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Oscillation criteria for second order non-linear
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Abstract. The paper is concerned with the study of oscillatory behaviour of solutions of the
second order non-linear diflerence equation 4 (r, 4u,)+ a, f(4,) = 0. The sufficient conditions are
given that all solutions (or all bounded solutions) of this equation are oscillatory. The present
theorems are the discrete analogues of some results for differential equations due to 1. V.
Kamenev, A. G. Kartsatos, T. Kusano and H. Onose, Z. Opial, and others. »

1. In this paper we are concerned with the oscillatory behaviour of
solution of the second order non-linear difference equation

(1) Ar du)+a, fw) =0, n=0,1,2,..,

where 4 is the forward difference operator, ie. 4v, = vy, —V,, {r.}, 1@}
are the real sequences and the following conditions are assumed to hold:

(I) f: R — R is continuous, sf (s) > 0 for s # 0,

n—1 1
) r,>0forn>n, >0, R, = ) — 0, as n .
k=ng k
As a special case we have
(2) A*u,+a, f(u,) =0, 4A%u, = A(Au,).

By a solution of (1) (similarly for equation (2)) we mean a real sequence
\u,} (u, £ 0) satisfying equation (1) for n = 0,1,2,... Let U, (i = 1, 2)
denote the family of solutions {u,} (n > 0) of equations (1) and (2),
respectively.

Following paper [2], a real sequence {u,} (n = 0, 1,...) is said to be
non-oscillatory if there exists an ny, = 0 such that for every n > n, either
u, > 0 or u, < 0; otherwise it is said to be oscillatory.

The literature about the oscillatory behaviour of solutions of a non-
linear difference equations is very scanty. Recently the problem of determin-
ing sufficient conditions for the oscillation of solutions of a non-linear second
order difference equations has been studied in papers [2]-[4].

The purpose of the present paper is to derive several criteria for
oscillation of all solutions (or all bounded solutions) of equation (1) (in
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particular of equation (2)). The result we obtain (Theorem 4) extends Opial’s
oscillation criterion for the linear differential equation [11] to equation (1).
The remaining theorems of the paper are the discrete analogues of some
results for a non-linear differential equations of second order due to Kartsatos

[7], Kusano and Onose [8], Kamenev [6], and others [1], [5], [9]-[10]).
For related results we refer the reader to a survey article by Wong [12].

2. Now we give two theorems in which the coefficient {a,} is allowed to
take both positive and negative values for arbitrarily large values of n. These
theorems are the discrete analogues of Kartsatos’ results [7] for differential
equations.

THEOREM 1. Suppose that

() ir,) is a non-decreasing sequence for n = n,

n—1

(i) tim 1 Y k(uaf +a;) = o, u >0,

n—~a 'y k= ng
where

a; = max(q,,0), a; = min(a,,0).

Then every bounded solution ‘u,) € U, is either oscillatory or such that
lim inf ju,| = 0.
n—~7r

Proof. Suppose that there exists a bounded non-oscillatory solution
{u,) € U, and let u, > O for n > n, > ny (a similar argument will also hold
in the case of u, < 0). If liminfu, > 0, then there are n, > n, and
constants c;, c; such that 0 < ¢; < u, < ¢, for n > n, and by (i) we have
(3) 0< M, <f(u) <M, forn2=n,.

From equation (1) we obtain
4 Z kA(r, du) = — Z kay f (uy).
k=nsy k=ny

According to the summation by parts formula we may write

Y kA Aw) = nro,y Auyy—nyr,, Au,,— ) rydu

k=ny k=ny+1
and
n n
Z FedUy = TayyUpsy —TnysyUnye1— Z Uy Ary.

k=nz+1 k=ny+1
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Hence in view of (i) we have

(5) z kA(rydw) = nryyq Au,y—n,yr, A“ —C2Fp+1-

k=ny
On the other hand, it follows from (3) that

6 Y kaf(w) = ) k(Myai +M,a;) = M, ) k(ua/ +ay),
k=ny k=ny k=ny

u=M/M,.
By virtue of (4), (5) and (6) one can write

n
+ —_
Mryyy AUy =Nyl Ay, —CoTpyy S — My Y kpa) +ay).
k=nsy

This in turn implies

rn, Ny 4u,
Y] Nty s~ 3By, —C3 < MMy g —Cp— 2202
n+1
M, _
< - —2 Y kua +a;),
rn+l k=ny

where
0 if du,, < 0,
Yy = .
1 if 4u,, > 0.

