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OSCILLATION AND ASYMPTOTIC BEHAVIOR OF SYSTEMS
OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS

BY
CARL H. RASMUSSEN*

Abstract. Conditions are established for oscillatory and asymptotic be-
havior for first-order matrix systems of ordinary differential equations,
including Hamiltonian systems in the selfadjoint case. Asymptotic results of
Hille, Shreve, and Hartman are generalized. Disconjugacy criteria of
Ahlbrandt, Tomastik, and Reid are extended.

1. Introduction. The purpose of this paper is to establish conditions for
oscillatory and asymptotic behavior for systems of linear homogeneous
ordinary differential equations. A detailed definition of the systems involved
is given in §2, and for background and motivation the reader may refer, for
example, to [7], [11], or [15]. In §3 extensions are obtained of certain theorems
of Hille [8], Shreve [14], and Hartman [7] on the asymptotic behavior of
solutions, and partial converses of these are obtained in §4 for the selfadjoint
case. Certain nonoscillation results of Reid ([9], [10]) are extended to an
arbitrary non-self adjoint system in §2. In §4 several nonoscillation results for
selfadjoint systems are obtained, including extensions of results of Tomastik
[16] and Ahlbrandt [1], [2], by means of an associated Riccati equation.

Matrix notation is used throughout. Matrices of one column are called
vectors; any square identity matrix is denoted by /; and the zero matrix of
any dimension is denoted by 0. The hermitian conjugate (complex conjugate
of the transpose) of a matrix H is denoted by H*, and H is called hermitian
whenever H* = H. If H and K are n X n hermitian matrices, then H > K
[H > K], indicates that H — K is positive definite [positive semidefinite]. The
symbol / is used throughout to denote a fixed subinterval (a0, oo), a0 > -co,
of the real line. A hermitian matrix H = H(t) will be called nondecreasing
[increasing] on a nondegenerate subinterval J0 C J if for tx, t2 £ /q, i, < t2
implies that H(tx) < #('2) [HÇtJ < //(fj)]- A matrix has the properties of
boundedness, continuity, differentiability, or integrability on a subinterval J0
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2 C. H. RASMUSSEN

if and only if each of its entries has the property on J0. The symbols £(/o)
and <£(/„) will denote the classes of matrices which on arbitrary compact
subintervals of J0 aie Lebesgue integrable and absolutely continuous, respec-
tively. If a is an accumulation point of J0, then we say that a matrix H(t) on
J0 has a limit AT at a provided each entry of H(t) has the corresponding entry
of AT as a limit at a. The integral ¡™H(s)ds is said to exist whenever each
entry of f'bH(s)ds has a finite limit at co.

The eigenvalues of a hermitian n X n matrix H(t) G t(J¿) are real, and
will be denoted by \[H(t)], v = 1, 2, 3, . . . , n. It will always be understood
that

\\H(ty\ < Xafff«] < ■•• <\,[/f(/)]
for each t in J0. Each \[H(t)] is in £(/0) whenever H(t) is. If H(t) is
continuous on J0, then so are the \[H(t)], I < v < n. The matrix norm used
throughout is ¡|M|| = (\[M*M])1/2, where M is an arbitrary m X n complex
matrix. The trace of a square matrix H, denoted by tracef/f*], or simply tr[H\,
is the sum of the main diagonal entries of H, and also equals the sum of the
eigenvalues of H.

2. Formulation and reduction transformations. In this section we lay the
groundwork and establish preliminaries for the later sections. An effort is
made to present the problem in a quite general setting, and the main result of
this section contained in Theorem 2.1 is established without variational
techniques.

Consider the general matrix differential system
X'= A(t)X + B(t)Y,        Y' = C(t)X + D(t)Y (2.1)

on / = (a0, oo), where A(t), B(t), C(/)» and D(t) are complex matrices in £(/)
with sizes r X r, r X n, n X r, and n X n, respectively, and 0 < r < n. If
X0(t) and Y0(t) arerXfc and n X k matrices, k > 1, then [y^], or alterna-
tively (X0, Y0), will denote a solution of (2.1) provided A"0(r) and Y0(t) are in
&(J) and satisfy (2.1) a.e. (almost everywhere) on /.

The formal adjoint of (2.1) is given by
U' = -A*(t)U- C*(t)V,        V = -B*(t)U- D*(t)V.       (2.2)

If (X0, Y0) and (C/0, V0) are solutions of (2.1) and (2.2), respectively, one can
readily see that X£ U0 + Y$ V0 is identically constant on J. Such a solution
pair will be called a conjugate pair for (2.1) and its adjoint if this constant is
zero. When r = n and D = - A*, B = B*, and C = C*, then (2.1) is a
Hamiltonian system, and if (X0, Y0) is a solution of (2.1), then (— Y0, X<¡)
satisfies (2.2) and X$ Y0 — Y£X0 is identically constant on J. In this case if
the constant is zero, then the solution (X0, Y0) is called self-conjugate.

Let a and b be distinct points in /. Then b is called a conjugate point of a
with respect to (2.1) if there exists an (r + ri) X 1 vector solution (x,y) of
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ORDINARY LINEAR DIFFERENTIAL EQUATIONS 3

(2.1) satisfying

0
x(a)

y(b) (2.3)

such that x(t) ^ 0 on the interval between a and b. Here In and Ir denote the
n X n and r X r identity matrices, respectively. Observe that when r = n, b is
a conjugate point of a if and only if a is a conjugate point of b with respect to
(2.1). In this case a and b are called mutually conjugate with respect to (2.1).

The point b is called an adjoint conjugate point of a with respect to (2.1) if
there exists an (r + ri) X 1 vector solution (m, v) of (2.2) satisfying

«(«)
v(a)

0
/„

u(b)
v(b) (2.4)

such that v(t) í Oon the interval between a and b. As above, when r = n, b
is an adjoint conjugate point of a if and only if a is an adjoint conjugate point
of b, and the two are called mutually adjoint conjugate in this case. If, in
addition, (2.1) is Hamiltonian, then a and b are mutually conjugate if and
only if they are mutually adjoint conjugate. Standard results for two-point
boundary value problems (see, for example, [7, Chapter 12]) imply that the
boundary value problem consisting of (2.1) with (2.3) has the same number of
linearly independent vector solutions as its adjoint boundary value problem
given by (2.2) with (2.4).

Let X0 and V0 be fundamental matrices for
X' = AX

and
V = -D*V,

respectively, and transform (2.1) and (2.2) by

X = XqZ,,

and

U = X^S,        V = V0R,
respectively. The resulting reduced system is

Z' = X¿lBV*-lW,        W = V$CX0Z

and its adjoint
S' = -X$C* V0R,       R'-V¿*B*X$-lS.

If a and b are distinct points in / and if either r = n or X0 and V0 are
normalized to be Jr and /„, respectively, at a, then b is a conjugate point (or
an adjoint conjugate point) of a with respect to (2.1) if and only if it is such
with respect to (2.7). Furthermore, if (2.1) is Hamiltonian, then (2.5a) and
(2.5b) are identical. Taking V0 = X0, the resulting reduced system (2.7) is also

Y= V^W

(2.5a)

(2.5b)

(2.6a)

(2.6b)

(2-7)

(2.8)
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4 C. H. RASMUSSEN

Hamiltonian. This special case of the following more general transformation
shows that (2.1) and its adjoint can always be transformed to reduced systems
such that boundary value problems are transformed to equivalent boundary
value problems.

In (2.1) and (2.2) let C = C0 + C,. Suppose that (X0, Y¿) is an (r + n) X r
solution of

X' = AX + BY,        Y' = CqX + DY (2.9)
and that ( U0, V0) is an (r + h) X n solution of its adjoint

V = -A*U- C$V,       V = -B*U- D*V (2.10)
such that (X0, Y0) and (U0, V¿) form a conjugate pair for (2.9) and (2.10),
with X0 and V0 nonsingular on some subinterval J0 C J. Restricting / to J0
and transforming (2.1) and (2.2) by

X = X0Z,        Y= Y0Z+ V$~lW (2.11)

and

U = U0R + X$-*S,       V = VqR (2.12)
one obtains, as before, the reduced system

Z' = GW,       W = QZ (2.13)
and its adjoint

S' - - Q*R,       R' = - G*S, (2.14)
respectively, where G and Q are given by

G = X^BVS-1 (2.15)
and

ß = FJC,*,,. (2.16)
As before, by appropriate normalization of X0 and V0 at a e J0 if neces-

sary, the transformation leaves the conjugate points of a in J0 unchanged. If
(2.1) is Hamiltonian, C0 and C, are hermitian, and (X& Y¿) is self-conjugate,
then taking ( U0, V0) = ( — Y0, X¿) yields a reduced Hamiltonian system, and
for each t matrices G and Q have the same number of positive eigenvalues as
B and Cv respectively. To see that the transformations (2.5)-(2.8) is a special
case of the transformation (2.9)-(2.16), note that if C0 = 0 and Ct =C then
(X0, 0) and (0, V0) form a conjugate pair for (2.9) and (2.10), where X0 and V0
are fundamental matrices for (2.5a) and (2.5b). Equations (2.11)—(2.14) are
the same as (2.6a)-(2.8) in this case.

It is to be noted that if (X, Y) and (U, V) form a conjugate pair for (2.1)
and its adjoint, then the images (Z, W) and (5, R) under transformations
(2.11) and (2.12) form a conjugate pair for the reduced system (2.13) and its
adjoint (2.14). Also, Z and R are nonsingular in J0 precisely where X and V
are, respectively.
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ORDINARY LINEAR DIFFERENTIAL EQUATIONS 5

The reduction transformations (2.11), (2.12) require a conjugate pair
(X0, Y0), (i/o, V0) for (2.9) and (2.10) with X0 and V0 nonsingular on J0.
However, for this it is sufficient that a solution (X0, Y0) of (2.9) exist with X0
nonsingular on J0, and sufficient conditions for this are established in
Theorem 2.1 below. Let (Xq, Y0) be such a solution of (2.9), and let (Xv Yt)
be another solution of (2.9) such that

rn   y,

is a fundamental matrix of solutions for (2.9). Then

*i
' -i

is a fundamental matrix of solutions of (2.10), where

*Jq =   — -*0     *0 '0> '0 = \ * 1   — ■* 1 -*0     * 0/

and
(2.17)

(2.18)Î7, - *?-'(/ - Y* Vx),       F, = - F^W'-
Therefore, ([/0, F0) is a solution of (2.10) such that V0 is nonsingular

precisely where X0 is, and (X& Y0) and (Uq, K0) form a conjugate pair for
(2.9) and (2.10).

The following theorem extends to the arbitrary system (2.1) certain results
of Reid ([9], [10]).

Theorem 2.1. Let a e J = (a0, co) and suppose that a has no conjugate
points or adjoint conjugate points in {a, oo) with respect to (2.1). Then there
exists an (n + r) X r solution (X, Y) of (2.1) such that X is nonsingular on
some terminal interval (av oo) Q (a, oo). If b > a is a point at which X is
singular, then for some constant unit vector tj, X(t)i\ = 0 on [a, b]. If (2.1) is
Hamiltonian, (X, Y) may be taken to be self-conjugate.

Proof. Transform (2.1) and its adjoint by (2.6) with X0 and V0 normalized
to be the respective identities at a. Then a has no conjugate points or adjoint
conjugate points in (a, oo) with respect to the reduced system

G = X?BV$-\Z' = GW,
w = qz,     q - rçcr0.

