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Abstract. We prove LP estimates for oscillating spectral multipliers on Lie groups

of polynomial volume growth and Riemannian manifolds of nonnegative curvature. We

apply these results to obtain LP estimates for the Riesz means of the Schrodinger operator.

Introduction and statement of the results. Oscillating spectral multipliers are

multipliers of the type

with φ(λ) a C°° function, 0 for | λ | < l and 1 for |Λ,|>2. They are interesting because

of their intimate connection with the Cauchy problem for the Schrodinger and the wave

equations. They are also interesting because they provide examples of operators that

are given by "strongly singular kernels" (cf. [9]).

Oscillating multipliers have already been studied extensively in the context of Rn

(cf. [9], [10], [21], [22], [23], [26]). Some of these results have been generalised to

stratified nilpotent Lie groups (cf. [19]) and to rank one noncompact symmetric spaces

(cf. [11]).

In this article we study the oscillating multipliers in the context of connected Lie

groups of polynomial volume growth and Riemannian mamifolds of nonnegative Ricci

curvature. More precisely:

(a) Lie groups of polynomial volume growth. We consider a connected Lie group

G and we fix a right invariant Haar measure dg on G.

If A is a Borel measurable subset of G, then we set | A | = dgr-measure(;4).

We fix a choice of left invariant vector fields Xu . . . , Xk that generate, together

with their successive Lie brackets [Xh, [Xh,..., [Xis_^ XiJ •••]], the Lie algebra of G.

To those vector fields, we associate, in a canonical way, a left invariant distance dx( , )

(see [28] for this and the other results from the geometry and the analysis on Lie groups

used in this article) and we denote by Br(x) the associated ball of radius r > 0 and

centered at xeG.

We know that there is d e N such that
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(1) | £ , M I ~ Λ (r-*0), xeG,

where by f(t)~h(ή, as t-+t0 we mean that there is a constant e>0 such that

We also know that either there is an integer D > 0 such that

(2) \Br(x)\~rD, (r->oo)

or there is c>0 such that

\Br(x)\>cecr, (r-oo).

In the first case we say that G has polynomial volume growth and in the second
exponential volume growth.

In this article we shall assume that G has polynomial volume growth. Connected
nilpotent Lie groups are examples of such groups. Lie groups of polynomial volume
growth are unimodular.

We call d and D the local dimension and the dimension at infinity, respectively.
The local dimension d depends on the choice of vector fields. The dimension at infinity
D is independent of the choice of vector fields; it is a group invariant.

Notice that both of the situations d < D and d > D are equally probable. For example
when G is a simply connected nilpotent Lie group, then d<D, and when G is compact,
D = 0. Furthermore, if we start with a group G for which we have d<D we can always
consider the group G' = TD~d+1 xG (where T=R/Z) which will have local dimension
d' = d + (D — d+\) = D + \, dimension at infinity D' = D and then of course d'>D'.

We denote by L the sub-Laplacian

L=-(Xl+ -+Xi).

(b) Riemannian manifolds of nonnegative curvature. We consider a complete
Riemannian manifold G of dimension n and we denote by d( , ) the Riemannian
distance on G and by Br(x) = {yeM: d(x, y) < r} the geodesic ball of radius r > 0 centered
at xeM. We also denote by | Br(x)| the volume of Br(x).

We assume that G has nonnegative Ricci curvature. This assumption implies, by
the Bishop comparison theorem (cf. [5]), that there is a constant c>0 such that

(3) \Br{x)\<cr\ r>0, i ^ i ^ ^ V , r>ί>0.

We put d = D = n and denote by L the Laplace-Beltrami operator on M.
In both of the above cases the operator L admits a selfadjoint extension on L2(G)

which we also denote by L and hence a spectral resolution denoted by

-Γ
Jo

ME,
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If m(λ) is a bounded measurable function, then by using the spectral theorem we can

define the operator

m(L)=\ m(λ)dEλ,
Jo

which, of course, will be bounded on L2(G).

We shall denote by m(x, y) the Schwartz kernel of the operator m(L). Observe that

when G is a Lie group, the assumption that L is left invariant implies that m(x, y) is

also left invariant, i.e. m(x, y) = m(zx, zy), zeG.

The main result of this article is the following:

THEOREM 1. Let G be either a connected Lie group of polynomial volume growth

or a Riemannian manifold of nonnegatίve curvature. Let also d, D be as above.

(a) If0<α<l, then m^β{L) is bounded on Lp for β>ocd\ 1/p- 1/21, l < p < o o .

(b) If(x> 1 then m^β{L) is bounded on Lpforβxx\ l/p-1/2 | max(d, D), 1 <p< oo.

