/G)”. They are 
shown to play critical roles in development, including in 
cell-fate specification, regulation of differentiation and con-
trol of cell proliferation and movement (Patient et al. 2002). 
We extract 13 EPD promoter regions which contain 25 
TRANSFAC annotated binding sites of a GATA transcrip-
tion factor (V$GATA_Q6).  The two most relevant motifs 
that co-occur with the binding of GATA factor is identified 
by the OSCAR-C algorithm and given in the first row of 
Table 1, together with the p-values evaluated by the proce-
dure described above. The co-occurrences of GATA with 
NF-Y and Sp1 factors are consistent with biological evi-
dence in the literature (e.g. Huang et al., 2004; Furusawa, et 
al., 2003). 

We incorporate co-occurrences of two motifs to predict 
binding sites of GATA factor. Again, we use LOOCV pro-
cedure to test the TPRs of MATCH, P-Match, the basic 
OSCAR, OSCAR-L, and OSCAR-C algorithms. FPRs are 
also evaluated by randomly shuffling the promoter regions 
in training set. Table 2 shows the true positive rates of dif-
ferent methods given fixed number of false predictions. A 
complete plot of ROC curves is given in Supplementary 
Figure 1. We can see that there is a clear advantage from 
utilizing co-occurrence information, indicating that the inte-
gration of co-occurring motifs not only decreases false pre-
dictions, but also increases sensitivity by enhancing the sig-
nal strength.  
HNF family binding sites Hepatocyte nuclear factors 1, 3 
and 4 (HNF-1, -3 and -4) are liver-enriched transcription 
factors that function in the regulation of several liver-
specific genes (Ktistaki et al., 1997). Totally 22 promoter 
regions are extracted from EPD85 with annotated binding 
sites for transcription factor HNF-1 (on 7 promoters), HNF-
3 (on 7 promoters) and HNF-4 (on 13 promoters) in 
TRANSFAC®. Motifs co-occurring with different factors in 
HNF family are identified and evaluated separately, and 
their TRANSFAC IDs and corresponding p-values are 
shown in Table 1. These results are supported by evidence 
from the biological experimental literature (e.g. Hiesberger 
et al., 2004; Antes et al., 2001; Elholm et al., 1996; Kahn, 
1997; Groupp et al., 1994).   

The co-occurrence information is exploited by OSCAR-C. 
Predictions are made separately for different factors in HNF 
family, and the results are summed up in Table 3 and Sup-
plementary Figure 2. From the results in Table 3 and ROC 
curves in Supplementary Figure 2, we can find that they are 
consistent with what we have observed in the other studies, 
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and that the performance of OSCAR-C is superior over oth-
er methods.  
Table 1.  Motifs co-occurring with the binding of GATA factor and HNF 
family identified by the OSCAR-C algorithm 

TF family Primary Motif Co-occurring Motifs P-value 

GATA V$GATA_Q6 
V$NFY_Q6_01 
 V$SP1_Q2_01 

< 0.01 
0.02 

HNF 

V$HNF1_Q6_01 
V$PIT1_Q6 

V$AP4_Q6_01 
0.01 
0.02 

V$HNF3_Q6_01 
V$CEBP_Q3 

 V$NF1_Q6_01 
0.01 
0.01 

V$HNF4_Q6_01 
V$SRF_Q5_02 
V$USF_Q6_01 

< 0.01 
0.03 

Table 2.  True positive rates (%) of different method to identify GATA 
factor binding sites given fixed levels of false positive rate 

FPR (%) OSCAR-C OSCAR-L OSCAR P-Match MATCH 

1.0 100.0 96.0 92.0 68.0 48.0 
0.5 96.0 84.0 84.0 48.0 40.0 
0.1 84.0 64.0 48.0 NA§ 20.0 
0.05 68.0 48.0 44.0 NA§ 20.0 

§The lowest false positive rate that P-Match could achieve on this data set is 
0.23%, corresponding to a true positive rate of 36.0%. 

Table 3.  True positive rates (%) of different method to identify TFBSs of 
transcription factors in HNF family given fixed levels of false positive rate 

FPR (%) OSCAR-C OSCAR-L OSCAR P-Match MATCH 

1.0 96.7 93.3 93.3 43.3 53.3 
0.5 93.3 90.0 90.0 40.0 26.7 
0.1 86.7 80.0 76.7 33.3 10.0 
0.05 76.7 73.3 66.7 30.0 3.3 

4 DISCUSSION 
In this paper, we use the one-class SVM algorithm to identi-
fy cis-regulatory elements in promoter regions when only 
limited, “positive” samples are available. To improve the 
accuracy of prediction, we further consider the preferences 
of binding site locations, and the co-occurrences of other 
motifs in promoter regions. Applying our method to syn-
thetic as well as real data, we have demonstrated the advan-
tage of the proposed strategy, and confirmed the conclusion 
that incorporation of locational preference can improve the 
performance of prediction. We also illustrate how the me-
thod can be used to identify and utilize co-occurring motif 
pairs in predicting binding sites of two transcription factor 
families. 

Note that, in the OSCAR algorithm, we construct a linear 
prediction function, which assumes an additive contribution 
from each position towards the score. Different from PWM-
based methods, our method allows for encoding each bind-

ing site as a unitary vector. Some higher-order models, such 
as Bayesian tree structure (Barash et al., 2003) or di-
nucleotide interactions (Zhou and Liu., 2004), were ex-
ploited to improve the prediction accuracy. However, even 
in cases where intra-site interactions exist, the additive 
model has been suggested to be a good approximation (Be-
nos et al., 2002). In our applications, we limit to construct 
linear prediction rules. The “kernel trick” in SVM, which 
allows for non-linearly mapping into a high-dimensional 
feature space, can be used as well. We have tried both poly-
nomial and RBF kernels in our experiments, but little im-
provement has been observed. Since high-dimensional fea-
ture spaces may suffer from low generalization ability, we 
recommend using the linear kernel in this context. 

An extensive investigation of the correlated motifs in 
prediction can help us to better understand gene regulations 
mechanisms. In this paper, we focus on how to recognize 
the binding sites of a particular transcription factor more 
accurately by exploring the related information more effi-
ciently, but the method presented in this paper can also be 
used to infer the co-occurrences of motifs in the future. In 
addition, we use discrete interval indicators for the division 
of promoter regions in order to utilize the locational infor-
mation. Given larger amount of available data, the algorithm 
may be further improved by using the exact positions of 
binding events directly. Moreover, other types of informa-
tion, such as the occupancy of nucleosome (an algorithm 
that can use nucleosome occupancy information in TFBS 
prediction is in preparation), evolutionary conservation be-
tween related species, and the tissue specificity of the down-
stream genes, may be further exploited by incorporating 
them into our method.  
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