Suppose that the only vector solution of (2.19) satisfying

0
z(a)
w(a)

z(b)
w(b)

(2.19)

(2.20)

for all b > a (having the form (0, w) on [a, oo)) is the zero solution (0, 0). Let
(Z, W) be the (n + r) X r solution of (2.19) on [a, oo) with
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6 C. H. RASMUSSEN

Z(a) = 0   and    W(a) =   :
r

and suppose that {tr} is an increasing sequence of points in (a, oo) such that
r„ -» oo and Z(tp) is singular. Then there is a sequence {t/,,} of constant unit
vectors such that Z(í„)tj„ = 0. For each v,

(zr) *„) = (z(t)%, w(t)n.)
is a vector solution of (2.19) satisfying (2.20) for b = tv, in which case
zy(i) = Z(/)tj„ = 0 on [a, ty] since a has no conjugate points in (a, oo) with
respect to (2.19). Without loss of generality we may assume that {t/„}
converges. Then tj, -» t/, where tj is a constant unit vector. For any fixed t in
(a, oo)

Z(t)V - Z(/K + Z(0(t, - H,), (2.21)
and as v —» oo the right-hand side of (2.21) tends to zero. Since t £E (a, oo)
was arbitrary, Z(/)tj = 0 on (a, oo). The vector solution (Z(í)ti, JP(/)t/) =
(0, w) of (2.19) satisfies (2.20) for all b > a, whence w m 0 on (a, oo). In
particular,

= 0,

which contradicts the fact that tj is a nonzero vector. Therefore, Z(t) is
nonsingular on some terminal interval (a„ oo) Ç (a, oo). Furthermore, if Z is
singular at b > a the above argument shows that Z(/)tj = 0 on [a, b] for some
constant unit vector 17. The first member X of the corresponding solution
(X, Y) of (2.1) also has these properties. Furthermore, if (2.1) is Hamiltonian,
then (X, Y) is self-conjugate since X(a) = 0.

On the other hand, suppose there exist nonzero vector solutions of (2.19) of
the form (0, w) satisfying (2.20) for all b > a, and let (0, [£ ]) be a basis for
these. The matrix Kx is an r X d constant matrix of rank d > 0 for some
d < r. Let (L„ 0) be a basis for the vector solutions of the adjoint system

S'=-Q*R,       R'=-G*S (2.22)
satisfying

0    J,
.0   0

for all b > a(r(b) = 0 on (a, 00)). Since a has no conjugate points or adjoint
conjugate points in (a, 00) with respect to (2.19), we see that for fixed b > a
all the solutions of the boundary value problem (2.19) and (2.20) are of the
form (0, w), and all of the solutions of the boundary value problem (2.22) and
(2.23) are of the form (s, 0). Consequently there are constant basis matrices
for the solution sets of the respective problems. Furthermore, the problems
have the same number of linearly independent solutions on [a, b], so these

w(a) =

s(a)
r(a)

0     0
0   /.

'(b)
r{b)

0
0 (2.23)
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ORDINARY LINEAR DIFFERENTIAL EQUATIONS 7

matrices have the same rank, say d(b), depending on the right end-point b.
The function d(b) is nonincreasing with integer values (d < d(b) < r), and as
b increases d(b) becomes constant on some terminal subinterval of (a, oo). Its
value there is d = ra.nk(Kx) = rank(L,). Therefore Lx is also an r X d matrix
of rank d. We may assume that KfKx = Id — L\*Lx. Let L = [L2\LX\, K =
[K2\KX], and

K3     0'
0      K_

be unitary matrices of sizes r x r, r X r, and n X n, respectively, and let
(Z, W) be the (n + r) X r solution of (2.19) such that Z{a) = [0-L,] and

0     0'

M =

W(a) = K2    0

Let Z, = L*Z and Wx = M* W. Then

Zx(a) =
0     0
0    /„

and

&i — Gxx     0
0      0.

where 0d is the d X d zero matrix,

Gxx     0
0      0„

Wx,    W[ = QXZX,

= L*GM,

(2.24)

and Qx = M*QL. (Note that Gn is a submatrix of L*GM, not of G.) Then

Z|- 0
'12

on [a, oo). Suppose that for some b > a, Z(b) is singular. Then Zx(b) is
singular, and for some constant unit vector [^'J we have

0 = Zx(b) 'i 1 . [ zn(6)1ii + ZI2(Z>)Th
^J ^2

whence ij2 = 0, Z,,(¿>)i), = 0, and ij, is a unit vector. The vector solution
(z, w) of (2.19) defined by

0
TJl
0

= L

and

w(t) = lT(r) î?l

0
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8 C. H. RASMUSSEN

satisfies (2.20), whence z(t) = 0 on [a, b], and Zxx(j)t¡x se 0 on [a, b]. If Z(t)
is singular at an increasing sequence of points {f„}, tr -» oo, then there is a
sequence of unit vectors {tj,} such that Zxx(tv)t\r = 0. An argument similar to
that in the first part of the proof yields that Zxx(f)r\ = 0 on [a, oo) for some
constant unit vector tj. The vector solution (z, w) of (2.19) defined by

(z, w) = (z(/) ,W{t)

satisfies (2.20) for all b > a. Consequently, z(t) = 0 on [a, oo) and

w(t) a w(a) = 0 0

However, (0, [% ]) is a basis for such solutions, whence w(t) as [£ ]a for some
constant vector a. Since ATf K2 = 0, this implies that tj = 0, a contradiction.
Therefore, Z is nonsingular on some terminal interval (a„ oo) Ç (a, oo). The
solution (X, Y) of (2.1) corresponding to (Z, W) has the desired properties.
Furthermore, if (2.1) is Hamiltonian, the reduced system (2.19) is also, and we
may take L, = Kx, whence

Z*{a)W(a) = 0
[K2-0] = 0,

and since X(a) = Z(a) and Y(a) = W(a), this yields X*(a)Y(a) - Y*(a)X(a)
= 0, so (X, Y) is self-conjugate.   □

When r — nin system (2.1) the coefficient matrices are square, and
considering the boundary condition (2.3), we have already noted that point a
is a conjugate point of b if and only if b is a conjugate point of a with respect
to (2.1). If no two distinct points of a nonirivial subinterval J0 are conjugate
with respect to (2.1), the system is called disconjugate on JQ. The order of
abnormality of (2.1) on a nontrivial subinterval [a, c], [a, c), or [a, oo) is the
dimension of the space of vector solutions of the form (0, y) on that subinter-
val (i.e., the solutions which satisfy (2.3) for all b in the subinterval). The
system is normal on the subinterval whenever it has order of abnormality zero
there. The system is called oscillatory at oo, or simply oscillatory, if for any
point a G J there is a point b > a that is conjugate to a. Conversely, the
system is nonoscillatory provided there exists some terminal interval (a, oo)
C J on which it is disconjugate.

The following well-known theorem [10] provides a partial converse to
Theorem 2.1.

Theorem 2.2. Suppose that (2.1) is Hamiltonian and that B(t) > 0 a.e. on J.
Then (2.1) is nonoscillatory if and only if there exists a self-conjugate solution
(Xfy Yq) such that X0 is nonsingular on some terminal subinterval [a, oo) Ç /.
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ORDINARY LINEAR DIFFERENTIAL EQUATIONS 9

Proof. One direction is already proved in Theorem 2.1. Suppose (Xq, Y0) is
a self-conjugate solution of (2.1) such that X0 is nonsingular on [a, oo), and
transform (2.1) by (2.11) with C,(0 = 0, C0 = C, and (U& Fq) = (- Y& XJ
on / to obtain the reduced, equivalent system (2.13) on [a, oo), where
G(t) > 0 a.e. and Q(t) = 0 on [a, oo). It suffices to show that (2.13) is
nonoscillatory. Suppose, on the contrary, that b < c and that b and c are
mutually conjugate points in [a, oo). Any vector solution (z, w) satisfying
z(b) — 0 is of the form

z(i) = [  G(s) ds tj,       w(t) = tj
Jb

for some constant vector tj. Since c is conjugate to b, then for some i|^0we
have

z(e) = fC G(s) ds tj = 0,
Jb

and z(t) 3È 0 on [b, c]. This implies that

0= Cr\*G(s)T)ds,
Jb

and since tj*G(í)tj > 0 a.e. on [b, c] we must have <j(í)tj = 0 a.e. on [b, c],
whence z(t) = 0 on [b, c]. This is a contradiction. Thus, (2.13) is disconjugate
on [a, oo) and so (2.1) is nonoscillatory.   □

3. Asymptotic behavior. The results of this section concern a reduced system
X' = GY,       T = QX (3.1)

where G(t) and Q(t) are complex r X n and n X r matrices, respectively, in
£(/). Results by Hartman on systems of "type Z" [71 where G and Q are
complex valued continuous scalar functions, are extended to the system (3.1).
The results of Hartman are based on a theorem by Wintner for the selfadjoint
scalar equation of order two [17]. The method of proof of the following
theorems involves an iteration scheme which has been applied to selfadjoint
equations of order two, by Hille for the scalar equation [8] and by Shreve for
the system corresponding to (3.1) with G(t) = / and Q(t) hermitian on J [14].

We have the following results.

Theorem 3.1. Suppose that, for some a e J = (a0, oo),

f00 0(5) ds = lim   V Q(s) ds (3.2)
J a /-»oo   Ja

exists (perhaps conditionally). Define T(t) on J by

T(t) =    sup
/<J<0O

/" 0(0 di (3.3)
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10 C. H. RASMUSSEN

and suppose that

fX\\G(s)\\r(s)ds<oo. (3.4)
J a

Then there exist linearly independent solution matrices (Xq, Y0) and (Xx, Yx) of
(3.1) of sizes (r + n) X r and (r + n) X n, respectively, such that as t —» oo we
have the following:

(i):

and

In fact

and

where

(ii):

and

In fact

and

X0(t) -+1 (3.5a)

Y0(t)^0. (3.5b)

\\X0(t) - I\\ < |{exp|2 f^G(s)WT(s) ds] - 1

= o(fœ\\G(s)\\T(s)ds}, (3.6a)

|| y0(0|| < iXOexp^00 HGWIir^) ds} = 0(T(t)) (3.6b)

fa \\G(s)\\ ds\\ Y0(t)\\ = 0¡T(t)fjG(s)\\ ds}, (3.6c)

r(0r'||G(5)||^-^0. (3.6d)
J a

T(t)Xx(t)^0 (3.7a)

YM^I. (3.7b)

r(0||*,(<)|| = °(r(0/a' \\G(s)\\ ds} (3.8a)

\\Yx(t) - I\\ - o(r(0/a' ||G(i)|| ds} + 0^°° r^HG^II ds}. (3.8b)
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ORDINARY LINEAR DIFFERENTIAL EQUATIONS 11

Theorem 3.2. Let a be a point in J = (a0, oo) and define T(t) on [a, oo) by

T(t)=   sup   |f*G({)rff|. (3.9)
a<s<t   \\Ja

Suppose that

[X \\Q(s)\\ ds< co (3.10)
J a

and that

rr(s)\\Q(s)\\ds<^. (3.11)
J a

(Note that unless G(t) = 0 a.e. on [a, oo), (3.11) implies (3.10).) Then there
exist linearly independent solutions (X0, Yq) and (Xx, Yx) of (3.1) of sizes
(r + n) X r and (r + n) X n, respectively, such that as t -» oo we have the
following:

(i):

and

In fact,

and

where

Cri):

and

In fact,

X0(t)-*I, (3.12a)
YQ(t)^0, (3.12b)

r(/)||ro(0H0. (3.12c)

||;r0(0 - /|| = o(^°° r(i)||ß(5)|| ds}, (3.13a)

||Y0(0||=o(jj|ß(*)||<fc), (3.13b)

r(0|| Wll = o(r(0^°° \\Q(s)\\ ds}, (3.13c)

r(0f" IIÔWII ds < r T(s)\\Q(s)\\ds^0. (3.13.d)

(" \\Q(s)\\ds\\Xx(t)\\-*0, (3.14a)
Jt

Yx(t)->I   ast^-oo. (3.14b)

||*,(0|| = 0(T(t)), (3.15a)
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12 C. H. RASMUSSEN

f~ \\Q(s)\\ ds \\Xx(t)\\ = o(r(/)Jj|ßW|| ds}, (3.15b)
and

\\Yx(t) - I\\ - 0^°° r(i)||ß(*)|| ds}. (3.15c)

Here the notation/(f) = 0(g(t)) as / -» oo, where /and g are nonnegative
functions, means that there exist a point a G J and a constant Ma > 0 such
that/(r) < Mag(t) for all t > a.