Note that when 0 < α < 1 then it is only the local dimension that is taken into

account. The reason for this is that, as it is the case in Rn and as we shall see in the

course of the proof of the above theorem, when 0 < α < 1, the kernel raα β(x, y) is singular

only near the diagonal.

When α = 1 (this case corresponds to the wave operator) then, according to what

happens in Rn, the critical index in the part (a) of Theorem 1 should have been

(d—1)| 1/2- 1/pI and not d\l/2~\/p\.

Applications to the Schrόdinger equation. Let/eC^G) and denote by w(ί, x) the

solution to the Schrόdinger equation

iLu, i4(0,x) /
dt

Then we have

u(t,x) = eitLf(x).

We denote by Wps the Sobolev space

We have the following theorem which generalises similar results of Brenner [4]

and Ishii [14].

THEOREM 2. Let u(t, x) and Wp's be as above. Then for all ε>0 there is a constant

cε > 0 such that

Hk
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The operator eitL is bounded on LF only for p = 2. A possible substitute for this

operator on LP is its Riesz means

Ik(L) = kΓk (t-sf-1eisLds9 k>0.
Jo

Of course we can also consider the more general operators

\ (t-sf-'e^ds,
Jo

\
Jo

{t-sf~1eiaLmt2ds9

These operators have been studied in the case of Rn by Miyachi [22] and Sjδstrand

[25]. Their results have been recently generalised to Lie groups and Riemannian

manifolds by Lohoue [17]. The following theorem improves some of the results of

Lohoue [17].

THEOREM 3. (a) If 0 < α < 1, then Iκα(L) is bounded on U for k>d\ l/p-1/21,

l<p<oo.
(b) If α > 1 then IKa(L) is bounded on U for k>\ l/p -1/21 max(d, D\ 1 < p < oo.

The basic ideas of the proofs. The proof of the above results is based on an idea,

which is due to M. Taylor (see for example [6]) and which is the use of the finite

propagation speed of the wave operator in order to obtain estimates for the kernel

m(x, y) of the operator m(L) away from the diagonal.

More precisely, let Gt(x, y) denote the kernel of the operator cos typL. Then Gt(x9 y)

is also the fundamental solution of the wave equation

) = 0 , H(0,X) = /(X), f A

and therefore it has the property

(4) supp(Gt)^{(x,y):d(x,y)<\t\}.

In the case of subelliptic operators, this result was proved in [20].

The idea of M. Taylor is, roughly speaking, to write m(L) = /(Λ/z7) wi th/an even

function. Then we have the formula

f
J — c

(5)

which combined with (4) gives the formula

(6) m(x, y) = (2π) ~ 1 / 2 | f(t)Gt(x, y)dt,

which can be used to get estimates of the kernel m(x, y) away from the diagonal.
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Apart from (4) we shall also use the following estimate for the associated heat

kernel pt(x, y) (pt(x, y) is the fundamental solution of the heat equation (d/δt + L)u = 0

as well as the kernel of the semigroup e~tL, t >0):

(7) p

This estimate is proved in [27] when G is a Lie group of polynomial volume growth

and in [8], [16] when G is a Riemannian manifold of nonnegative curvature.

PROOF OF THEOREM 1. We start with some preliminary considerations. We state

first the following:

LEMMA 4 (cf. [13, pp. 237-238], [24, p. 88]). Assume that the function f{x)sC{R)

has compact support and that it possesses n continuous derivativs/'(x),/"(x), . ..,/(n)(x).

Let also A=n + ε with εe(0, 1] and set

Then for every λ>0 there is an even bounded integrable function ψλ(x)eC(R) such that

for all xeR

(8) supp(ι^) ̂  [ — λ, λ] and | /(x) — / * ψ(x) | < cMA(f)λ Λ .

(c is a constant that depends only on n.)

Following the standard procedure we consider a function φeCo(R+) such that

supp(</>) c ( * 2 ), Σ 0(2'"r) = 1 , ί > 0 .
\ 2 / jeZ

lfj>0JeZ, then we set

mj(λ) = ma β(λ)φ(2~jλ), fj(λ) = mj(λ)Qxp(2~jλ) and hj(λ) =fj(λ2).

Observe that if A >0 and MA{h}) is as in Lemma 4 above, then there is c>0 such that

(9) MA(

Also there is c > 0 such that

(10)

Let rhj(x, y) be the Schwartz kernel of the operator m^L). Since

m (T\— f (T\p~2~iL fίίλ — h d 1 ! 2 }

and since the operators h^^fΐ) and e~2~3L commute, we have

(11) Wy(x, y) = hj(y/ L )p2j(x, y) = hj{yjL)p2-j{x, y)
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with the operators h^yfΈ) and /^(^/ΪΓ) acting on the variables x and y, respectively.
We set Ap(x) = {y: 2p/2<d(x,y)<2(p + 1)/2}, peZ.

