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1. Abstract. The purpose of this paper is to compare the equations

yi2n\x) + p(x)g(y(x), y,(x)) = 0 (1)

y(2n\x) + p(x)g(y(x), yT{x)) = j(x) (2)

for their oscillatory and nonoscillatory nature. In Eqs. (1) and (2) y("(x) =

(d%/dx')y{x), i = 1, 2, • • • , 2n; yr(x) = y(x — t(x))] dy/dx and d2y/dx2 will also be

denoted by y' and y" respectively. Throughout this paper it will be assumed that p(x),

j(x), t{x) are continuous real-valued functions on the real line (—°°, °°); j(x), p(x)

and t(x), in addition, are nonnegative, r(x) is bounded and f(x), p(x) eventually become

positive to the right of the origin. In regard to the function g we assume the following:

(i) g : R2 —* R is continuous, R being the real line,

(ii) g(\x, \y) — X2a+1^(x, y) for all real \ ^ 0 and some integer q > 1,

(iii) sgn g(x, y) = sgn x,

(iv) g(x, y) —* as x, y —* <=° ; g is increasing in both arguments monotonically.

Eq. (I) is called oscillatory if every nontrivial solution y(t) £ [<0 , 00) has arbitrarily

large zeros; i.e., for every such solution y(t), if y(t,) = 0 then there exists <2 > <i such

that y(t2) = 0. Eq. (1) is called nonoscillatory if it has a solution with a last zero or

no zero in [i0 , 00), t0 > a > 0. A similar definition holds for eq. (2). All solutions of

(1) and (2) considered henceforth are continuous and nontrivial, existing on some half-

line [t0 , 0° ).

2. Nonoscillation of Eq. (1). We will need the following lemmas.

Lemma 1. (Staikos and Petsoulas [8, p. 697].) If y(t) > 0, y'(t) > 0 and y"(t) < 0

for large t, then lim,_.„ (yT(t)/y(t)) = I.

Lemma 2. Suppose J" t2"~1p(t) dt — Let y(t) be a nonoscillatory solution of

Eq. (2) such that y(t) <0 for large t. Then

y(t) < 0, y'(t) < 0, (-1 )tyli>(f) >0, i = 2, 3, • • • 2n. (3)

Proof. Let T be large enough so that y(t) and yr(t) are both negative for t (E [T, oo).

Since /(<) > 0 for large t, it follows from Eq. (2) that

yi2n\t) > /«). (4)

This implies that yi2n~1)(t) < 0 eventually. In fact, if yi2n~l)(t) > 0 eventually then

y<2»-d ^ q an(j 2/<2n)^) > o imply that y{2n~~'(t) is concave up and increasing. Thus
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y<2n~2)(t) > 0 eventually. Similarly y<2n~3) (t) > 0 eventually. Proceeding this way,

we find that y(t) > 0 eventually, a contradiction. In a similar manner we find that

y'it) < 0 eventually. For the rest of the conclusion of the lemma, we only need to consider

when y(t) —> — <», since the conclusion is true if lim,^ro y(t) > -co. We shall show

that 2/<2n_2)(0 > 0 eventually. Suppose to the contrary that ?/<2"~2)(i) < 0 eventually.

Let Ti > T so that for t > Tx , yUn~2)(t) < 0. Integrating (2) between [Tt , t], we have

- [' p(s)g(y(s), yr(s)) ds + [' f(s) ds
J Ti JTi

> y<2""1,(T1) - £ p(s)g(y(s), yr(s)) ds,

whence

lim/ p(s)g(y{s),yT(s)) ds > -<*, (5)
j—,00 J Ti

since ?/(2"_1)(<) < 0 for £ > T, . Since yi2'l~~\y) < 0 and y(2"~v(t) < 0, there exists a

constant > 0 such that — y(2n~2) > 7£0 ; which yields, on repeated integration, that

From (5), we get

and since

we must have

Now if 0 < r(t) < vi,

lim (-y/t2n~2) > R > 0. (6)

lim I -»■(«» „
/:

lim f s2n *p(s) rfs = 00 j
/-♦CO

limy(~y(8L 7yf(8)) =0.

g(-y(s), -yr(s)) ^ g(-yXs), -y*(s))

s2
2n— 1

<?(-y(s - ?n), -?/(s - m))
s2n_1

[~y(s - ffl)]2ll+1g(l, 1)

s2"-1

Therefore

0 as s —> co .