Proof of Theorem 3.1. A pair of integral equations equivalent to (3.1) is
given by

X(t) = X(b) + (' G(s)Y(s) ds (3.16a)
Jb

and

Y(t) = Y(b) + f Q(s)X(s) ds
Jb

= Y(b) + (' Q(s) ds X(b) + f' Q(i) ff G(s) Y(s) ds de,     (3.16b)

for b, t e J. An integration by parts yields

f ß(Ö i* G(*)n*) dsdH=(' [' Q(€) d&(s)Y(s) ds,
Jb Jb Jb   Js

which suggests for (3.16b) the following integral equation:

y(i) = - r Qd) di + r r q® ̂  g(S)y(S) ds.   (3.m
We shall prove that (3.17) has a solution by constructing a sequence

{ Y„(t)} which converges to such a solution.
Let

W = - C Ô(J) *• (3-18a>
Jt

By hypothesis this is well defined and absolutely continuous, and it satisfies
HloWII < r(0 on [a, oo). Let

W) = - r ÖW ds+rr ß({) di G(s)Yr(s) ds, (3.18b)

v > 0, and let

k(t) = 2r\\G(s)\\T(s)ds. (3.19)

Suppose that Yp(t), 0 < v < n — I, have been shown to be well defined,
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continuous, and bounded by

13

||n(<)||<r(0 i + k(t) + ■ + k-(t)
A

< r(/)exp{A:(f)} < T(a)exp{k(a)} (3.20)
for t in [a, oo). When v = n — \, the integrand on the right in (3.18b) satisfies

Q(Í)dZG(s)Yn_x(s)

= -T(t)k'(s)

< 2T(t)\\G(s)\\T(s)

1 + k(s) + • • • +

1 + k(s) +

£"-'(*)
(n - 1)!

(n - 1)!

a.e., (3.21)

since, for a < t < s,

I [' Q($di I = I f" Q(Qdi - fX Q(0di
\\Jt II      II Jt Js

r Qfödt + r Q(&dt
Jt Js

< 2T(t).

It is, therefore, integrable on [a, oo) uniformly in / G [a, oo), and Y„(t) is well
defined, continuous, and satisfies (3.20) for v = n. By induction this is true
for all positive integers n.

Let
AY,(t) = Y,(t) - Yr_x(t),       v > 1.

Then

\\AYx(t)\\<r f Q(S)di
One can show inductively that

k»(t)

(3.22)

l|G(*)||r(*)&<r(o*(0-

||Ay„(0||<r(0- n > 1, (3.23)
in which case the sequence converges uniformly on [a, oo) to a continuous
limit Y(t), with

|| n0|| < r(0exp{2^°° ||G(*)||r(5) ds} < r(a)exp{*(*)}     (3.24)

for t e [a, oo). Since by (3.21) the norm of the integrand of the second term
on the right in (3.18b) is bounded by — T(t)k'(s)exp{k(s)} a.e. for s E [a, oo),
uniformly for / G [a, oo), by the Lebesgue dominated convergence theorem
we may let n -» oo throughout (3.18b) to deduce that Y(t) is a solution of
(3.17). Then

n0 = ß(') - ß(') r GWr(J) ds   a.e.,
Jt
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14 C. H. RASMUSSEN

and defining X(t) by

X(t) = / - f* G(s)Y(s) ds (3.25)
Jt

we have a solution (X(t), Y(t)) of (3.1) such that (3.5) is satisfied. Further-
more, using (3.19) and (3.24) we see that

\\X(t)-I\\<  C\\G(s)\\\\Y(s)\\ds
Jt

< \ r(-k'(s))cxp{k(s)} ds =i[exp{A:(0} - 1]
Jt

< i-exp{k(a)}k(t).

This along with (3.24) establishes (3.6a)-(3.6c).
Since T(r) is a nonincreasing function (whose limit as t -* oo is zero) it is of

bounded variation, and

T(t)-T(s)= ['dT. (3.26)
•'s

Furthermore,

oo >/°° r(*)||G(*)|| ds > ['T(s)\\G(s)\\ ds
Jb Jb

= fb   riO-jT'^T \\G(s)\\ds>f^-£dT}\\G(s)\\ds

for all t > b. Since the last quantity is nondecreasing with t and is bounded
above with limit

JT(-JT í/r)||G(j)|1 *=f" r(i)iiG(s)n *'
we see that

lim r(0r||G(j)||íi5 = 0. (3.27)
/—»oo Jb

This establishes (3.6d). Therefore (X, Y) is the solution (Xq, Y0) of the
conclusion.

To establish (ii) of the conclusion, we consider the integral equation

Y(t) = 1+ [''[' Q(i)di G(s) Y(s) ds,       b>a. (3.28)
Jb Js

Define the function \(t) by

MO- f'2T(i)||G(*)||&. (3.29)
Jb

Then one can show by an induction argument that the sequence { Yr(t)} given
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by
Y0(t) = /, (3.30a)

WO - I + [ '[' ß(Ö d* G(s) YÁs) ds,       v > 0,       (3.30b)
Jb Js

is well defined, with each member being continuous on [b, oo) and bounded
there by

||r„(0|| < 1 + A(0 + ■ ■ ■ +^p-< exp{\(0} < exp{A(oo)}.   (3.30c)

Furthermore, the sequence converges uniformly on [b, oo) to a solution Y(t)
of (3.28) such that

mOII < «p^jT' r(*)||G(5)|| ds}, (3.31)
and

Y'(t) = Q(t) ¡' G(s)Y(s) ds.
Jb

Define X(t) by

X(t) = f ' G(s)Y(s) ds. (3.32)
Jb

Then (X, Y) is a solution of (3.1). Furthermore,

r(0||*(0|| < IXOjjl G(s)\\ds exp{2^°° r(5)||G(i)|| <fc},     (3.33)

and this together with (3.27) implies (3.7a) and (3.8a) hold for X.
For t2> tx > b, we have

Y(t2) - Y(tx) = f'2 Q(£) diX(tx) + f'2 f'2 Q(Ç) di G(s)Y(s) ds
Jt, Jt,    Js

and

iin'2)-n<,)ii
< 2r(íI)||*(í1)|| + f'2 2r(J)||G(*)|| «P^jT r(|)||G(|)|| ¿|} ds

= 2r(f1)||*(',)|| + exp{2/fc'2 T(0\\G(e)\\ dt} - exp{2/é'T(|)||G(|)|| dt}

< 2r(í1)||*(í1)|| + 2^°° r(j)||G(j)|| ds exp{2/6°° T(s)\\G(s) || ds}.   (3.34)

This tends to zero as f, -» oo, which implies that Y(t) tends to a constant limit
as / -» oo. Since, from (3.28) and (3.31),
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16 C. H. RASMUSSEN

\\Y(t)-I\\<f'f'Q(Odî
Jb    Js

\\G(s)\\ \\Y(s)\\ ds

2/^^5)110(^)11 ds exp{2/i°° r(5)||G(5)|| ds},

t > b, we see that by choosing b large enough we may assume that this limit
is nonsingular. Post multiplication of (X, Y) by the inverse of this constant
limit yields a solution (Xx, Yx) of (3.1) such that Xx satisfies (3.7a) and (3.8a).
In equation (3.34) replace (X, Y) by (Xx, Yx), tx by /, and allow t2 to tend to
oo. The resulting inequality yields (3.8b) which implies (3.7b). This completes
the proof.   □

The proof of Theorem 3.2 proceeds in a similar manner and will be
omitted. Partial converses to Theorems 3.1 and 3.2 are provided by Theorem
4.7 in the next section on Hamiltonian systems.

4. Oscillation and asymptotic behavior of selfadjoint systems. This section
concerns a reduced Hamiltonian system

X' = GY,       Y' = -QX (4.1)
where G(t) and Q(t) are complex, hermitian n X n matrices in £(/).

Under the hypothesis that (4.1) is nonoscillatory and G and ß are only
positive semidefinite, Theorem 4.1 establishes the existence of a self-conjugate
solution (Xq, Y0) of (4.1) with both members nonsingular on some terminal
interval, thereby extending certain results of Ahlbrandt [2]. This also provides
a direct proof of the known result (see, for example, [12, Theorem 5.4]) that
(4.1) is nonoscillatory if and only if the system "reciprocal" (J4], [3]) to (4.1),
defined by

U' = QV,       V-GU, (4.2)

is nonoscillatory. This result is also used in proving Theorems 4.2 and 4.3,
which establish necessary conditions for nonoscillation of (4.1), extending
results of Tomastik [16] and Ahlbrandt [1]. Theorems 4.4 and 4.5 establish
sufficient conditions for nonoscillation of (4.1), and Theorem 4.6 provides
partial converses to Theorems 3.1 and 3.2 on asymptotic behavior, extending
results of Shreve [14].

Let G(t) be an n x n matrix in £(/). If k(G; s) is the dimension of the
space of constant vectors tj such that G(/)tj = 0 a.e. on [s, oo), then k(G; s) is
nondecreasing in s, and kœ(G) = lim^^A^G; s) will be called the degree of
degeneracy of G. If kx(G) = 0, then G will be called nondegenerate. Note that
there exists some terminal subinterval [s0, oo) such that k(G; s) = k^G) for
í > s0. The space of constant «-vectors annihilated a.e. by G on [s0, oo) will
be called the space of degeneracy of G and has dimension A:œ(G).
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ORDINARY LINEAR DIFFERENTIAL EQUATIONS 17

Lemma 4.1. Let G(t) be an n X n hermitian matrix in £(/) with G(t) > 0
a.e. on J. Then the following are equivalent:

(i) G is nondegenerate;
(ii) for each a G J, f'a G(s) ds is eventually positive definite;
(iii) the system (4.1) is normal on every terminal subinterval [a, oo) Ç /.

Proof, (i) => (ii): A proof by contradiction follows. Suppose that a G y is a
point for which § (t), given by

0(0- [' G(s)ds
•'a

is identically singular on [a, oo). Then there is an increasing sequence {í„}T_o
in [a, oo), tr -» oo as v -» oo, and a sequence of constant unit vectors {tj„}"_0
such that % (tp)r¡p = 0 for all v > 0. We may assume that tj„ -» tj, a constant
unit vector, as v -» oo. Then

o-<s(o*.- r <<?(*)%*,
J a

and since G(/) > 0 a.e. we see that G(t)r\p s 0 a.e. on [a, tp] and that
ê(t)% = 0onla,tp].

Let f G [a, oo) be arbitrary. Then
§(0tj = S (On, + s (00, - %%

and the right-hand side tends to zero as v -» oo. Thus §(0*? — 0 on [a, oo), in
which case G(/)tj a 0 a.e. on [a, oo) and G is degenerate.

(ii) => (i): (by contradiction). Suppose G is degenerate. Then there is a point
a G J and a constant unit vector tj such that G(/)tj = 0 a.e. on [a, oo). Then

tj* f  G(s) ds tj = f tj*G(j)tj ds = 0
•'a •'a

on [a, oo), whence f'a G(s) ds is identically singular for t in [a, oo).
(i) => (iii): (by contradiction). Suppose (4.1) is abnormal on some terminal

subinterval [a, oo) of J. Then there is a vector solution (0, tj) of (4.1) on
[a, oo) with tj ^ 0. Therefore, tj is constant, and G(t)rj = 0 a.e. on [a, oo).
This implies that G is degenerate.

(iii) ^ (i): (by contradiction). Suppose G is degenerate. Then there is a
point a G J and a constant unit vector tj such that G(t)t] = 0 a.e. on [a, oo).
Therefore, (0, tj) is a solution of (4.1) on [a, oo), and (4.1) is abnormal on
la, oo).   □

Theorem 4.1. Let G(t) > 0 and Q(t) > 0 a.e. on [a, oo) Ç J. The following
are equivalent:

(i) (4.1) is nonoscillatory;
(ii) (4.2) if nonoscillatory;
(iii) there exists a (2n) X n self-conjugate solution (Xq, Y0) of (4.1) such that
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18 C. H. RASMUSSEN

both X0(t) and Y0(t) are nonsingular on some terminal interval [d, oo) Ç
la, oo);

(iv) there exists a (2n) X n self-conjugate solution ( U0, V0) of (4.2) such that
both U0(t) and V0(t) are nonsingular on some terminal interval [d, oo) Ç.
la, oo);

(v) there exists a hermitian, nonsingular, absolutely continuous, n X n solution
matrix S of

S' = - ß - SGS (4.3)
on some terminal interval Id, oo) C la, oo);

(vi) there exists a hermitian, nonsingular, absolutely continuous, n X n solu-
tion matrix W of

W' = G+WQW (4.4)
on some terminal interval Id, oo) Ç [a, oo).