From (7) using (ii), we conclude that ndu,,, - —oo as n — o. Then. there
exsists an ny =>n, such that Au,,, < —1/n for n 2 n, and so we get

Up+1 \ n3+l Z l/k n > n5+1’
k=nj3

which gives lim u, = —oo. But this contradicts the fact that {u,} may be

[ hade ¥

positive. Thus our assertion is true.

COROLLARY. If Z n(ua; +a;) = o (4 > 0), then every bounded solution

{u,} € U, is oscillatory or lim inf Ju,| =

L Il o}

THEOREM 2. Assume that

> 1
)] ZrR = oo,
(ii) iR.tx(ua:+a..')=oo, p>0.

Then the assertion of Theorem 1 holds.
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Proof. Proceeding as in the proof of Theorem 1 we get inequalities (3).
From equation (1) by (3) we have

(8)
n n n Ml . _
Z Ry d(rdu) = — Z Rivia f(w) < — M, Z Ry Fak +4a;
k=ny k=l|2 k="2 2
since
Z Rk+lA(rkAuk) = Rn+lrn+1Aun+l—Rn2rn2Aun2 _uu+l+un2
k=ny
= "{n+!rn+lA“n+l+K:
where

K = —R,,rp, 4y, —C3+Uy,.
Therefore from (8) we obtain the inequality

Roy17ps1 4y +K < — M, Z Rl¢4»1(l‘“11;+ +a,), u= M/M,,

k=nj
whence, in view of (ii), it follows that lim r,R,du, = — 0. So there exists
n—x
an ny > n, such that d4u, < —1/r,R, for n > ny, which, in view of (i), leads
to the contradictory conclusion that limu, = —oc. This completes the
proof. n=

3. It will be assumed in the sequel that the coefficient {a,} in (1) and (2)
is eventually non-negative, say for n = n,.

TueoreM 3. If Y R,a, = oo, then every bounded solution {u,} € U, is
oscillatory.

Proof. Let |u,) € U, be a bounded non-oscillatory solution of (1).
Assume u, > 0 for n > n, > n,. It follows from equation (1) that
4(r,4u,) < 0 and hence {r,du,} is non-increasing for n > n,. We first show
that r,4du, > 0 for n > n,. In fact, if there existed n, > n, such that
ry,du,, = ¢ <0, then r,4u, < ¢ for n > n,, ie. 4u, < ¢/r, for n = ny,
and hence

n—1 1
Uy S Uy +C ) — = —0, asn— o,

k=ny rl

which contradicts the fact that u, > 0 for n > n,. Thus r,4u, > 0 for n
> ny, ie. \u,} is a non-decreasing sequence for n > n,. From the above it
follows that u, -1 as n - o0 (0 <! < ) and by (D) f(u,) = f() > 0.
Hence there exists an n; > ny such that f(u,) > f(/)/2 for n > n,, so that
this fact and equation (1) imply

(9) R,4(r,Au)+31f(DR,a, <0, n > ns.
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It is easy to see that
(10) R,A(r,4u,) = A(R,r,4du,) —r,du, 4R,, n = n,.

From inequalities (9) and (10) we deduce

Z A(th.Aul)— Z Aul‘. +£f(’) Z Rkal < 0, n ? ns,

k=ny k=n3 k=n3
which implies

%f([) Z Rkak < Uyt +Rn3 rn3 Aun3 _un3a n = ns.
k=n3

Hence there exists a constant C such that

Y Rya, < C for all n > ny,
k=03

contrary to the assumption of the theorem.
The proof of the case u, < 0 is similar, and hence omitted.

CoRrOLLARY 2. If ) na, = o, then every bounded solution {u,} € U, is
oscillatory.

The next theorem extends Opial’s oscillation criterion for linear differ-
ential equations [11] to difference equation (1).

THEOREM 4. Suppose there exsist a differentiable function ¢: R = R and a -
real sequence {h,} such that
@ SO =l ¢6) e >0, sp()>0 for s#0,
(i1) h, >0 for n > n,

and
. n ) re (Al \*
hT_.s:p Y h,,[a,—i(ﬁ) J = .

k= no
Then every solution {u,} < U, is oscillatory.

Proof. Suppose there exsists a non-oscillatory solution {u,} € U, and
let u, > 0 for n > n; > ny. As in the proof of Theorem 3, it follows that
{u,} is non-decreasing, r,4u, > 0 and {r,4u,} is a non-increasing sequence
for n = n,. In view of (i), from equation (1) we have

A(r, 4u,)+a,0(u,) < 0,

and so
(11) M S _anh," n ? nl
@ (un)
We define for n = n,
hnUn

(12) q. where v, = r,4u,.

