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OSCILLATION AND NONOSCILLATION IN A

NONAUTONOMOUS DELAY-LOGISTIC EQUATION*

By
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K. GOPALSAMY2 (The Flinders University of South Australia)

Abstract. Sufficient conditions are obtained for the delay-logistic equation x(t) =

r(t)x(t)[ 1 - x(t - t(t))/K] to be respectively oscillatory and nonoscillatory.

1. Introduction. The purpose of this article is to derive sufficient conditions for

the nonautonomous delay-logistic equation

X(t-T(t))'

T-IW') 1 t > 0 (1.1
K

to be respectively "oscillatory" and "nonoscillatory" where r and r are positive con-

tinuous functions defined on [0, oo) and A' is a positive constant. When r, x, K are

positive constants, (1.1) is known as Hutchinson's equation in the literature on math-

ematical ecology and has been discussed extensively by several authors and notably

by Wright [9], Jones [3], Kakutani and Markus [4], The oscillatory nature of an

autonomous equation of the form

du(t) , ,-IT =
n

a - > b,u(t - t,)

7=1

(1.2)

where a, bj, (j = 1,2   n) are positive constants has been recently discussed by

Gopalsamy [2] and Kulenovic et al. [6]. The literature on oscillation of scalar systems

with deviating arguments is quite extensive and we refer to the books by Shevelo [8]

and Lakshmikantham et al. [7] for more details.

Motivated by the plausible applications of (1.1), we consider solutions of (1.1)

corresponding to initial conditions of the type

x(s) = <p(s) > 0, 0>(O) >0, is continuous on [-t*, 0],

r* = sup r(t) < oo.
t> 0

(1.3)
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Since x(t) > 0 for t > 0, it is not difficult to show as in El'sgol'c and Norkin [1, pp.

10-11] that solutions of (1.1) and (1.3) are defined for all t > 0 and also remain

positive for t > 0. A solution xv{-) of (1.1) and (1.3) is said to be "oscillatory about

K" if and only if there exists a sequence {tn} —► oo as n —► oo such that x(t„) - K — 0

for each tn e {/„}. We introduce a change of variables in (1.1) so that

= 1, t>- x* (1.4)

and note that y is governed by

+ y{t)]y{t-z(t)), t > 0, (1.5)

whose initial conditions are inherited from (1.3) through (1.4). The oscillation of x

about K is now equivalent to that of y about zero as in the usual case. We note from

the positivity of x(?) for t > 0 that 1 + y{t) > 0 for t > 0.

2. Oscillation and nonoscillation. It is trivial to verify that if x{t) = 0, then every

solution of (1.5) and hence of (1.1) is monotonic in t and hence any oscillation in

(1.5) is induced by the delay in the argument. Our first result below is concerned

with the asymptotic behaviour of solutions of (1.5).

Theorem 2.1. Assume the following:

(i) r, x are continuous positive functions defined on [0, oo);

(ii) t - x(t) —> oo as t —> oo; (2.1)

(iii) for some t0 > 0, r(s) ds = oo. (2.2)

Then every solution of (1.5) is either oscillatory or converges to zero monotonically

for large / as / —► oo.

Proof. Suppose that y(t) > 0 for / > T. It follows from (1.5) and (2.1), y(t) < 0

for t > T* where T* > T such that T* - x{T*) > T and hence

lim y(t) = a > 0 exists. (2.3)
t—*oo

If a > 0 then we have from (1.5),

y(t) < -a(l + a)r(t) for t > T* (2.4)

leading to

/OO

r(s)ds (2.5)

where t* = max{?o. T*}. But (2.5) contradicts (2.2). Suppose now that y(t) < 0 for

t > T. Since (1.5) implies y(t) > 0 for / > T*,

lim y(t) = p < 0 exists. (2.6)
t—»oo

If p < 0, we have

y(0> -[i + y(0)M/-r(0)r(0

>-[l + y(0)]/?r(0 (2.7)
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which again on integration over [?*,oo) leads to a contradiction of (2.2). This com-

pletes the proof.

Our next result provides a sufficient condition for all nontrivial solutions of (1.5)

to be oscillatory.

Theorem 2.2. In addition to assumptions of Theorem 2.1 assume

liminf [ r(s)ds> \/e. (2.8)
'^°° J t-r(t)

Then every nontrivial solution of (1.5) is oscillatory.