Before presenting the proof, we should note that systems (4.1) and (4.2) are
reduced cases of the more general system

X' = AX + GY,        Y' - - QX - A*Y (4.5)
and its reciprocal

U' = -A*U+ QV,        V'=-GU+AV (4.6)
where G and ß are positive semidefinite a.e. on [a, oo). But since the
reduction transformations

X = X0Z,        Y = X;-lW (4.7)

and
U = X¿~lS,       V = X0R (4.8)

described in §2, where X0 is a fundamental matrix for

X' = AX, (4.9)
reduce the general systems (4.5) and (4.6) to (4.1) and (4.2), preserving the
definiteness properties and oscillatory behavior of both systems, we see that
the theorem actually applies to the more general systems.

Proof of Theorem 4.1. (iii) «=> (iv): If (X0, Y0) is a solution as in part (iii),
then (U0, Vo) defined by U0(t) = Y¿t), V0(t) = - X0(t) is a solution of (4.2)
satisfying (iv). The argument is reversible.

(iii) <=> (v): Let (X0, YQ) be a solution of (4.1) as described in (iii). Then for
t > d the matrix 5 defined by S(t) = Y0(t)X¿l(t) is nonsingular, absolutely
continuous, and by differentiating and using the equations (4.1) we see that S
satisfies (4.3). S is hermitian since (X0, Y0) is self-conjugate.

Conversely, suppose S is as in (v), and let X0 be a fundamental matrix for
X' = GSX (4.10)
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in Id, oo). Then defining Y0(t) by Y0(t) = S(t)X¿(t), we see by direct verifica-
tion that (X0, Y0) satisfies (4.1), both members are nonsingular in [</, oo), and
since S is hermitian, (X0, Y0) is self-conjugate.

By a parallel argument we see that (iv)<^(vi). Furthermore, by Theorem
2.2, (iii) =» (i) and (iv) => (ii). To complete the proof it remains, therefore to
show that (i) => (iii).

(i) => (iii): Consider first the case where the space of degeneracy of G has
nontrivial intersection with the space of degeneracy of Q. Let Dx be a
constant matrix whose columns form an orthonormal basis for this intersec-
tion, and let [e, oo) be a subinterval of [a, oo) such that G(t)Dx = 0 and
Q(t)Dx m 0 a.e. on [e, oo). Now by hypothesis, Dx has rank d > 0. If d = n
then (/, /) is the desired solution of (4.1). If 0 < d < n, let D = ID2\DX] be a
unitary constant matrix, and transform (4.1) by Z = D*X, W= D*Y. This
results in the system

Z' = GXW, W = - ßiz (4.11)
where

and

G, = D*GD =

Qx = D*QD =

0

ßn
0

0

on le, oo), where 0d is the d X d zero matrix. Clearly, (4.1) and (4.11) are
equivalent in oscillatory properties. Suppose b and c are mutually conjugate
points for (4.11) in [e, oo). Then there exists a vector solution (z0, >v0) of (4.11)
such that z0(b) = 0 = z0(c), but z0(t) ^ 0 on [6, c]. Now

z = and   w = w-,

where z2 and w2 are ¿/-vectors, and for / > e we see that

z\ = Gxxwx,       w\ = -Qxxzx (4.12)

and z2 and w2 are constant. In particular, z^t) = 0 on [b, c], in which case
(¿oi> '♦'oi) is a solution of (4.12) such that zox(b) = zQX(c) = 0, and zox(t) & 0
on lb, c]. Thus, è and c are mutually conjugate points with respect to (4.12).
The converse is also true. Namely, if a and b are mutually conjugate points in
[e, oo) with respect to (4.12), then reversing the above argument we see that
they are mutually conjugate with respect to (4.11). Therefore (4.11) is non-
oscillatory if and only if (4.12) is nonoscillatory. Furthermore, if (Z,„ Wxx) is
a self-conjugate solution matrix for (4.12) with both members nonsingular on
some terminal subinterval of [e, co), then the solution (Z, W) of (4.11) given
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by

Z(0- Zn(0
0 W(t) = Wn(0

0
is self-conjugate, with both members nonsingular on the same terminal
subinterval. Note that the spaces of degeneracy of Gxx and Qxx have only the
trivial intersection. This argument shows that it suffices to prove the state-
ment (i) => (iii) for the case in which the spaces of degeneracy of G and ß
have only the trivial intersection.

Let S, and S2 denote the spaces of degeneracy of G and Q, respectively. In
view of the above argument, we assume henceforth that Sx n S2 = W-

Suppose next that S, and S2 are orthogonal, and let Ax and A2 be n X dx
and n X d2 matrices whose columns form orthonormal bases for Sx and S2,
respectively. Then dp = rankyi, = dim S„, v = 1, 2. Since AfA2 = 0, for
some matrix A3, A — \A2\Ay.Ax\ is unitary. Transforming (4.1) by Z = A*X
and W = A*Y,v/e obtain the system

Z'=GXW,       W'=-QXZ, (4.13)
where for t in some terminal interval lb, 00) Ç. [a, 00) on which (4.1) is
disconjugate, we have

Gy =

Ô. =

0      0

0

'd,

0
Ô22

(4.14a)

(4.14b)

and Gu and ß^ are nondegenerate. Let (Zq, rV¿) be the solution matrix of
(4.13) such that

0     0

and

Z0(b) =

W0(b) =

0    L

ln-dl

0

(4.15a)

(4.15b)

Then as in the proof of Theorem 2.1 we see that (Z„, W¿) is a self-conjugate
solution of (4.13) with Z0(i) nonsingular on some terminal interval [c, 00) Ç
[b, 00). For t > c the matrix S defined by S(t) = W0(t)Z¿l(t) is well defined,
hermitian, and absolutely continuous;

S'(t)=-Qx(t)-S(t)Gx(t)S(t)<0,
and f or c < e < t we have

S(e) - 5(0 = [' ß,(Ö di + f S(i)Gx(i)S(i)di > 0.       (4.16)
Je Je
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From this we see that the eigenvalues of S(t) are nonincreasing. If — S'(t) is
nondegenerate, then for any e > c there is a t > e such that

5(e)-5(0= f'[-S'(i)]di>0,

by Lemma 4.1 ((i)«=>(ii) with — S'(t) playing the role of G(t)), and this
implies that S(t) is nonsingular on some terminal interval. Then WQ(t) is also
nonsingular on that interval, and (X0, Y¿) given by (X0, Y¿) = (AZ0,AW^ is
the desired solution of (4.1), completing the proof. We shall now prove by
contradiction that — 5'(0 is nondegenerate.

Suppose, on the contrary, that — S'(t) is degenerate. Then for some e > c
and some constant unit vector tj,

0 = tj*[ - S'(t)]v = 11*0,(01» + tj*5(0G,(05(0t) (4.17)
for almost all / > e. Then Tj*ß,(r)Tj = 0 a.e. on [e, oo), whence Qx is degener-
ate, and

tj = 0 (4.18)

for some unit d2-vectoi tj,. Furthermore, tj*5G,5tj = 0 a.e. on [e, oo). Also,
we have

SGXS= W0Z?Gxz;-lW*,
and from (4.13), (4.14b), and (4.15b) we see that

W0(t) = (4.19)'21 " 22

for t in \b, oo). Therefore, tj* W0(t) = tj* = [tj*, 0], and we have

tj* Z0-'G,Z0' ~\ = 0   a.e. on [ e, oo). (4.20)

Define k(í) by

K(0 = Zo*-'(0u. (4.21)
Then Gx(t)ic(t) — 0 a.e. on [e, oo), k is absolutely continuous there, and
k(í) = — Z$~*W$Gxk = 0 on [e, oo). Therefore, k is constant on [e, oo).
Then k = fa] on [e, oo) for some ¿/,-vector a. Since tj ^ 0 and Z0(t) is
nonsingular on [e, oo), we see that a + 0. Combining these results we find
that the function <b(t), defined on [a, co) by

♦0f)-H-2Wf)[2]. (4-22)
is absolutely continuous on [b, oo) with

<*>'(')= -WSGi

there (recall (4.14)), and <p(t)

= 0   a.e.

0 on [e, oo). This implies that <p(t) = 0 on
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[b, oo). In particular, at t = b we have

Vi
V = 0 -*»[•]-[!}

where tj, and o are nonzero vectors of dimension ¿/2 and dx, respectively, and
a\ + dx < n. This is a contradiction. Therefore, W0(t) is nonsingular on some
terminal subinterval, and the corresponding solution (X& y0) = (AZq, A W¿)
of (4.1) is self-conjugate with both X0(t) and Y0(t) nonsingular on some
terminal interval.

Now consider the remaining case where S, n S2 = {0} and S, and S2 are
not orthogonal. Let [^,-^J be a matrix whose columns form an orthonormal
basis for S2, with Ax spanning S2 n Sf. Let A4 be a matrix whose columns
form an orthonormal basis for S, n §2- A$[Ax:A2] = 0, and for some matrix
A,'3>

A =[AX:A2:A3\A4]

is unitary. Let dp denote the rank of Ap, v = 1, 2, 3, 4. Since S, and S2 are not
orthogonal, (L. > 0 and ¿3 > 0. Transforming (4.1) by Z - A*X, W - A*Y,
we have the system

Z' = GXW,       W = -ß,Z, (4.23)
where for t in some terminal interval lb, oo) Ç [a, oo), on which (4.1) is
disconjugate and on which k(Gx; t) = dimS, and k(Qx; t) = dimS2 (see the
definition of k(G; t) before Lemma 4.1), we have

G, = '21

'31

«12

G-22

G32
0

'23

'33
(4.24a)

and

ßi =

0 0
0 0
0 0
0 0

0
0

Ô33
Ô43

0
0

Ô34
ß<4

(4.24b)

with

G21

'12

'22
and Ô33

ß43

Ô34
ß44

nondegenerate. G, and ß, are partitioned according to the partition of A. Let
§,' and S2 denote the spaces of degeneracy of

0Gj2     G-x
'32 '33

and
Í33
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respectively. Then S,' n S2 = {0}, §,' n S2'x = {0}, and §2' n Six = {0},
and S,' and S2 have dimensions greater than zero since S, and S2 are not
orthogonal. In fact, dim S2 = d2 > 0 and

spans S2. Let the columns of A", = [$¿] form an orthonormal basis for S,',
where rank Kx = dim §,' = d5 > 0, and where Kxx and A"12 are d2 X d5 and
d3 X d5 matrices, respectively.

We shall now show that ds = d2 < d3 and that Kxx and Kx2 both have rank
d2, so that Kxx is invertible. Let a be a i/5-vector such that Kx2a = 0. Then
Kxa = [*{,'"] is in S,' n S2 — {0}. Then Kxa = 0 and since Kx has rank d5,
this implies that a = 0. Therefore Kx2 has rank </5, so d5 < ¿3. Now let a be a
¿5-vector such that A",,a = 0. Then Kxa = [^J is in S, n S2'x = {0},
whence a = 0 and so A",, has rank ds, whence d5 < d2. Suppose d5 < d2. Then
for some d2-vector / =5*= 0, /*Ä",, = 0, whence [¿] is in S2 n S,'"1" = {0}. Then
/ = 0, a contradiction. Therefore d5 = d2, and AT,, is a square invertible
matrix.

