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1. Introduction

In this paper, we shall consider the nonlinear dynamic equation

(1.1) (p(t)x∆(t))∆ + q(t)(f ◦ xσ) = 0,

on time scales, where p, q are positive, real–valued right–dense continuous
functions, and f : R → R is continuous and satisfies

(1.2) xf(x) > 0 and |f(x)| ≥ K|x| for x 6= 0 for some K > 0.

We shall also consider the two cases:

(1.3)

∫ ∞
t0

∆t

p(t)
= ∞,
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and

(1.4)

∫ ∞
t0

∆t

p(t)
<∞.

By a solution of (1.1) we mean a nontrivial real–valued function x satis-
fying equation (1.1) for t ≥ t0 ≥ a, for some t0 ≥ a > 0. A solution x of
(1.1) is said to be oscillatory if it is neither eventually positive nor even-
tually negative, otherwise it is nonoscillatory. Equation (1.1) is said to be
oscillatory if all its solutions are oscillatory. Our attention is restricted to
those solutions of (1.1) which exist on some half line [tx,∞) and satisfy
sup{|x(t)| : t > t0} > 0 for any t0 ≥ tx.

Much recent attention has been given to differential equations on time
scales (or measure chains), and we refer the reader to the landmark paper
of Hilger [13] for a comprehensive treatment of the subject. Since then
several authors have expounded on various aspects of this new theory, see
the survey paper by Agarwal, Bohner, O’Regan, and Peterson [1] and the
references cited therein. A book on the subject of time scales, by Bohner
and Peterson [4], summarizes and organizes much of time scale calculus.

In recent years there has been much research activity concerning the
oscillation and nonoscillation of solutions of dynamic equations on time
scales. We refer the reader to the papers [2], [3], [5]-[12].

In Došlý and Hilger [6], the authors consider the second order dynamic
equation

(1.5) (p(t)x∆(t))∆ + q(t)xσ = 0,

and give necessary and sufficient conditions for oscillation of all solutions
on unbounded time scales. Often, however, the oscillation criteria require
additional assumptions on the unknown solutions, which may not be easy
to check.

In Erbe and Peterson [9], the authors consider the same equation and
suppose that there exists t0 ∈ T, such that p(t) is bounded above on [t0,∞),
h0 = inf{µ(t) : t ∈ [t0,∞)} > 0, and showed via Riccati techniques that∫ ∞

t0

q(t)∆t = ∞.

implies that every solution is oscillatory on [t0,∞). It is clear that the results
given in Erbe and Peterson [9], can not be applied when p is unbounded,
µ(t) = 0 and q(t) = t−α when α > 1. We refer also to the papers by Erbe
and Peterson [9] and Erbe [7] for additional linear oscillation criteria, which
also treat more general situations.
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In Guseinov and Kaymakçalan [12], the authors consider the linear dy-
namic equation

(1.6) x∆∆(t) + α(t)x∆(t) + β(t)x(t) = 0,

and give some sufficient conditions for nonoscillation.
Recently Bohner and Saker [5] considered (1.1) and used Riccati tech-

niques to give some sufficient conditions for oscillation when (1.3) or (1.4)
hold. They obtain some sufficient conditions which guarantee that every
solution oscillates or converges to zero.

In this paper we intend to use a generalized Riccati transformation tech-
nique to obtain several oscillation criteria for (1.1) when (1.3) or (1.4) holds.
Our results improve the results given in Došlý and Hilger [6] and Erbe and
Peterson [9] and complement the results in Bohner and Saker [5]. Applica-
tions to equations to which previously known criteria for oscillation are not
applicable are given. The paper is organized as follows: In the next section
we present some basic definitions concerning the calculus on time scales. In
Section 3 we develop a generalized Riccati transformation technique to give
some sufficient conditions for oscillation of all solutions of (1.1), subject to
the condition (1.3). Also we present some conditions that ensure that all
solutions are either oscillatory or convergent to zero when (1.4) holds. In
Section 4, we will apply our results to the linear dynamic equation (1.5),
(1.6) and also to nonlinear dynamic equations of the form

(1.7) x∆∆(t) + α(t)x∆σ(t) + β(t)(f ◦ xσ) = 0

to give some sufficient conditions for oscillation of all their solutions.