Proof. We define S(t) as follows:

S(t) — max- 1(5)} (2.9)
s€[0,(]

and note that (2.8) implies

liminf [ r(s)ds> l/e (2.10)
'-00 JS(t)

In fact if (2.10) does not hold, then there exists a sequence {?„} -+ 00 as n —► 00 such

that

lim / r(s)ds < l/e
n^°°Js(tn)

But from (2.9) we have

5(tn) — max {5 - t(5)}
^e[o,r„]

and hence there exists t'n e [0, t„] such that

Hence we have

showing that

5{tn) = t'n - r(t'n) = max {s - 1(5)}.
<5e[0,i„]

[ r(s)ds< f r(s)ds, n = 1,2,3,....
Jt'n-T(fn) JS(t„)

< f r(s) ds 1 (n = 1,2,3,...)

is a bounded sequence having a convergent subsequence, say

'f*J'L -t(/'
nk

r(s) ds > —► c < l/e as k —► 00.

But this implies that

liminf / r(s) ds < \/e
1^00 jt_mT(0

which contradicts (2.8). Suppose now the assertion of Theorem 2.2 is false. Then

there exists a nonoscillatory solution, say y, of (1.4) such that

y(0>0, y{t-r{t))> 0 for?>T*. (2.11)
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A consequence of (2.11) is that the linear delay differential inequality

y{t) + r(t)y(t <0 (2.12)

has an eventually positive solution when (2.8) holds. But it is known that this is not

possible by a result of Koplatadze and Chanturiya [5].

Let us now suppose that (1.5) has an eventually negative solution y{t) < 0 for

t > T. Since 1 + y(t) > 0, y(t) > 0 for t > T*, we have

y(t) = 1 +y(0M*-T(0)

> - r(/)ll + (2.13)

and hence

implying

Let w be defined by

f %dt<-f r(s)[l+y(s)]^±ds (2.14)
Jd(t) y Js(t)

[' r(s)[[+y(s)]^^ds. (2.15)
Jsii)

<5(0 y U(t)

m
y(t)ln«>

W(t) = t>T* (2.16)
y(t)

and note that w(t) > 1 since y(t) > 0 for t > T*. From (2.15) and (2.16),

In w(t)>w(£)[ r(s)[l + y(j)] ds for £ e {S(t), t). (2.17)
Jd(t)

We shall show that w is bounded; by Theorem 2.1, y(t) —► 0 as t —> oo since y is

nonoscillatory. Hence for large enough T*,

l+y(0 >5. [ r(s)ds>c> - for / > T*. (2.18)
Jut) e

For any t* > T*, there exists a t e [<?(/*), t*) such that

f r(s) ds > ^r, [ r(s) ds > (2.19)
JS(t') 1 Jt 1

We have from (1.5),

y{t) - y(S{t*)) > - [ r(s)[l + y(s)M<J(s)) ds
J Sit')tS(f

> j[->'(<5(0)] I r{s)ds
JStr)<5 (r

> -A[-y{dm (2.20)

and hence

y{8{n)<C-y{d{t)). (2.21)

Similarly again from (1.5),

y{n-y{t)>c-[-y{d(t"))]
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implying

y(t)<ly(S(n)<{^)2ymy (2.22)
Since y(t) < 0, we have from (2.22),

,(l) = «<f4y (2.23)
y{ t) \c

from which the boundedness of w follows. We define

/ = liminf w(t), I < oo. (2.24)
/—»oo

Taking liminf^oo on both sides of (2.15),

In/i/ f'
■j-> liminf / r(s)ds (2-25)
1 '^°° JS(t)

leading to

liminf / r(s)ds< \/e (2.26)
'^°° JS(t)

which contradicts (2.10) and hence (2.8). This completes the proof.

A sufficient condition for the existence of a nonoscillatory solution of (1.5) is

formulated as follows:

Theorem 2.3. Let r, t be continuous positive functions on [0, oo) such that

limsup f r(s)ds< \/e. (2.27)
/-►OO J t — T (/)

Then (1.5) has a nonoscillatory solution on [0,oo).