Since Ä",2 is a d3 X d2 matrix of rank d2, either d2 = d3 or there is a
¿3 X (</3 — ¿y matrix A"^ whose columns are orthonormal such that KWKX2
= 0. Then

0      A",,
A"22       A",2

is a (d2 + d3) X d3 matrix whose columns are orthonormal. There is a
(d2 + d3) X d2 matrix [^3I] whose columns are orthonormal such that

A",,       0      A",,
•^32       -^22       *"l2

is unitary. Here A"3, is d2 X d2 and A"32 is d3 X d2. In fact, both A"3, and A"32
have rank d2 > 0. To see this, suppose that a is a rf2-vector such that
Kna = 0. Then

A>
0

is in S,'x n S2 = {0}, whence a = 0 since [jgp has rank d2. Thus A"32 has
rank d2. Since K^2K32 = 0, as a consequence of the unitarity of the large
partitioned matrix, we see that A"32 = KX2B for some nonsingular d2 X d2
matrix B. As a further consequence of unitarity of the large matrix, we have

0 = AT*, A*,, + K32KX2 = A*, A",, + B*KX2KX2,

whence
^31 =        -*mTi   ^*2^12^'

which is a nonsingular matrix.

K.31 a =
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Now let (Z0, W0) be the (2n) X n solution matrix of (4.23) such that

UP) =

and

W0(b) =

°d,

0
0
0

0
0
0

0
0
0
0

0
0
0
0

0

L12

0
0
0 (4.25a)

A".31

K.32
0

0
0

K22

0

0
0
0
0

0
0
0

o.¡4

(4.25b)

Again, as in the proof of Theorem 2.1, we find that since (4.23) is discon-
jugate on lb, oo), (Z0, fT0) is a self-conjugate solution of (4.23) with Z0(i)
nonsingular on some terminal subinterval [c, oo) Ç (b, oo).

We again define S(t) for t > c by S(t) - W0(t)Z¿Xt), and observe that 5
is hermitian and satisfies (4.16) for c < e < /. As before, we find that either
fPo(f) is nonsingular on some terminal subinterval of [c, oo), or for some
e > c and some constant unit vector tj, tj*[— S'(t)]-q = 0 a.e. on [e, oo). Then
Tj*ß,Tj s 0 a.e. on [e, oo), whence

Vi
tj =    V2

0
for vectors tj, and tj2 of dimension dx and d2, respectively. Furthermore,
tj*5G,5tj = 0 a.e. on [e, oo). From (4.23), (4.24b), and (4.25b),'we see that

W0(t) =
0

w.
31

41

0
A"3,

W£
32

42

0
0

w,
w¿

33

43

0
0

34

44

0
0

35

45

(4.26)

for all t > b, whence tj* W0(t) = (tj*, ijfA^,, 0) = jn*, where
Mi

/i=     M2
0

and /x, = tj„ /tj = A|',tj2. Since tj is a unit vector and A"31 is nonsingular, p is
nonzero. Then

0 = tj*5G,5tj = jx*Z0-|G,Z*-V   a.e. on [e, oo).
Let k(í) be defined by

k(0 = Zr\t)y. (4.27)
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for t > e. Then Gx(í)k(í) = 0 a.e. on [e, oo) and k is absolutely continuous
there, with k'(í) = - Z$~lW$ G,k = 0 a.e. on [e, oo). Thus, k is constant on
le, oo) and we must have

0
A",,

^12

0
0

0

«1
OS

for some vectors a, and a2 of dimension d2 and ¿4, respectively. Since /x is
nonzero and Z0(t) is nonsingular on [e, oo), k and a = ["'] are also nonzero.
Combining these results we find that the function <#>(/) defined on [a, oo) by

<î>(0 = m - z*(0
0

"■12

0

0
0
0 (4.28)

is absolutely continuous on [a, oo) with

*'(0- -WSG1

0

K
0

12

0
0
0 0   a.e. on [6, oo),

and that <p(t) = 0 on [e, oo). (Recall that the constant vector represented by
the product of the expressions in brackets is annihilated identically on [b, oo)
by G, since b was chosen so that k(G; t) = dim §>, for / in [è, oo).) This
implies that <b(t) m 0 on [b, oo), and for / = b we have

/»-
Mi
M2
0

= Z0*(6)

0

K
0

12

0
0
0

0

However, [jy and [J»l are <f, + d2 and </2 + d4 dimensional nonzero vectors,
with dx + ¿i, + 2</2 < n. This is a contradiction. Consequently W0(t) is
nonsingular on some terminal interval, and the corresponding solution
(XQ, Y0) = (AZ0,AW¿) of (4.1) is self-conjugate with both members nonsin-
gular on some terminal subinterval. This completes the proof of the theorem.
D

Let (X, Y) be a self-conjugate solution of (4.1) such that X(t) is nonsingu-
lar on some terminal interval [a, oo) Ç J, and suppose that G(t) > 0 a.e. on
[a, oo). Then (X, Y) will be called a principal solution of (4.1) if there is a
point b G [a, oo) such that ([6], [7])
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A, -» oo    as / -» oo. (4.29)f X-\s)G(s)X*-\s)ds
*

One can easily see that if (4.29) holds for one point b0 G la, oo), then it holds
for any point b in [a, oo). The solution (X, Y) will be called nonprincipal if
there is a point ¿> G [a, oo) such that

hm \\
/-»oo

< oo. (4.30)('X-\s)G(s)X*-\s) ds
Jb

The following lemma follows as an application of the transformation
discussed in §2.

Lemma 4.2. Let G(t), Q0(t), and Q(t) be hermitian n X n complex matrices in
£(/), and suppose that (X0, Y0) is a self-conjugate solution of

X'=GY,        Y'^-QJC (4.31)
such that X0(t) is nonsingular on la, oo) Ç /. Let t be restricted to [a, oo) and
let the system

X' = GY,        y = - (ß0 + ß )X (4.32)
be transformed by

X = X0Z,        Y = Y0Z + XS~lrV. (4.33)

Then the resulting system in (Z, W) is given by

Z'=GXW,        W'=-QXZ, (4.34)
where

G, = Xq-'G**-1, (4.35a)
and

ß, = XSQX0. (4.35b)
Furthermore, the following hold:

(i) Gx(t) and Qx(t) are hermitian matrices in £(./) and have the same number
of positive eigenvalues at t G la, oo) as do G(t) and Q(t), respectively; and G,
and G have the same degree of degeneracy.

(ii) System (4.32) is nonoscillatory iff (4.34) is nonoscillatory. If (X, Y) and
(Z, W) are corresponding solutions of (4.32) and (4.34), respectively, on [a, oo),
then X(t) is singular iff Z(t) is singular. (X, Y) is self-conjugate iff (Z, W) is
self-conjugate. If G(t) > 0 a.e. on [a, oo), then (X, Y) is principal or nonprin-
cipal iff (Z, W) is principal or nonprincipal, respectively.

Proof. We shall only verify that G and G, have the same degree of
degeneracy. The rest of the proof follows directly from the properties of the
transformation discussed in §2 and the definitions.

Suppose G(t)t) = 0 a.e. on [c, oo) Ç [a, oo), where tj is some constant
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vector. Then (0, tj) is a vector solution of (4.32) on [c, oo), and (0, /u) is a
solution of (4.34) on [c, oo), where ¡j. = .V*(í)tj. Differentiation of ii yields
that ju' — y*Grj = 0 a.e. on [c, oo). Therefore p is constant, and Gx(t)¡x = 0
a.e. on [c, oo). Conversely, if for some constant vector fi we have Gx(t)n = 0
a.e. on [c, oo), then tj = Ar*"V is a constant on [c, oo) and G(í)íj — 0 a.e.
there. Recall that k(G; s) is the dimension of the space of constant vectors tj
such that G(t)-q = 0 a.e. on Is, oo). Since X0(t) is nonsingular on [a, oo), we
see that k(G; s) = k(Gx; s) for s > a. In particular, as 5 -» oo we see that the
two functions have the same limiting value, which is the degree of degener-
acy.   □

Lemma 4.3. Let G(t) > 0 a.e. and suppose that (4.1) is nonoscillatory. Then G
is nondegenerate if and only if there exists a principal solution of (4.1).

Proof. Since (4.1) is nonoscillatory it is disconjugate on some terminal
subinterval of J, and by Theorem 2.1 there is a self-conjugate solution
(X0, Y0) of (4.1) such that X0(t) is nonsingular on some terminal subinterval
[a, oo) Ç /. If we transform (4.1) by

X = X0Z,       y = Y0Z + X%'lW (4.36)

for t G [a, oo), according to Lemma 4.2 we obtain a reduced system
Z' = GXW,       W = 0, (4.37)

where G, = Xq1GX$~x. According to Lemma 4.2 it suffices to consider a
system of the form (4.37).

Suppose that G, is nondegenerate. Let

ZN(t) = / + [' Gx(s) ds. (4.38)
J a

Then ZN(t) is hermitian and positive definite on [a, oo), and (ZN, I) is a
self-conjugate solution of (4.37). For each b G la, oo) there is a t > b such
that

/' Gx(s) ds > 0
'b

so that

ZN(t) - ZN(b) - [' Gx(s) ds>0.
Jb

Then ZN(t) > ZN(b), and Z^(b) > Z¿\t). Let

tto = lim Z¿>(0- (4.39)

Then Z¿\t) > ir0 > 0 for all t > a, and

Z¿'(0 - tr0> 0   for í G [a, oo). (4.40)
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Now

(Z¿\t))' = - (ZfGtâ) = - (ZJGXZ*-1)
so that Z^XGXZ%~X  is integrable on [a, oo) (this implies that (ZN, I) is
nonprincipal), and defining %(t) by

9(t) = r Z¿x(s)Gx(s)Z*-x(s) ds (4.41)
J i

we see that

<$(t) =   -[Z¿X(S)]°; = Z¿(t) - 7T0 > 0

for r > a, and <5(t) -+ 0 as f -> oo. Define Z^r) by
Z„(0 = Zw(/)f(/) = / - Z„(0»o- (4.42)

Then (Zp, — ir0) is a self-conjugate solution of (4.37) such that Z^i/) is
nonsingular on [a, oo), and

z;xGxz*-x = f-'z^z*-'^-1 = -S"-1"?'^-1 = (T1)'.

Then

JT' z/H^g.Wz;-1^) ds = r»(0 - ^K*) > o
for t > b and all its eigenvalues are unbounded since ^(t) -» 0 as r -» co.
Thus (Zp, — ir0) is a principal solution of (4.37).

Now suppose conversely that (Zp, Wp) is a self-conjugate solution of (4.37)
such that Zp(t) in nonsingular on some subinterval [¿, co) Ç [a, oo), and that
(Zp, Wp) is principal. Let (4.37) be transformed by

Z = ZpU,       W= WpU+ Z*-XV (4.43)

for t G lb, co), and by Lemma 4.2 we obtain the system
U' = G2V       V = 0 (4.44)

where G2 «■ Z^'G,^*-1. Since (Zp, Wp) is a principal solution of (4.37),

Xx\j'G2(s)ds oo    as / —» oo.

This implies that G2 is nondegenerate, since if G2(/)tj = 0 a.e. on some
subinterval [c, oo) Q lb, oo) for some constant unit vector tj, then

tj* [' G2(s) ds t, = t,* C G2(s) ds TJ,
Jb Jb

*i j /' G2(s) ds   < tj*( JJ G2(s) ds}r¡
and

r   rt 1 /  /-e \
< 00

for all t > b. By Lemma 4.2, since G2 is nondegenerate, G, is nondegenerate.
The lemma is proved.   □
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If H and K are n X n hermitian positive semidefinite matrices, then HK
has the same eigenvalues as L — HX/2KHX/2, where Hx/2 is the hermitian
positive semidefinite square root of H [5]. This follows from the fact that if A
and B are arbitrary n X n complex matrices, AB has the same eigenvalues as
BA. Taking A = Hx/2 and B = HX/2K the above statement follows. Since L
is hermitian positive semidefinite, it has nonnegative real eigenvalues in which
case so does HK. Then \[L] = \[HK], 1 < v < n. This is the sense in which
(4.49a) and (4.50a) following are to be interpreted.