LEMMA 5. For all A>0, there is a constant c>0 independent of y such that

( i ) \\rhj{x9 )IILI(H2-J/2(X))<C Halloo.
(ii) || m,(x, ) | | L l U p ( x ) ) <c2-^-^- 1 ^2 2 ^/4 2 (d/4-Λ/2), ? _ ; < p < o .

(iii) || *j(χ, ) | | L l ( i l p ( x ) ) ^ c 2 ^ - < - - 1 ^ / 2 2 i - / 4 2 ^ - ^ ^ p > 0 .
Furthermore, the above estimates remain true, if we replace m,(x, ) by rhj( , x).

PROOF. The last assertion of the lemma will follow from (11) and the way the
estimates (i), (ii) and (iii) will be proved.

Let us prove (i). It follows from (7) that

(12) ||P2-;(Λ

We also have

(13) || J

Hence, it follows from (11) that

<|B 2 .,dx)\ 1 1 2 II hj{JT) | | 2 ^ 2 ||/»2-Xx, ) ||2

<c(|β2-J/2(x)|/|β2-0-.»/2(x)|)1/2||/iJ IL

and from this, by using either (1) and (2) or (3) we get (i).
To prove (ii) and (iii) we observe that if z e Ap(x), p > —j, then it follows from (5)

and (6) that

= (2π)" 1 / 2 I hj(t)costjlp2-j(x, )Jz)dt

= (2π) ~ 1 / 2

r + ao

•/ — 00

= (2πyί/2 hj(t)
J | ί | > 2 P / 2 - 1

Λ + oo

+ (2πy112 hj{t){co
J - oo

Λ + oo

= (2π)-1/2 tfijM-fijiήφj
J — oo
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+ (2πΓ1 / 2

where \j/jp is an even function as in Lemma 7 satisfying

supp(ιAΛp)^[-2*/2-2, 2*/2"2] and ih^-h^

Hence

Λ*, * ) l{y: d(x, y)

and from this we have (always for p > —j)

II rhj(x9 •) \\LHApix))<\Ap(x)\"2 || hj-hj*φjtP II, ||/7

-)/ 2(x)| 1 / 2 || hj IL || p2-j(x, )l{y:dix,y)>2P/2-i} \\ϋ2

Now (ii) and (iii) follow from (1), (2), (3), (7) and (11) and the observation that there
are constants c, C,C>0 such that

PROOF OF THEOREM 1. We observe that it follows from (10) and Lemma 5, (i) that

(14) \\mj(x,')\\LHB2-j/2(x))<c2-^2.

It follows from (9) and Lemma 5, (ii) that if —j<p<0 then

Wrhίx Oil i <r2-[β + a-*)A]J/22jd/4 2id/4~A/2)p

= c2~ιβ + (1~a)A~ d/2]j/2 2 ( d / 4 ~ A/2)p

and therefore if we chose Λ = d/2 — ε, ε>0 then

Σ ll m (Ύ \\\II rnj\x, ) \\LHAp(

— r J [ β (-oc)(d/2 -ε)-d/2]j/2

(15) ~c2

Finally it follows from (9) and Lemma 5, (iii) that if p>0, then
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and therefore if we chose A = D/2 + ε, ε > 0, then

Y \ \ m ( x -)\\ ,lu \\mj\x> ) \\LHAP(
P>0

= c 2 ~ [ β + (1~ tx)(D/2 + ε) ~ d/2]j/2

and from this, that for all ε > 0

c2~εj/2 ,

rj-[β-d/2]j/2

0 < α < l

α — i

In the case 0 < α < l , β>doc/2 and the case α > l , jβ>(α/2)max(d, D), Theorem 1

follows from the fact that (14), (15) and (16) imply that the kernel ma β(x, y) of the

operator ma β(L) is integrable:

sup II mα,/x, ) II i <sup £ || rhj(x9 ) II i < oo .
xeG xeGj>o

The rest of the cases of Theorem 1 follows by interpolation:

Let 0 < ί < l , l/p = t/l+(l — t)/2, i.e. t = 2/p-l. Then, by interpolation, we have

| mj(L) \ | mj(L) \\U, \\ rπj( sup || rhj(x,
xsG

| m
ι l - r

j II oo

Hence it follows from (14), (15) and (16) and the fact that

that there is c>0 such that

c2-[fi-*d(l/p-l/2)]JI22Vl2

c2-[β-*d(l/p-l/2)]j/2
0 < α < l

α = l

Theorem 1 follows from the above estimates and the fact that

PROOF OF THEOREM 2. Let us consider the multiplier

The proof of Theorem 2 is reduced to proving that m(L) is bounded on Lp for

β > 2 max(d, D) 11/p —1/21, p > 1 with operator norm
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To do this we consider a C00 function φ(λ), which is 0 for | A | < 2 and 1 for \λ\>3

and we put

We also consider a function φ as in the proof of Theorem 1 and for j eN we set

mj(L) = φ(2-jL)ψ{L)(l+L)-β/2eitL .