2. Some Preliminaries on time scales

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. On any time scale T we define the forward and backward jump operators
by:

(2.1) σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T, s < t},

where inf Φ := sup T and sup Φ = inf T. A point t ∈ T, t > inf T, is said to
be left–dense if ρ(t) = t, right–dense if t < sup T and σ(t) = t, left–scattered
if ρ(t) < t and right–scattered if σ(t) > t. The graininess function µ for a
time scale T is defined by µ(t) := σ(t)− t.

For a function f : T → R (the range R of f may be actually replaced by
any Banach space) the (delta) derivative is defined by

(2.2) f∆(t) =
f(σ(t))− f(t)

σ(t)− t
.
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if f is continuous at t and t is right–scattered. If t is not right–scattered
then the derivative is defined by

(2.3) f∆(t) = lim
s→t

f(σ(t))− f(s)

t− s
= lim

t→∞

f(t)− f(s)

t− s
,

provided this limit exists. A function f : [a, b] → R is said to be right–dense
continuous if it is right continuous at each right–dense point and there exists
a finite left limit at all left–dense points, and f is said to be differentiable
if its derivative exists. A useful formula is

(2.4) f(σ(t)) = f(t) + µ(t)f∆(t).

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where ggσ 6= 0) of two
differentiable function f and g

(fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ,(2.5) (
f

g

)∆

=
f∆g − fg∆

ggσ
.(2.6)

By using the product rule the derivative of f(t) = (t− α)m for m ∈ N, and
α ∈ T can be calculated as

f∆(t) =
m−1∑
ν=0

(σ(t)− α)ν (t− α)m−ν−1,(2.7)

(see Theorem 1.24 in Bohner and Peterson [4]). For a, b ∈ T, and a differ-
entiable function f, the Cauchy integral of f∆ is defined by∫ b

a

f∆(t)∆t = f(b)− f(a).

An integration by parts formula reads

(2.8)

∫ b

a

f(t)g∆(t)∆t = [f(t)g(t)]ba −
∫ b

a

f∆(t)g(σ(t))∆t,

and infinite integrals are defined as∫ ∞
a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t.

Note that in the case T = R we have

σ(t) = ρ(t) = t, f∆(t) = f
′
(t),

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt

and in the case T = Z we have

σ(t) = t+ 1, ρ(t) = t− 1, f∆(t) = ∆f(t) = f(t+ 1)− f(t),
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and ∫ b

a

f(t)∆t =
b−1∑
i=a

f(i),

if a ≤ b. We say that a function p : T → R is regressive provided

1 + µ(t)p(t) 6= 0 t ∈ T.
Although we shall not make use of the fact, it turns out that the set of

all regressive functions on a time scale T forms an Abelian group under the
addition ⊕ defined by

p⊕ q := p+ q + µpq.

We denote the set of all f : T → R which are rd–continuous and regressive
by R. If p ∈ R, then we can define the exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
for t ∈ T, s ∈ Tk, where ξh(z) is the cylinder transformation, which is given
by

ξh(z) =

{
log(1+hz)

h
, h 6= 0,

z, h = 0.

Alternately, for p ∈ R one can define the exponential function ep(·, t0), to
be the unique solution of the IVP

x∆ = p(t)x, x(t0) = 1.

We define

R+ := {f ∈ R : 1 + µ(t)f(t) > 0, t ∈ T}.
For properties of this exponential function see Bohner and Peterson [4]. One
such property that we will use is the formula

ep(σ(t), t0) = [1 + µ(t)p(t)]ep(t, t0).

Also if p ∈ R, then ep(t, s) is real-valued and nonzero on T. If p ∈ R+,
then ep(t, t0) always positive.