Theorem 4.2. Let G(t) > 0 and Q(t) > 0 a.e. on la, oo) Ç /. Define
matrices XN(t), YN(t), ir0 andirx by

XN(t) = 1+ [' G(s) ds.
*a

YN(t) = I+ (' Q(s)ds,       t>a.
J a

770 - Urn xa\t).
/-»oo

», = lim  V(0-
/-♦oo

(i) //" (4.1) is nonoscillatory, then

(œ \\(I - **XN(s))Q{sW - XN(s>o)\\ ds<oc,
J a

r\(I - -nxYN(s))G(s)(l - YN(s)mx)\ ds < oo,

and

(4.45a)

(4.45b)

(4.46a)

(4.46b)

(4.47a)

(4.47b)

(null tt0) J. (null w,). (4.47c)
(ii) If (4.1) is nonoscillatory and, in addition, G(t) is nondegenerate, then

I — XN(t)ir0 is nonsingular on [a, oo). Let matrices §b(t) and 2,(t)for a < b <
t be defined by

8*(0 = /"(/ - Xff(s)^Q)-lG(s)(I - «Ms))-1 ds,        (4.48a)
Jb

and

2(0 - C(I - tr0XN(s)Q(s))(I - Xn(s)tt0) ds. (4.48b)
Jt

Then for some b > awe have

A,[§,(02(0] < 1. (4-49a)
and

A,,+1_F[st(0]Ma(0] < * (4-49b)
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for t > b and 1 < v < n. Furthermore,

limsup(\[ga(02(/)]) < 1, (4.50a)
/—»00

and

limsup(A„+,_,[§a(0]A,[2(0]) < 1 (4.50b)
/-►oo

for 1 < v < n.
(iii) If (4.1) is nonoscillatory and, in addition, Q is nondegenerate, then the

conclusion of (ii) holds with G, XN, and w0 interchanged with Q, YN, and wx,
respectively.

Proof. According to Theorem 4.1, system (4.1) is nonoscillatory iff its
reciprocal (4.2) is nonoscillatory. Therefore, it will suffice to establish (4.47a)
and (4.47c) of (i) and the conclusion of (ii). The remainder of the theorem will
follow from these by applying them to the reciprocal system (4.2).

We shall prove the theorem in three parts. Initially, suppose that (4.1) is
nonoscillatory and that

f ' G(s)ds -»oo    as t —» oo.

(The latter condition implies that G is nondegenerate.) According to Theorem
4.1 there exists a self-conjugate solution (Xq, Y0) of (4.1) such that both
members are nonsingular on some terminal subinterval [è, oo) Ç [a, oo).
Furthermore, for

5(0 = Y0(t)Xô\t),       t > b,
we see that 5(0 is hermitian and nonsingular on [¿, oo), and that 5 and 5"1
satisfy (4.3) and (4.4), respectively, on [b, ocV Then

5-'(0 - S-X(b) = /' G(i) di + [' S-x(i)Q(i)S-x(i) di      (4.51)
Jb Jb

for t > b. Since the second integral term is positive semidefinite, we have

5-'(0 - S-\b) > [' G(i)di,
Jb

and since

*i [' G(i) di
Jh

oo   as t -> oo

we see that 5 '(0 and S(t) are positive definite on [6, oo), and S(t) -> 0 as
t -* oo. Furthermore, 5(0 satisfies

S(b) > S(b) - 5(0 = f'Q(i) di + f S(i)G(Í)S(Í) di,      (4.52)
Jh Jh
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and since ß(0 > 0 and S(t)G(t)S(t) > 0, this implies that  ||ß(0ll  and
\\S(t)G(t)S(t)\\ aie integrable on [b, oo), whence

S(t) = T Q(i) di + TS(i)G(i)S(i) di (4.53)j, j,
for t > b. In the case being considered, since the eigenvalues of f'a G(i) di aie
all unbounded, tt0 = 0. Since /"ß(£) di exists, w, is nonsingular. This estab-
lishes (4.47a) and (4.47c) for this case, and also establishes the corollary
immediately following this theorem.

Equations (4.53) and (4.51) yield

S(t)> [C°Qdi=Z(t)
J t

and

S-\t) - S-\b) > [' Gdi=§b(t).
Jb

Thus

S'\t) > S~\b) + @b(t) > S-\b) > 0,
so

(S-X(b) + SéíO)"1 > s(0 > S(0   for/ > b, (4.54)
Then \[2(0] < l/{\,+1_rlS~x(b) + §b(t)]}, and since \[§b(t) + S-*(b)] >
\[g&(0] for all v = 1, 2, . .., n, this establishes (4.49b). Also, from (4.54) we
have

/ > (S-X(b) + §b(t))ï/2Z(t)(S-x(b) + §b(t))1/2

which yields

1 > \[(S-X(b) + S6(0)1/22(0(5-'(6) + §b(t)f/2]

= \[2'/2(0(5-1(i») + gft(0)2'/2(0]
= A,[2'/2(05-1(¿)21/2(/) + 2'/2(0§6(0§1/2(0]

> A,[sI/2(os»(oaI/2(o] = A,[s6(oa(0]
for 1 < j» < n. This establishes (4.49a).

To establish (4.50), we note that

5-'(0 > S~x(b) + f Gdi= S~x(b) - f* Gdi+ (' Gdi
Jb Ja Ja

= §a(t) + (S~x(b) - §a(b)) > 0   for í > b.
Thus,

(§a(t) + S-X(b) - §a(b)Yl > 5(0 > 2(0   for t > b,        (4.55)
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and this implies that

\[â(0] < 1/ {\,+I_ rg.(o - §a(¿) + 5-'(¿)]}.
Since

A,[g.(0 - Ub) + S-X(b)] > \[§a(<)] -||S.(6) - 5-'(6)||,
we see that

i > x,[a(0](\,+1. rg^)] -||go(6) _ s-x(b)\\),
and since \[2(/)] -> 0 as r -» oo, this establishes (4.50b). Equation (4.50a) is
established by a similar argument.

In the next part of the proof we shall relax the hypothesis on G(0»
supposing only that it is nondegenerate. Let XN(t) be defined as in (4.45a).
Then as in the proof of Lemma 4.3, we see that (XN, I) is a self-conjugate,
nonprincipal solution of

X' - GY,       T = 0, (4.56)
where XN(t) is nonsingular on [a, oo). Furthermore, if we define Xp(t) by

Xp(t) = / - XN(t)Vo, (4.57)

we see, as in Lemma 4.3, that (Xp, — ir¿) is a principal, self-conjugate solution
of (4.56) such that Xp(t) is also nonsingular on [a, oo). Let (4.1) be trans-
formed by

X = XpZ,        Y = -ir0Z + X*~XW. (4.58)

Applying Lemma 4.2 we see that the resulting system
Z'=GXW,        W=-QXZ, (4.59)

where G, = XpxGX*~x and ß, = X*QXp, is nonoscillatory; and G,(0 > 0
and ß,(0 > 0 a.e. on [a, oo), G, is nondegenerate, and

A, /' Gx(i) di oo    as t —* oo

since (JS£L, — w0) is principal. Therefore, the argument of the first part of the
proof applies to system (4.59), establishing (4.47a) and the conclusion of (ii).

In this third and final part of the proof, it remains only to establish (4.47a)
and (4.47c) under the hypothesis that (4.1) is nonoscillatory. We shall first
establish (4.47a). Since the case in which G is nondegenerate has been treated,
we assume that m, the degree of degeneracy of G, is positive. Then there
exists an n x m matrix A, whose columns form an orthonormal basis for the
space of degeneracy of G. Furthermore, G(0^ i ■ 0 a.e. in some subinterval
[b, oo) C [a, oo). If m = n, then Ax is nonsingular, G(0 = 0 a.e. on [b, oo),
and ir0 = A^'(A). Then the integrand of (4.47a) is zero on [b, co). The integral
is therefore bounded, establishing (4.47a). This leaves the case 0 < m < n. In
this case, there is a matrix A2 such that A = [^42:^4,] is unitary. Let (4.1) be
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transformed by U = A*X and V = A*Y. The resulting system
U' = GXV,       V'=-QXU, (4.60)

where G, = A*GA and ß, = A*QA, is also Hamiltonian and nonoscillatory.
Let G, and ß, be partitioned according to the partition of A. Then for / > b
we have

0
0„G,(0 = Gn

0 (4.61)

where 0m is the m X m zero matrix, and G,, is an (n — m) X (n — m)
nondegenerate, hermitian matrix.

Since (4.1) is nonoscillatory, there is a self-conjugate solution (X0, Y¿) of
(4.1) such that X0(t) is nonsingular on some terminal interval Id, oo) Ç
[b, oo). Let ( U0, V0) be the corresponding solution of (4.60). Let U and V in
(4.60) be partitioned according to the partition on G,. Then

U =
t/„   u12

u.21 u.22

and foTt>b we see that ¡72, and U^ aie constant for any solution (U, V) of
(4.60). In particular, since U0(t) is nonsingular on [d, oo) Ç [¿>, oo), there is a
nonsingular matrix 5 such that

U0B = Z0 = 0
on [d, oo). (4.62)

Thus (Z0, B7,,) = (t/0, F0)5 is a self-conjugate solution of (4.60) such that
det Z0(t) — det Z0n(0 is nonzero on [d, oo). In fact (Z0u, JT0ii) is a solution
of

Z'XX = GXXWXX,       W'XX=-QXXZXX, (4.63)

where (Z0n, ff0]i) is self-conjugate on [d, oo) since (Z0, W0) is. Since G,, and
ß,, are positive semidefinite and Gu is nondegenerate, the argument of the
second part applies to system (4.63).

Let

ZN(t) -1+C Gxx di,    P0 = lim Z¿(t)
Ja '-»«=

and Zp(t) = I - ZN(t)P0. Then we have

C \\Z;(i)Qxx(i)Zp(i)\\ di < oo.
J a

Let XN(t) be defined as in (4.45a), and for / > d we have

A*XN(t)A =JZ"W

(4.64)
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_  (d n     Jt  ~~.A r\ —   r -L  tdwhere C — fa Gx2 di, and D — I + ¡a G^di is nonsingular. Then

A'vçA = Hm [A*X¿\t)A]

Z¿(t)[l + C(D - C*Za\t)C)~lC*Z?(t)]

-(D-C*Z¿(t)C)-'c*Z¿\t)

-Zj(t)C{D-C*Zj?(t)C)-'

= lim
/—»00

(z)-c*z^'(0c)-1

P0[I+CEC*P0]     -P0CE
-EC*P0 E

where E = (D - C*P0C)~X. This yields

A*(I - XN(t)ir0)A =1- (A*XN(t)A)(A*m0A) = Zp(t)H    Zp(t)K
0 0

where H = I + CEC*P0 and A" = - CE. Therefore

Zp*QxxZp    0A*(I - noXN)Q(I - XNn0)A = H*
K*

■p x-u-p

0 0
H    K
0     0

and since A is unitary and \\Z*(t)Qxx(t)Zp(t)\\ is integrable on [a, oo) by
(4.64), we see that ||(7 - Wo*A,(0)ß(0(J - ^(0*0)11 is integrable on [a, oo).
This establishes (4.47a)

To establish (4.47c), let XN(t), YN(t), 7r0, and <nx be defined as in (4.45) and
(4.46). Then YN(t) is hermitian, positive definite, and has nondecreasing
eigenvalues. If either ir0 or w, is nonsingular, then (4.47c) holds. Suppose both
are singular, and that | and tj are in null w0 and null vx, respectively. Then
7Tq£ = 0 and 7t,tj = 0. With (4.47a) this implies that

Í*Q(t)Í = Í*(I - *oXN)Q(I - XNv0)i
is integrable on [a, oo), whence |* YN(t)i is uniformly bounded there, say by
A" > 0. Since

l*T, = |*yJi/2(0iV1/2(0^

the Cauchy-Schwartz inequality yields

||*tj|2 < &Y„(t)tfarr?{tyi) < K(r,*Y¿x(t)V)
for all t > a, and since

lim (TJ* Y¿X(t)7!) = TJ*7T,T, = 0,
/-»oo

we see that £*tj = 0. This establishes (4.47c) and completes the proof of the
theorem.   □
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An immediate corollary to the first part of the proof of this theorem is the
following.