T oy
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Therefore,
huAvu Un+1 Ahu_vn+lhnd(p(uu)

o)  QWUnry) @) P(Upsy)
By the mean value theorem and (i) we get

h,,Av,,+v,,+1Ah,, eh, v, du,
PU)  QUps1) @WUIO(Upey)

Using the inequalities v,,,; < v,, @(u,) < @(U,+,), n = n,, and (11), we see
from (14) that

(13) 44q, =

(14) Aqn < nz= ny.

4h ch
Ag, < — h" n __"__3 "
S A e TR
—Sh AhnrnhrH-I. ? rn(Ahn)z
rh,,ﬂ[""“ 2ch, J+ dch, e
Hence ,
r, (4h,\*
(15) Aqu < _hn[an_g(-,;-) ]’ n = Ry .

Summing up both sides of (15) from n, to n, we obtain

4h
n+1=qn; S kgl hk[ak 48( h:) ], ‘

Al

4h,
Z h,[a. 4e(h_.) ] <C, (C,>0fornz=n,
x

kﬁl

which yields

and this contradicts assumption (ii). .

A similar argument can be used in the case of an eventually negative
solution. Thus the proof is complete.

For the linear difference equation
(16) A*u,+a,u, = 0,

we obtain from Theorem 4, by taking r, = 1, @(s) = s, the following

COROLLARY 3. Suppose that a, > 0 for n > ng and that there exists a real
sequence h, > O for n > n, such that

17 lim sup Z h,[a,— $(Ah/h)?] =

n—x k=ng
then all solutions of (16) are oscillatory.

Remark 1. If a, = (1+a)/4n® fo. n = ny, (@ > 0), then, if we let h,
= n, the assertion of Corollary 3 holds.
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The following theorem is the discrete analogue of the Kusano—Onose
theorem ([8], Theorem 1) for differential equations with a retarded argument.

THEOREM 5. Assume that the following conditions hold:

(i) there exist two non-decreasing continuous functions ¢: R - R and
¥: (0, o) = (0, o) such that

U6 = o), sels) >0 fors £ 0

and
( ds N ds
e . 0,
® ey f P9 = 7

(ii) there exists a non-decreasing positive sequence \g,} such that {r,4¢,}

is non-increasing for n = ny, and
a€x

(19) )

Onln
VR 00.
Then every solution (u,} € U, is oscillatory.

Proof. Assume the contrary. Then as in Theorem 4 for a non-

oscillatory solution u, > 0, n = n, > ngy, we have u, < u,,,, v,4; < v, for
n = ny, where v, =r,4u,.

Let us write
p, = Cn¥n n> n
" e)Y(RY TV
then
Ap _ Qudvu + Un'+l AQn Un+l QnA [(P (un)'l'(Ru)]

T PWIWR,) Oy DY (Rosy) @) @Uni DY (RIV (R, )

Since A[@(u,)¥(R,)] = 0, v, = 0 for n > n, and by (i), (i) we see from the
above equality that

2. 40, Un+140s
(20) 4p, < (p(u,,)lll(R,.)+fP(un+ DY (Rasy)’

By the assumptions of the theorem we get from equation (1)

nz=n.

endvs  _ _ 0ny
QUIV(R) ~ YR’

In view of the monotonicity of {v,} and {r,4g,}, from (20) and (21) we may
write

21

nzng.

Q'la'l Au'l
. 4o, ,
YR M G U (Roe )

(22) 4p, < — n=n.
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Since 4dv, < 0,n = n,, it follows that u, < u,,l+v,, R, and hence by con-
dition (II) we conclude that there is a constant § > 1 such .that

(23) u, s ﬂRm n = ny.

Returning to (22) and noting that ¢ and y are non-decreasing, we obtain by
(23) the following estimation:

Qn n AQ Aun n>n
TYR) A G BB T
For u,/B < s < u,,/p we have

(24) 4p, <

[e¥ " 2 [@une 1 /DY Wasr/B],

and so
Up+ 1 /P

J' ds o 1 Au,
. fP(S)!P(S) g ﬁ (P(un+ l/ﬁ)'l’(“u+ l/ﬂ) '
o

Now substituting in (24) and summing up both sides from n, to n we obtain

Unt 1/
5 O ds
25 ap, < Pr,, de, B > n,.
) ,Elw(kf.zn, e < Py den f oy "7
Uny /B

Since p, = 0 for n > n,, it fcllows from (25), by condition (18), that

Qnan
ZW(R,,) < C,, C, = const,

which contradicts (19). A similar argument is used in the case of a negative
solution.