3. Oscillation Criteria

In this section we give some new oscillation criteria for (1.1). Since we
are interested in oscillatory behavior, we suppose that the time scale under
consideration is not bounded above, i.e., it is a time scale interval of the
form [a,∞). We start with the following auxiliary result.
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Lemma 3.1. Assume that (1.3) holds, and x solves (1.1) with x(t) > 0 for
all t > t0. Define y = px∆. Then we have

(3.1) y∆(t) < 0 and 0 ≤ y(t) ≤ x(t)∫ t

t0

∆s
p(s)

, t > t0

and

(3.2) 0 ≤ x∆(t)

x(t)
≤ 1

p(t)
∫ t

t0

∆s
p(s)

, t > t0.

Proof. Let t > t0. Then x(σ(t)) > 0, for t > t0 and hence (1.1) implies that

y∆(t) = (p(t)x∆(t))∆ = −q(t)f(xσ(t)) < 0, t > t0,

so that y is decreasing for t > t0. Assume that there exists t1 > t0 such that
y(t1) = c < 0. Then

p(s)x∆(s) = y(s) ≤ y(t1) = c s ≥ t1,

and therefore

x∆(s) ≤ c

p(s)
s ≥ t1.

An integration from t1 to t > t1 now gives

x(t) = x(t1) +

∫ t

t1

x∆(s)∆s ≤ x(t1) + c

∫ t

t1

∆s

p(s)
→ −∞ as t→∞.

a contradiction. Hence y(t) = p(t)x∆(t) ≥ 0 for all t > t0. To show the last
inequality in (3.1), note that

x(t) ≥ x(t)− x(t0) =

∫ t

t0

y(s)∆s

p(s)
≥ y(t)

{∫ t

t0

∆s

p(s)

}
,

for t > t0. Since p is positive, the proof of (3.1) is complete, and (3.2) clearly
follows from (3.1). �

Let r ∈ R, assume that p · r is a differentiable function, and define the
auxiliary functions

C(t) = C(t, t0) := 1 +
µ(t)

p(t)
∫ t

t0

∆s
p(s)

, Q1(t) = Q1(t, t0) :=
1 + µ(t)r(t)

p(t)er(t, t0)
,

ψ(t) = ψ(t, t0)) := er(σ(t), t0)

[
Kq(t) +

1

2
(p(t)r(t))∆ +

r2(t)p(t)

4C(t)

]
,

Q(t) = Q(t, t0) := −r(t)(1 + µ(t)r(t))

C(t)
+ r(t),
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for t > t0. We also introduce the following condition

(A) There exists M > 0 such that r(t)er(t, t0)p(t) ≤M for all large t.

Theorem 3.1. Assume that (1.2), (1.3), and (A) hold. Furthermore, as-
sume that there exists r ∈ R+ such that p · r is differentiable and such that
for any t0 ≥ a there exists a t1 > t0 so that

(3.3) lim sup
t→∞

∫ t

t1

H(s)∆s = ∞,

where

H(t) = H(t, t0) = ψ(t)− Q2(t)C(t)

4Q1(t)
,

for t > t0. Then equation (1.1) is oscillatory on [a,∞).

Proof. Suppose to the contrary that x is a nonoscillatory solution of (1.1).
We will only consider the case where x is an eventually positive solution of
(1.1), i.e., there exists t0 ≥ a such that x(t) > 0 for t > t0, since the other
case is similar. Corresponding to this t0, let C(t, t0), Q1(t, t0), Q(t, t0), and
ψ(t, t0) be defined as above. Note that all of the assumptions of Lemma 3.1
hold. Define the function w by

(3.4) w(t) = er(t, t0)

[
p(t)x∆(t)

x(t)
− 1

2
p(t)r(t)

]
, t > t0.

Since r ∈ R+, er(t, t0) > 0 which we will use in the proof below. With w
defined as in (3.4), by the product rule (2.5) we have

w∆(t) = e∆r (t, t0)

[
p(t)x∆(t)

x(t)
− 1

2
p(t)r(t)

]
+ er(σ(t), t0)

(
p(t)x∆(t)

x(t)
− 1

2
p(t)r(t)

)∆

.