,. -yu+\s - m) y" (-y) . „ y" ,n.
lim —-—   = lim — • lim ■>7:^2 > R lim '— (7)

s" s s" s
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and, because of (6), we have

lim ^2°(S — m) = 0. (8)
s

Since q > 1 and lim,_„ y2a *(t — m) = — , we have

lim ^ ^ — 0 => 2/'(< — m) —> 0 as t —» oo. (9)
/-♦oo £

Since all subsequent derivatives up to order (2n — 1) are monotonic we must have

yi2n'2)it) —> 0 as t —> co, a contradiction. Hence y{2n~2) (t) > 0 eventually. The rest of

the conclusion can be proved similarly. The proof is complete.

Theorem 1. If /" t2n~lp(t) dt = <», then all nonoscillatory solutions of Eq. (2)

are nonnegative.

Proof. Suppose, to the contrary, that a nonoscillatory solution y(t) of (2) is even-

tually negative. Let T, be large enough so that y{t), yr(t) are negative for t > .

From Lemma (2), there exists T2 > Tx such that for t > T2

y(t) < 0, y'(t) < 0, y"(t) > 0, y"'(t) < 0, • • • , {t) > 0, |/<s—"(i) < 0. (9a)

Dividing Eq. (2) by y2ai~l(t) and multiplying by t2n~l and then integrating on [T2 , <],

we get

[' £1ds + I" ds _ f ds < o ao)
Jr. y2"+\s) + Jr. y2a+1(s) d JT, l/Q + \s) < ( }

In Eq. (10) the right-hand side is negative. The second term on the left —» oo as t —> » .

In fact,

lim t -»»f *.
t —»co Jt, y \S)

Now, by Lemma 1 applied to —y(t), we find that <7(1, yr/y) —>■ g( 1, 1) > 0 as t —> 00.

Hence

lim £ ^y»-\,(i,|g) = CO. (11)

we must have

sOT*-- <->

/;

(10) and (11) imply that we must have

r>t „2n-l„,(2n)

lim

The left-hand side of (12) is

f-y2""(fl Taa"~1yl2n~1\Ta) [' (2n - l),y(2"""(s)s2"'2

y2q+1(t) y2"+\T2) JT, y2'+\s) ds

+ I,' (2g + ly-'yW""® &

y2q+2

in which the first and last terms are positive in view of (9a) and the second term is finite.

Therefore in order for (12) to hold we must have
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lim f
(-.CO J T,

y<2"-"(s>2-2 ds
lim ' —y2a+\s) = ro (13)

In (13), again, the left-hand side is

„,(2n—2) / «\ »2n—2 n(2n-2)/rp \rp 2n-2 t»t q\ (2n-3) (2n-2)/_\
y (t)t _ y (12)i 2 _ f (2n - 2)s y (s)

2/2'+,(0 2/2a+1(r2) JT, y2<+\s)

ft „2n — 2ni(.2n—2)^

V

where the first and last terms are negative due to (9a) and the second is finite. Hence

f s2n~2y(2n~2\s)(2q + lV(s)
I / „,2« + 2 »

^ r, V

lim

But

lim

l™i,.—^■ (14)
Proceeding in this fashion, we find that in order for (12) to be true we must have

[' y'(s) ds , .

[r. L r-m"° ■ <15)

[' y'(s) ds ,. I" 1

!™ L ■!™ J-<
2? '

1
(r2) " 2/2a(0J

since y(<) is finite and q > 1. This is the required contradiction and the theorem is proved.