Corollary 4.1. Let G(t) > 0 and Q(t) > 0 a.e. in [a, ce) Q J and suppose
that

K [' G(s) ds oo    as t oo.

Then (4.1) is nonoscillatory if and only if Q(t) is integrable on la, oo) and there
exists an absolutely continuous, hermitian [positive definite] matrix S(t) such
that on some terminal subinterval of [a, oo), S(t)G(t)S(t) is integrable and S(t)
satisfies (4.53) there.

This extends a result of Ahlbrandt (Theorem 3.2 of [2]) in that it does not
require ß to be nondegenerate, and it therefore resolves a question posed by
that author [2].

If we consider Theorem 4.2 from the standpoint of testing for oscillation,
we see that (4.47a) implies (4.47c). Also, the case v = n of (4.49a) implies the
rest of (4.49) and (4.50). Therefore, increasingly stronger tests are provided by
(4.47c), (4.47a), and (4.50a) with v = n. To see that these provide strictly
stronger necessary conditions for nonoscillation, but that (4.50a) does not
provide a sufficient condition for nonoscillation, consider the following
oscillatory systems

c' = f*-y. y = -I-*"1«,        1 < k < 4,    t > 1,     (4.65.A:)

where (ak, ßk) is (0, 0), (- \, - f), (- \, - \), and (-1, - 1) for k = 1, 2, 3,
and 4, respectively. System (4.65.1) fails (4.47c). System (4.65.2) satisfies
(4.47c) but fails (4.47a). System (4.65.3) satisfies (4.47a) but fails (4.50a).
System (4.65.4) satisfies even (4.50a), yet it is oscillatory.

The necessary condition for nonoscillation expressed by (4.47c) is equiv-
alent to a result of Tomastik [16], which is proved for G and ß positive
definite. Theorem 4.2 therefore extends this result and presents a more
algebraic proof as opposed to the geometric proof in that paper. The theorem
also extends results of Ahlbrandt [1], which are established under the addi-
tional hypothesis that

K (' G(i) di oo    as t —» oo.

For example, system (4.1) for

G(0 = rl/4 Q

0      r5'4
(4.66a)
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and

ß(0- ,-5/4

O .-1/4
(4.66b)

is oscillatory since (4.47a) is not satisfied, yet the results of neither [16] nor [1]
apply to indicate this, since

0    0
0     I and   ît, = i     0

0    0

so that null ir0 and null irx are spanned by {[¿]} and {[?]}, respectively, and are
therefore orthogonal, and

tf*i   \   G(i)di = 4(1 - r1'4)

is uniformly bounded on [1, oo).
We shall precede the next theorem by some preliminary remarks. Suppose

ß(0 is hermitian on J and is in t(J). Then there exists a hermitian matrix
R(t) > 0 on J with R(t) in £(/) and R2(t) = ß2(0 on /. That is, R is the
positive semidefinite "square root" of ß2(0 > 0 on /. Let ß+(0 and ß_(0
be defined on / by

ß+(0-[Ä(0+ß(0]/2 (4.67a)
and

ß_(0-[Ä(0-ß(0]/2. (4.67b)
Then Q, R, ß+, and ß_ are similar matrices for all t in J. R(t), Q+(t), and
ß_(0 are positive semidefinite on / and are in t(J). Fix t G J. The
eigenvalues of Q(t) are real. The eigenvalues of R(t) aie |\[ß(01l» where
KlQ(t)]> I < v < n, are the eigenvalues of Q(t). The positive eigenvalues of
ß+(0 are the positive eigenvalues of ß(0- The positive eigenvalues of ß_(0
are the positive eigenvalues of — ß(0- In this sense, Q+(t) and ß_(0 are the
"positive" and "negative" parts of ß(0, and

ß(0 = ß+(0 - ß-(0 (4-68)
for all t G J. The decomposition (4.68) is minimal in the sense that if A(t)
and B(t) are hermitian with A(t) > 0 and B(t) > 0 a.e. on J, and

ß(0-^(0-*(0, (4-69>
then^(0 > Q+(t) and B(t) > Q_(t) a.e. onJ.

We shall also use the fact that if G(0 > 0 and Q(t) < 0 a.e. on [a, oo) Ç /,
then (4.1) is disconjugate on [a, oo). The following theorem applies Lemma
4.2 to extend Theorem 4.2 to apply to (4.1) when ß(0 is not necessarily
positive semidefinite.
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Theorem 4.3. Let G(t) > 0 a.e. on [c, oo) C J. Let

ß(0 = 0.(0 - ß2(0 (4-70)
be a decomposition of Q such that ß, and Q2 are hermitian matrices in t(J),
and Qx(t) > 0 and Q2(t) > 0 a.e. on [c, oo). Let (X& Y¿) be a self-conjugate
solution of

X' - GY,        Y' = ß2A- (4.71)
such that X0(t) is nonsingular on some interval la, oo) Ç [c, oo). Let G(t) and
Q(t) be defined for t > a by

G(t) = X0-x(t)G(t)Xrl(t) (4.72a)
and

Q(t) = X*(t)Qx(t)X0(t). (4.72b)
Define XN(t), YN(t), ir0, and ttx by

XN(t) = I + [' G(s) ds, (4.73a)
•'a

YN(t) = I + C Q(s) ds, (4.73b)
•a

and

ir0 = lim X¿\t), (4.74a)
t—*00

itx = lim y^'(0- (4.74b)
/-»oo

(i) //" (4.1) ¿j nonoscillatory, then

fWil - îAW)êW(/ - XN(s)v0)\\ ds <cc, (4.75a)
•'a

/"||(/ - vxY„(s))G(s)(I - YN(s)vx)\\ ds < oo, (4.75b)

am/

(null ir0) J. (null w,). (4.75c)
(ii) If (4.1) w nonoscillatory and, in addition, G(t) is nondegenerate, then

I — XN(t)iT0 is nonsingular on la, co). Let matrices @b(t) and Q,(t)for a < b <
t be defined by

8*(0 - /\j - Xn(s)tt0)-xG(s)(I - «Ms))'1 ds (4.76a)

and

2(0 - f "(/ - »o^(*))é(*)(/ - **(*K) *• (4-76b)
J t
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Then for some b > a we have

\[g6(02(0] < 1, (4.77a)
and

K+i-r[§b(t)]K[$<(t)] < 1   M t > b and 1 < v < n.       (4.77b)
Furthermore,

limsup(A,[ga(02(0]) < 1 (4.78a)
/-»oo

and

lim sup(À.+ 1_F[g.(0]\[â(0]) < 1   for\<v<n.       (4.78b)
/-♦oo

(iii) If (4.1) w nonoscillatory and, in addition, ß z'j nondegenerate, then the
conclusion of (ii) holds with G, XN, and it0 interchanged with Q, YN, and irx,
respectively.

Proof. Since (4.71) is disconjugate on [c, oo), there exists a self-conjugate
solution (X0, Y0) such that X0(t) is nonsingular on some terminal subinterval
[a, oo) Ç. [c, oo), as hypothesized. Transforming (4.1) by

X = X0Z,        Y= Y0Z + X$-lW,       t > a, (4.79)

and applying Lemma 4.2, we obtain the system

Z' = GW,        W = - QZ (4.80)
where G and ß are given by (4.72). System (4.80) is nonoscillatory, G(t) > 0
and Q(t) > 0 a.e. on [a, oo), and G is nondegenerate iff G is nondegenerate.
The conclusion now follows by applying Theorem 4.2 to (4.80).   □

Theorems 4.2 and 4.3 established necessary conditions for nonoscillation.
The next two theorems establish sufficient conditions for nonoscillation.

Theorem 4.4. Let G(t) > Ofor almost all t in J and let G(t) and Q(t) satisfy
the hypothesis of Theorem 3.1 or Theorem 3.2. Then (4.1) is nonoscillatory.

Proof. In either case there is a solution (X0, Y0) of (4.1) such that
X0(t) -» / and Y0(t) -h» 0 as / -» oo. Thus X$(t)Y0(t) -> 0, which implies that
(X0, Y0) is self-conjugate. Clearly, X0(t) is nonsingular on some terminal
subinterval [a, oo) Ç J, and by Theorem 2.2 the system is nonoscillatory.   □

Suppose G(0 and ß(0 are n X n hermitian matrices in £(/) and that
G(0 > 0, and ß(0 > 0 a.e. on [a, co) C J. Suppose, also, that /"||ß(0ll ds
< oo. Let g(0 and 2(0 be defined by

g(0= [' G(s)ds (4.81a)
•'a

and

S(0 = f°° Q(s) as. (4.81b)
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An integration by parts yields

V G(s)<H(s) ds = S(0£(0 + f §(s)Q(s) ds (4.82a)
J a Ja

and

f G(5> f'Q(i)dids= [' §(s)Q(s) ds. (4.82b)
Recall that if H and A" are n X n, hermitian, positive semidefinite matrices,
then HK has real nonnegative eigenvalues. Therefore, trace[//AT] > 0.
Suppose that

um   f' tr[g(*)ß(j)] ds-f* tr[g(i)ßC0] ds < oo.       (4.83)
/—»OO    J a Jq

Then applying (4.82b) we see that

lim   /*' trf G(í) (' Q(Í) di] ds - T trf G(s) f °° ß(|) di
/-»oo   -'a -'s Ja Js

= r°°tr[G(j)2(5)] ds
■'a

= r°°tr[g(5)ß(j)] ds< oo
•'a

also. Thus (4.83) impües that

lim   [' tr[ G(í)2(j)1 ds = f °° tr[ G(í)2(j)] <fc < oo,       (4.84)

ds

and that

f°° tr[G(í)2(í)] ¿y = f " tr[g(5)ß(s)] ds. (4.85)

Furthermore, applying this to (4.82a) yields

lim  tr[g(02(0] =0. (4.86)

On the other hand, suppose that (4.84) holds. Then since f'a tr[g(s)ß(j)] ds
is an increasing function, and tr[g(02(0] > 0, (4.82a) implies that (4.83)
holds, since

r°°tr[G(5)2(j)] ds > tr[g(02(0] + ['ti[§(s)Q(s)] ds
•'a Ja

> f  tr[g(s)ß(j)] ds   for all t> a.
"a

This in turn implies (4.85) and (4.86) again. These remarks establish all but
(ii)(b) of the following theorem.
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Theorem 4.5. Let G(t) > 0 and Q(t) > 0 a.e. on [a, oo) ç /, and suppose
that

r\\Q(s)\\ds< co. (4.87)

Then
(i) (4.83) holds if and only if (4M) holds.
(ii) If either (4.83) or (4.84) holds, then

(a) (4.85) and (4.86) hold, and
(b) (4.1) and (4.2) are nonoscillatory.

Before proceeding with the proof, let us compare these last two theorems.
Theorem 4.5 assumes that ß(0 is positive semidefinite as well as G(t).
However, the remaining part of the hypothesis is weaker than that of
Theorem 4.4. In fact, provided both are positive semidefinite, then the
hypothesis of Theorem 3.1 implies that (4.84) holds and the hypothesis of
Theorem 3.2 implies that (4.83) holds. Therefore, as a test for nonoscillation
of (4.1) with both G and ß positive semidefinite, Theorem 4.5 is stronger than
Theorem 4.4.

To see that the test is strictly stronger in this case, consider system (4.1)
where

G(0 =
/w/22[elnf+ 2]-'

0
0

/,-1'/22[T,lni-l-2]-1

and
,-i-e

ß(0-
where 0 < e < tj/2 < 1 and t > 1. Then

g(0 = ('G(s)ds =

0

t*'2 In t
0

0
t1»/2 In t

(4.88a)

(4.88b)

(4.89a)

Since ||ß(0ll = ' '  e is integrable on [1, oo), ß satisfies the first parts of the
hypotheses of both theorems, and

2(0= C Q(s)ds =
Jt

e-V-
0

0
TJ-V

Since neither

nor

||§(0||||ß(0|| = (ki0'-,-l+''/2

||G(0|| ||2(0|| = 2[e2 In / + 2£]-V-3'/2

(4.89b)

(4.90a)

(4.90b)
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is integrable on [1, oo). Theorem 4.4 does not indicate nonoscillation. How-
ever, since

tr[g(0ß(0] = (In t)(r1-'/2 + r1""'2) (4.91)

is integrable on [1, oo), Theorem 4.5 indicates that the system is nonoscilla-
tory.