Remark 2. Putting ¢ (s) = 1, Theorem 5 gives the discrete analogue of
Kamenev’s result [6] for differential equations.

Taking in particular y(s) = 1 and ¢, = R,, we have the following

CoRroOLLARY 4. Suppose that

(1) there exists a non-decreasing continuous function ¢: R — R such that
I )N = o), spls) > 0,s # 0 and

an = a

jd—s<w Id—s<w e>0
@ (s) ’ ¢ (s) ’ ’

(ii) in,a,, = @

Then every solution u,} € U, is oscillatory.
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COROLLARY 5. Assume that there is an a > 0 such that
(26) Y R!™%q, = co.

Then all solutions of the equation
27 A(r,Au)+a,u, = 0 (la,) is eventually non-negative),

are oscillatory.

Proof. Apply Theorem 5 to the particular case where @(s) = s, ¥ (s)
=5, @n = Rn'

CoroLLARY 6. Ifa, > 0,n > ng and ) R,a, = oo, then all solutions of
the equation

(28) 4@, du)+alu,|*sgnu, =0, a > 1,
are oscillatory.

Proof. Apply Theorem 5 to the particular case where ¢(s) = |s|* sgns,
a>1, y(s)=1, 0,=R,.

A close look at the proof of Theorem 5 ensures the validity of the
following

THEOREM 6. Let the assumptions of Theorem S be satisfied with the
exception of condition (18). Then every bounded solution {u,} € U, is
oscillatory. '

THEOREM 7. Assume that conditions (1) of Theorem 1 and (i) ot Ccrollary
4 hold. If there exists a non-decreasing positive sequence {y,} such that {Ay,} is
non-increasing for n = n, and

X

ZY!Ia'I — w,

Fn

then every solution {u ! e U, is oscillatory.
y WUn 1 y

Proof. Assume that there exists a non-oscillatory solution {u,} € U,.
We may suppose that u, > 0 for n > n; > n, since a similar argument holds
when {u,} is negative. Then by the assumptions we observe that {Au,} is
non-increasing, Au, > 0 for n > n, and

Ta 4% u, < _Int

@ (un) Ta
Now if we put p, = y,4u,/¢(u,), n = n,, then the rest of the proof follows
analogously to that of Theorem 5; therefore we omit the details.

» n?nl.

4. We now adduce examples which illustrate our principal results.
The oscillatory nature of the equation

(29) Au,+n" 2y, =0, n=1,2,.

.y
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may be inferred. from Theorem 4. Especially Corollary 3 is applicable since
condition (17) holds for h, = n, and hence all non-trivial solutions of (29) are
oscillatory. Corollary 4 and Theorem 7 exclude the linear case because of
assumption (i) of Corollary 4 and so cannot be applied to equation (29).
Also, it is obvious that the oscillation of (29) cannot be derived from
Corollary 5. However, if we consider equation (16), where

a, 2 cen"'"f(lnn)”!, O0<e<l1,0<c=const,
then the oscnllatlon of this equation follows already from Corollary 5, since

in this case Zn‘a = o0, i.e.,, condition (26) is satisfied.

We wish to remark that a in condition (26) of Corollary 5 cannot be
omitted. The next example justifies this remark, namely the equation

2 2~ 1-
30 A, Jn+ \/n+ ﬂ+3 “ =0
vn+ m+1
has the non-oscillatory solution u, = /n+1. It is easy to verify that for (30)

we have ) na, = .

However, Corollary 5-is still true even for « = 0 for the bounded
solutions of equation (27), as we proved in Theorem 3.
The oscillation of the equation

(31) A(Au)+n " '(Inn)" 2wl =0, n=23,...,

may be derived from Theorem 5. In particular, letting ¢(s) = s*, we see that
all the hypotheses of Corollary 4 are satisfied. It is clear that Theorem 4 does
not apply to equation (31). Obviously, if for equation (28) we put

ra < C1n,  a, 2 cy/n(lnn)inyn...In,n

(¢4 >0,¢c; >0,Inyn = Inn,In,n = Inln,_,n, p = 2,3,..), then all so-
lutions of equation (28) are oscillatory. Thns conclusion follows immediately
from Corollary 6.
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