Our next theorem generalizes Corollary 1 of Keener [4],

Theorem 2. Eq. (1) is nonoscillatory if and only if there exists a function h(x)

such that h(x) < 0 and

hl2"\t) + p(t)gM),hM > 0 (16)

for large t.

Proof. Suppose first that Eq. (1) is nonoscillatory. Let y(t) be a nonoscillatory

solution of (1). Without any loss of generality we can assume that y(t) is eventually

negative. Let T2 be large enough so that for t > T2 , both y(l) and yr(t) are negative.

Since y'(t) < 0, there exists a number 5 > 0 such that y(t) + 5 < 0, and yr(t) + 8 < 0.

Let h(t) — y(t) + <5 < 0; then

h(2n)(t) + p(t)g(h(t), hT(t)) = y'2n\t) + p(t)g{y(t) + <5, yT(t) + S)

> y(2n\t) + p(t)gW), vm = o.

Conversely, we take ]{t) = h'"!n)(t) + p(t)g(h(t), hT(t)) in Theorem 1 and arrive at

t2n~1p{t) dt < co since h < 0. This, by our next Theorem, is sufficient for Eq. (1)

to be nonoscillatory.

3. Nonoscillation of Eq. (2). Theorem 3. Suppose

(i) f iln~lv(t) dt < co,

(ii) r t2n~im dt< »;
then Eq. (2) has a bounded nonoscillatory solution.

Prooj. We consider the integral equation

V{t) = \ + I, ((2n- 1)1 /(s) ds ~ I, %n- 1)! p(s)ff(w(s)' ^(s)) * (17)
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and set up the following estimates which are defined on (— <», °°) since p and / are

defined for x < a, a > 0.

Vo(f) — h> (18)

y,(t) = \ + Jt ^S(2n'- 1)1^ ds ~ I %n -1)! p(s)9(yi-i(s), y,-i(s ~ r(s))) ds,

j = 1, 2, 3, 4 • • • . (19)

We now define sets D, N in the manner of Onose [6]: D = {(xt , x2) : \Xi\ < 1, i = 1, 2},

N = {1, 2, • • • , 2n — 1}. Let T be large enough so that fort>T

l)T/(s)cfe-i' (20)

[sup gix, , x2)] max [ ^P(s) ds
D iEN V* ±Jl

< J- (2D

(20) and (21) are possible in view of continuity of g and / and the conditions of the

theorem. It follows from (18), (19), (20) and (21) that

\yM < l (22)

< I (2n- i-lV ^ ds + 0(h, i) ft _t)!P® d* (23)

< i i = 1, 2, 3, , 2n - 1.

In fact, it follows from (18), (19), (20), (21) and (23) that

\y,(t) | < l, (24)

and

ltfi<o(0l < I; J = 1, 2, 3, ■ • • ; i = 1, 2, 3, • • • , 2n - 1. (25)

From (24) and (25) we find that, for i £ {0, 1, 2, • • • ,2n — 2,2n — 1}, },_i" has

a convergent subsequence (by Arzela's theorem) which converges uniformly to a non-

oscillatory solution of Eq. (17). This is the required solution of Eq. (2). This completes

the proof of this theorem.

Corollary 1. If J" j(s)s2n~1 ds < &, then a necessary condition for Eq. (2) to

oscillate is J" s2"~1p(s) ds = <».

Theorem 4. Suppose there exist two functions h^t), h2(t) such that /i,(i) > 0,

h2(t) > 0 eventually. Suppose further that

h^it) + v{t)g{h&), K(t - r(0) < o, (26)

h"n)(t) + 1(t)g(h2(t), h2(t - t(0) < 0; (27)

then Eq. (2) is nonoscillatory.

Proof. It will be shown that fT~ t2"~lp(t) dt < and JT" <2"_1/(0 dt < <» for

sufficiently large T. It is only necessary to show one of the two, say / T° t2"'1 p(t) dt < .