As in the proof of Theorem 1 we set

If MA(hj) is defined as in Lemma 4, then we have

(17) MA(
 A(

From here on the proof of Theorem 2 is exactly the same as the proof of Theorem 1.

The only difference is that instead of using the estimate (9), we use the estimate (17)

above.

PROOF OF THEOREM 3. We have

kΓk Ϊ\t-s)k-1eis\λl"/2ds = k Π( l-s)*-V s ( ί 2 / α | λ | ) α / 2 ^, fc,α>0.
J JJo Jo

So, by replacing, if necessary, the operator L by the operator ί2/αL, we may assume

that ί = l . Let

m(λ) = k (l-sf-^^ds.
Jo

Then

As has been shown in [25], [29]

m(λ) = Ckψ1(λ)λ-keiλ

where m(λ) is a smooth function such that

) is a C0 0 function, which is 0 for | λ \ < 1 and 1 for | λ | > 2 and

Ck = kΓ(k)e-πik/2 .

If we put/(A) = m(|/l | a / 2), then the operator/(L), hence also the operator m(Lα/2),
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is bounded on Lp, 1 <p< oo. This is proved by considering functions φ(λ) and φ(λ) as
in the proof of Theorem 2, setting

and then working as in the proof of Theorem 1. We omit the details.

Let us put now φ(λ) = φ1(\λ\a/2) and

Then to prove Theorem 3 it is enough to prove that the operator h(L) is bounded on Lp,
for those p > 1 that satisfy k>d\l/p-l/2\ when 0 < α < 1 and k>\l/p-1/21 max(d, D),
when α> 1, which of course is a consequence of Theorem 1.

FINAL REMARKS. Let us put ourselves in the context of Theorem 1, (a). Then as
we can see from the proof of that theorem, the kernel ma β(x, y) is integrable away from
the diagonal and it is singular only near the diagonal.

So, it is natural to ask whether, at least when G is a Riemannian manifold (the
case where the situation should be more manageable), the operator ma β(L) for 0<α< 1
is bounded on H1 when β = ocD/2 and on Lp when β = ocD\(l/p)-(l/2)\, \<p<oo.

In the context of Rn, this end point result has been proved in [10]. The basic
ingredients of that proof are very good L00 estimates for the kernel mΛtβ(x, y) and its
gradient Wmatβ(x9y), the Hardy-Littlewood-Sobolev theorem and the appropriate
estimates on the norm of the operator Liy, γeR, on if1.

Very good L00 estimates for ma β(x,y) and VraαJ?(x, y) can be obtained as follows:
First we use the formulas (4) and (5) to express v7wα>j8(x, y) in terms of the kernel

Gt(x, y) of the operator cos /Λ/z7 for / < a. Next we use the Hadamard parametrix
construction (cf. [2]) to obtain an asymptotic expansion for the kernel Gt(x, y). The
desired estimates will follow by a calculation similar to the one that was carried out
for example in [2, pp. 6-7] and [12, pp. 5-6], The appropriate estimates for the Fourier
transform/(ί) of the function f(t) = ma β(t2) have been proved in Theorem 9 of [29].
The asymptotic expansion for Gt(x, y) and hence the estimates for maβ(x,y) will be
"uniformly good" if we assume for example that G has bounded C00 geometry (this
condition could be weakened).

In order to have the Hardy-Littlewood-Sobolev theorem available, as is shown in
[15], we need to make the additional assumption that there is a constant cD independent
of x G G such that | Br(x) | > crD, r > 0.

Finally, the desired estimate for the norm of the operator Liy, yeR, on H1 follows
from the main result of [1] which is stated for Lie groups with polynomial volume
growth but is also valid for Riemannian manifolds of nonnegative Ricci curvature,
since the same proof also works in that context.

Once G satisfies these additional conditions, then the proof of the above mentioned
end point result in the context of Rn in [10] can also be made to work on G. We believe
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that with these indications the interested readers will be able to supply a proof for

themselves.
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