Proof. Our proof is based on an application of the well-known Schauder-Tychonoff

fixed point theorem. Let C[/0. oo) denote a locally convex linear space of all contin-

uous real-valued functions on [?0, oo) endowed with the topology of uniform conver-

gence on compact subsets of [?o. oo). Define a set S as follows:

y is nondecreasing on [?0, oo),

- (1 -e) < y(t) < -(1 -e)exp [-e Jt[ r(s)<ft], t>tu

y{t) = -( 1-e) on[/0,fi],

y(t)e < y(t - t(/)) for t > t\,K ~ ~ (2.28)

where t\ is sufficiently large such that //_r(r) r(s)ds < l/e, for t > t\ and e is a fixed

positive number such that 1 - e > 0. We note that S is a nonempty closed convex

subset of C[?o. oo). We define a map F: S —> C[to, oo) as follows:

f ~~ (1 — fi)> t £ [t0, ?i]

^(y)(0 - | _ (1 _ g) exp •_ j-t r{s){l+y(s)]y(S-T(s)) ^ ( > ^ (129)

We first verify FS c S) it is easy to see that

F(y)(t) > -(1 - e) for t > t0 (2.30)

£ — s y € C[t0, oo)
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and

L' >•($)[ 1 + y(j)]y(^ - t(j)) ±

y(s)

<e r(s)[l - (1 - e) exp(-e / r(u)du)]ds
Jt, Jt,

<e( r(s) ds. (2.31)
J i,

From (2.30) and (2.31),

-(1 - e) < F{y){t) < -(1 - e)exp[-e f r(j)rfs] for / > t\. (2.32)
Jt,

It is also found that

F{y){t)

F{y){t - r(t))
exp

/

r(i)[l + J>(j)Mj - T(j)) ^

y{s)

>{l/e) for t > t\. (2.33)

It follows from the above, FS c S. The continuity of F: S —► S c C[?o. oo) is verified

as follows: let y„ e S, y e S and let yn —>■ y as n —+ oo. Let t2 be a fixed number

such that t\ < tj < oo. We have from the uniform convergence of y„ —> y on [rt, t2]

that for any £j > 0 there exists «o(£i) satisfying

[1 + ^(5)1^(5 - r(s)) [1 + y(j)]y(5 - t(s))
sup

i€[f],/2] ?»(*) H5)

From the definition of F, for t &[t\, ti\,

< £i for n > «o(£i)-

\F(yn)(t)-F(y)(t)\ = {\-E)

< (1 -e) f r(s)
Jt i

Jt i

/' r(-?)[l +yn(j)]yn(j-T(j)) ^
p' yM

-exp i'^)li+y^Ms-mds
Jt, H*)
[1 + ^n(5)]y#.(5 - *(*)) [1 + J>(j)M* - T(S))

ds
yn{s) y(^)

<(l-e)ei / r(s)ds for n > n0(£\)
Jt i

<(1—fi)fii f r{s)ds. (2.34)
Jt,

Since s\ is arbitrary, the continuity of F on S follows. It is easy to see that \ j,F(y){t)\

is uniformly (in y) bounded for t on [/i,oo) showing the equiboundedness of the

family FS. Now by the Arzela-Ascoli theorem, the precompactness of FS follows.

All the requirements of the Schauder-Tychonoff fixed point theorem are satisfied and

hence there exists a y* e S such that F(y*)(t) — y*(t). It is easy to see that this y*

is a nonoscillatory solution of (1.5) if we identify t0 of C[?0. oo) with -t*. The proof

is complete.
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3. Some remarks. We note that our sufficient conditions for the oscillation and

nonoscillation of (1.5) are sharp in the following sense: if r and t are positive con-

stants respectively equal to r0 and To, it is known that

r0T0>l/e (3.1)

is a necessary and sufficient condition for all solutions of

X(t - T0)"
x{t) = r0x(t) 1

K (3.2)

to be oscillatory about K (see Kakutani and Markus [4]). Our sufficiency condition

of Theorem 2.3 for the nonoscillation of (1.5) and hence of (1.1) leads to

roTo < l/<? (3.3)

in the autonomous case and it is known that (3.3) is a necessary condition for the

nonoscillation of (3.2). Thus the sufficient condition of Theorem 2.3 is also sharp.

It is not known whether the conditions (2.8) and (2.27) are necessary in the nonau-

tonomous case for the respective results.
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