Proof of Theorem 4.5. In view of Theorem 4.1 and the remarks preceding
the statement of the theorem, it will suffice to show that equation (4.4) has a
hermitian, positive definite solution on some terminal subinterval of J.

The hypothesis implies that f'a tr[(/ + g(0)ß(01 ds is uniformly bounded
on [a, oo). Then

\[(i + g(0)ß(0] - K[(i + S(t))i/2Q(t)(i + g(0)1/2]
= ||(/+g(0)1/2ß(0(/+g(0)1/2||

is integrable on [a, oo). Let tj be a real number greater than 2, and let b > a
be large enough so that

/j|(/ + @(s))x/2Q(s)(I + §(s))x/2\\ ds<l- 2/tj. (4.92)

We shall complete the proof by showing that

5(0 = / + f ' G(i) di + f ' S(i)Q(i)S(i) di (4.93)
Jb Jb

has an absolutely continuous, hermitian, positive definite solution on [Z>, oo).
Define T(t) for / > b by

r(0 = / + f ' G(i) di. (4.94)
Jb

T is hermitian, positive definite, and absolutely continuous with nondecreas-
ing eigenvalues on [b, oo). Let (4.93) be transformed by

R(t) = r-1/2(05(0r~,/2(0, (4.95)
which yields the equivalent integral equation

R(t) = i+ [' r-1/2(0r1/2(i)
Jb

X [R(s)Tx/2(s)Q(s)Tx/2(s)R(s)]Tx/2(s)T-x/2(t) ds.     (4.96)

It will suffice to show that (4.96) has an absolutely continuous, hermitian,
positive definite solution on [/>, oo).

Define «(f) on [¿>, oo) by

co(0 = fjTx/2(s)Q(s)Tx/2(s)\\ ds. (4.97)

Let A, B, and C be hermitian matrices with A > 0 and B > C > 0. Then for
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1 > v > n we have

\[BA] =\[AX/2BAX/2}=\{AX'2(C+(B- C))AX/2]

= \\AX'2CAX'2 + AX'\B- C)AX'2\ >\\AX'2CAX'2} =\{CA\
Then for a < b < t,

'*
•b

I + g(0 = / + f ' G(i) di+ f   G(i) di
Jb Ja

= T(0 + f" G(i) di > T(t),

and inequahty (4.92) combined with the definition of u(t) given by (4.97)
yields

w(0 < hm u(i) < 1 - 2/tj < 1    for all fin [b, oo). (4.98)
f-»oo

Also, for t > s > b, T(t) > T(s), and

\\T-x/2(t)Tx/2(s)\\2 = K[Tl/2(s)T-\t)Tx/2(s)] = à^iWîo]

<\,[T(t)T-x(t)]=K[I] = l,
yielding

lir-'/^or'^í)! = ||r1/2(,)r-1/2(0|| < I. (4.99)
Consider the sequence {^(OîT-o defined inductively by

R0(t) = / (4.100a)
and for v > 0,

^+.(0 = /+/*'r-1/2(0r1/2(i)
Jb

X [Rp(s)Tx/2(s)Q(s)Tx/2(s)RP(s)]Tx/2(t) ds.     (4.100b)

Then ||Ä0(0ll = L ^o is absolutely continuous, hermitian, and positive defi-
nite on [b, oo). Suppose RyO), 0 < v < n-1, have been shown to be well
defined, absolutely continuous, hermitian, and positive definite on [b, oo),
with

||^(0|| < 1/(1 - co(0)    for/e [6, oo). (4.101)
Then for v = n — 1 m the integrand on the right-hand side of (4.100b) we see
that the integrand is norm bounded by u'/(l — «)2 = (1/(1 — co))' uniformly
for t in [b, oo), whence the integral converges absolutely as t —» oo. Therefore,
R„ is well defined, absolutely continuous, hermitian, and positive definite on
[b, oo), and

1*0)1 < i + i - «(0 '
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whence by induction the sequence is well defined, each member is absolutely
continuous and positive definite and bounded by (4.101) on [6, oo).

Define A„(0 by
A,(0 = *(0 - *_,(0,       " > I- (4.102)

Then ||A,(/)|| < «(0 < ij«(0 for t in [6, oo). Suppose that it has been shown
that

||A,(0|| < {li^Y ,       1 < *< n - 1. (4.103)

Then since

a,+1(0 = *+,(0 - *(0

= f r-«/2(/)r»/2(,){[(Ä, - Ä^r^ßi^x]
Jb

+ [RP_XTX/2QTX/2(RP - R^ùfiT^T-^ds,

we see that

■mm < /; m.^^ * < />^1 (^_) A
2tj'-1

Jh
ds(»-1)1 (1 - «(oo)) J*

2 (tj^Q)"      (t,«)"
tj(1 - «(oo))        n! n!    '

where «(oo) = lirn^^ «(|) < 1 - 2/tj by (4.98). By induction (4.103) holds
for all v > 1, and this implies that the sequence {R,} converges uniformly on
[b, co) to a continuous limit R. Since the integrand on the right in (4.100b) is
norm bounded for almost all s in [b, oo) by «'(0/0 — w(0)2> uniformly for /
in [b, oo), the Lebesgue Dominated Convergence Theorem allows us to let v
tend to oo in (4.100b) to get that R satisfies (4.96). R has the desired
properties, and the proof is complete.   □

The following theorem provides partial converses to Theorems 3.1 and 3.2,
and it extends results of [14] which deal only with G(0 = I-

Theorem 4.6. Let G(t) and Q(t) be nondegenerate and positive semidefinite
a.e. on [a, oo) Ç /, with

V G(s)
J ft

ds oo    as/-»oo. (4.104a)

Suppose that (4.1) has a self-conjugate solution (X0, Y0) such that

X0(t)-^I   as t-* co. (4.104b)
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(i) If either

K
or

then

f G(i) di   = ol\x f G(i) di },

\.[ß(0]-O(X,[ß(0])    a.e.ast^co,

r\\[SG(i)di\\\\Q(s)\\ds< ce.
J ft •//7

(ii) If either

K Jf flW^J-o^jTö®«]).
or

then

\[ G(t)] - 0(XX[ G(t)])   a.e. as t -+ oo,

r°°iiG(oii r Qd)di
J ft J v

ds < oo.

(4.105a)

(4.105b)

(4.105c)

(4.106a)

(4.106b)

(4.106c)

Proof. Condition (4.104b) with Theorem 2.2 implies that (4.1) is nonoscil-
latory. Therefore, all three parts of the conclusion of Theorem 4.2 hold. In
particular, /"||ß|| di < oo. Furthermore, X0(t) is nonsingular on some
terminal subinterval [i, oo) Ç [a, oo), and S(t) defined by

S(t) = Y0(t)X¿x(t)   ÍOTtG[b,co) (4.107)

is hermitian and positive definite on [b, oo) and satisfies

S~x(t) = S-l(b) + [' G(i) di + f S-x(i)Q(i)S-x(i) di    (4.108)
Jb Jb

for / > b.
Let g (/) be defined by

§(t) = Ç G(i) di. (4.109)
Jb

An integration by parts of X¿= GY0 yields

x0(t) - x0(b) = [' gy0 di = g(/)r00) + f §(i)Q(i)x0(i) di.
Jb Jb

Postmultiplication by X¿¡~ ' and rearrangement yield

/ - §(/)5(0 = X0(b)+ f'§(i)Q(i)X0(i)di
Jh V(0-      (4.110)

Since all the terms on the right-hand side of (4.108) are positive semidefinite,
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we have 5_1(/) > §(t) > 0 for / > b, which implies that / > I - SX/2§SX/2
> 0, and 0 < trace[7 - g(/)5(/)] < n for all / G [6, oo). Therefore, the trace
of the quantity on the right-hand side of (4.110) is nonnegative and bounded
uniformly by n on [b, oo). Since X¿x(t) -» /, X0(b)XQX(t) is norm bounded on
[b, co), and this yields that

trace [' §(s)Q(s)X0(s)X¿\t)ds
Jh

is uniformly bounded on [¿>, oo), say by K. Then

K > Realtr f'§(s)Q(s)X0(s)X¿x(t)ds
Jh

(4.111)

uniformly on [b, oo).
Since X0(s)XqX(í)-»/ as 5 and /-»oo, there is a matrix B such that

\\B(s, /)|| -» 0 as s and / -» oo, and X0(s)X¿\t) - / + B(s, /). Furthermore,
|tr[gß5]|<«||gßfi||.<„||g||||ß||||5||,

whence

Real ti[@(s)Q(s)XQ(s)Xöx(t)] - Real tr[g(5)ß(s) + §(s)Q(s)B(s, /)]

= tr[g(0ß0)] + Real li[§(s)Q(s)B(s, /)]
> tr[g(OßO)] - «||g(0|| ||ß0)|| ||*0, Oil-

since the trace of §(s)Q(s) is real. If A and B aie hermitian, positive
semidefinite matrices, then

\[AB] > \[A]\,+ X_P[B]    forl<v<n.

Furthermore, (4.105) implies that there is an interval [d, oo) Ç [c, oo) and a
constant L > 0 such that either

A„[g(0]<iA,[g(0],
or

\[Q(t)] <ZA,[ß(/)]   a.e.foTtG[d, oo).
Therefore

tr[g(/)ß(/)] > \,[g(/)ß(/)] > (1/L)||g(/)|| ||ß(/)||       (4.112)
for almost all / > d. Let e > d be so large that \\B(s, t)\\ < \/(2nL) for
s, t > e. Then for almost all s, t > e, we have

RealtT[§(s)Q(s)X0(s)X¿l(t)] >||g(/)|| ||ßO)||(-J- - n\\B(s, t)\\}

2L ||gO)||||ßO)||>o.
This together with (4.111) yields (4.105c).
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Let (Xx, Yx) be the self-conjugate solution of (4.1) defined by

Xx(t) - *<,(/) [' Xôx(i)G(i)X*ôx(i) di (4.113a)
Jb

YM = Y0(t) ['X0-x(i)G(i)XS-x(i) di + Xr\t).        (4.113b)
Jb

Since X¿x(t) -* /.

(' XqXGX*'x di = of I [' G dà)   as / -» oo.
Jb \\\Jb ||/

Also, the hypothesis of Theorem 3.2 is satisfied, and so (3.12c) holds, whence
Yx(t)^>I   as/-»oo. (4.114)

Then Yx(t) is nonsingular on some interval [ß, oo) Q lb, oo).
We define W(t) for / > /3 by

W(t) = Xx(t)Yx-x(t). (4.115)
Then  W(t) is hermitian, positive definite on some subinterval [y, oo) C
l ß, oo), and

W'x(t) =f00ßi/|+r°0 W-XGW-X di for / > y. (4.116)
-'/ Jt

Define 2(/) by

2(0=P°ß«/fc (4.117)
Jt

Integration of Y[ — — ßA', by parts yields

r,(0 = y.(y) + 2(0*,0) - 2(Y)jf1(T) - f ' <ü(i)G(i)Yx(i) di,

and

/- 2(0 WO)- Yx(y) - 2(y)*,(y) - f 2(|)G(£)y,(|) </«rr'(0.
(4.118)

From (4.116) we see that 0 < trace[7 - <H(t)W(t)\ < n uniformly on [y, oo),
and since

(Yx(y) - Z(y)Xx(y))Yxx(t)
is norm bounded in / uniformly on [y, oo), we obtain

trace [' S,(Í)G(Í)Yx(Í)Yxx(t) di <M (4.119)

for some positive constant M and all / > y. The remaining part of the proof
of (ii) parallels that of (i) above.   □
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