Suppose to the contrary that /" t2n~lp(t) dt = oo. Then let T be large enough so that
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for t > T, hiit) > 0 and h^t — t(<)) > 0. From (2G), h^2n)(t) < 0 for t < T. In the

manner of Lemma (2), it follows that

ht(t) > 0, W(t) > 0, W'(t) < 0, W"(t) >0, ■■■ , hi2"~2\t) < 0, A,(a"-l>(f) > 0.

Now in the manner of the proof of Theorem (1), it can be shown that hx(t) is oscillatory,

a contradiction, and the proof is complete.

Theorem 5. A necessary and sufficient condition for Eq. (1) to oscillate is

J s2n~1p(s) ds = °° . (28)

Corollary 2. Suppose that J" s2"-1/(s) ds < °°. Then Eq. (1) is oscillatory if

Eq. (2) is oscillatory.

Proof of Theorem 5. For the sufficiency part, suppose that (28) holds and some

solution y(t) of Eq. (1) is nonoscillatory. Then y(t) is eventually of constant sign. Due

to conditions (ii) and (iii) on the function g, we can assume without any loss that y(t)

is eventually negative. Let T2 be so large that for t > T2 , both y(t) and y(t — r{t))

are negative. Then it follows from Eq. (1) that for t > T2

yi2n\t) > 0. (29)

Therefore conclusion of Lemma (2), namely y(t) < 0, y'(t) < 0, (—1 )'yM(t) > 0,

i = 2, 3, ■ ■ • , 2n, holds. Dividing Eq. (1) by if**1 (J,) and multiplying by 12"~1 and then
integrating on [T2 , t], we get

/' * + /■ #,«■»•("» 4 . 0. (30,Jt, y is) JT2 y (s)

In Eq. (30), the second term on the left —> oo as t —» m in the manner shown in the proof

of Theorem 1. The rest of the proof is exactly identical to the remainder of the proof

of Theorem 1 from Eq. (12) onward. The sufficiency is proved.

The proof of the necessity part follows in the manner of the proof of Theorem 3.

Here the integral equation and the corresponding sequence of estimates are

y{t) = 1 - ^2n p(s)g(y(s), yr(s)) ds (31)

2/o (t) = 1 (32)

yi(t) = 1 - l_l p(s)d(yi-i(s), y,-i(s - r(s)) ds, j = 1, 2, 3, • • • . (33)

The sets I) and N are as in Theorem 3. Let T be large enough so that for t > T

[sup g(xl , x2)] max / %—p(s) ds
d ieN Jt v* J-y-

< i. (34)

The rest of the proof is quite similar to the proof of Theorem 3. The proof of Theorem 5

is now complete.



NONLINEAR DELAY DIFFERENTIAL EQUATIONS 349

Remark 1. We have, here, generalized in part the results of Gollwitzer [3] who

considered the equation

y"(t) + p(t)yT"(t) = 0, (35)

where a is the ratio of odd integers. When a is an odd integer greater than 1, a necessary

and sufficient condition for (35) to oscillate is /" lp{t) dt = . This follows directly from

our last theorem by taking n = 1 and g(y(t), yT(t)) = y," (t). The case when a = 1 was

considered in the equation

y"(t) + p(t)yT(t) = 0 (36)

by Bradley [1] who obtained J" p(t) dt — co as the sufficiency criterion for Eq. (36)

oscillate. The condition obtained by us, namely /" tp(t) dt = m, is not sufficient for the

oscillation of (36). In fact, taking pit) = J 1/t2 and r(t) = 0, we find that y — y/t is a

nonoscillatory solution of Eq. (36) although J " tp(t) dt = .

Remark 2. All the results and their proofs remain valid in this paper if condition

(ii) on g is replaced by more general condition g(\x, \y) = \rg(x, y), where r > 1 and

r is the ratio of two odd integers. With this observation we find that Gollwitzer's [3]

results for a > 1 are completely generalized.
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