Hence

w∆(t) = r(t)w(t)

+ er(σ(t), t0)

(
x(t)

(
p(t)x∆(t)

)∆ − p(t)
(
x∆(t)

)2
x(t)x(σ(t))

− 1

2
(p(t)r(t))∆

)

= r(t)w(t) + er(σ(t), t0)

(
p(t)x∆(t)

)∆
x(σ(t))

− er(σ(t), t0)

p(t)
· x(t)

x(σ(t))

(
p(t)

(
x∆(t)

)
x(t)

)2

−1

2
er(σ(t), t0)(p(t)r(t))

∆.
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From Lemma 3.1 we have that

x(σ(t))

x(t)
=

x(t) + µ(t)x∆(t)

x(t)
= 1 + µ(t)

x∆(t)

x(t)

≤ 1 +
µ(t)

p(t)
∫ t

t0

∆s
p(s)

= C(t),

so we get that

w∆(t) ≤ r(t)w(t)− er(σ(t), t0)q(t)
(f ◦ xσ)(t)

x(σ(t))

−er(σ(t), t0)

p(t)C(t)

(
p(t)

(
x∆(t)

)
x(t)

)2

− 1

2
er(σ(t), t0)(p(t)r(t))

∆.

From (3.4) we have that(
px∆

x

)2

=
w2

e2r
+
pr

er

w +
1

4
r2p2.

Using this last equation and (1.2) we get

w∆(t) ≤ −er(σ(t), t0)

[
Kq(t) +

1

2
(p(t)r(t))∆ +

r2(t)p(t)

4C(t)

]
+ r(t)w(t)

−er(σ(t), t0)w
2(t)

C(t)p(t)e2r(t, t0)
− r(t)er(σ(t), t0)

C(t)er(t, t0)
w(t)

= −er(σ(t), t0)

[
Kq(t) +

1

2
(p(t)r(t))∆ +

r2(t)p(t)

4C(t)

]
−er(σ(t), t0)w

2(t)

C(t)p(t)e2r(t, t0)
−
[
r(t)er(σ(t), t0)

C(t)er(t, t0)
− r(t)

]
w(t).(3.5)

Using the properties of the exponential function er(t, t0) and (3.5), we have

w∆(t) ≤ −ψ(t)− (1 + µ(t)r(t))w2(t)

C(t)p(t)er(t, t0)

−
[
r(t)(1 + µ(t)r(t))

C(t)
− r(t)

]
w(t).(3.6)

Hence,

(3.7) w∆(t) ≤ −ψ(t)−

[√
Q1(t)

C(t)
w(t)−

√
C(t)Q(t)

2
√
Q1(t)

]2

+
Q2(t)C(t)

4Q1(t)

Then, (3.7) implies that

(3.8) w∆(t) ≤ −
[
ψ(t)− Q2(t)C(t)

4Q1(t)

]
.
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Let t1 > t0 be as in the statement of this theorem. Integrating (3.8) from
t1 to t, we obtain

(3.9) w(t)− w(t1) ≤ −
∫ t

t1

[
ψ(s)− Q2(s)C(s)

4Q1(s)

]
∆s

which yields

(3.10)

∫ t

t1

[
ψ(s)− Q2(s)C(s)

4Q1(s)

]
∆s ≤ w(t1)− w(t)

for all large t. Now by (3.4) and condition (A) we have

w(t) = er(t, t0)

(
p(t)x∆(t)

x(t)
− 1

2
p(t)r(t)

)
≥ −1

2
p(t)r(t)er(t, t0) ≥ −1

2
M,

and therefore, it follows that the right hand side of (3.10) is bounded above.
This contradicts (3.3) and proves the theorem.

�

From Theorem 3.1, we can obtain different sufficient conditions for oscil-
lation of all solutions of (1.1) by different choices of r(t). For instance, let
r(t) = 0, then Q(t) = 0, er(t, t0) = 1, and ψ(t) = Kq(t) and we get the
following well–known result.

Corollary 3.1 (Leighton–Wintner Theorem). Assume that (1.2) and (1.3)
hold. If

(3.11)

∫ ∞
a

q(s)∆s = ∞,

then equation (1.1) is oscillatory on [a,∞).

If r(t) = 1
t
, then er(t, t0) = t

t0
and it follows that condition (A) holds,

provided p is bounded above, and so Theorem 3.1 yields the following result:

Corollary 3.2. Assume p is bounded above, that (1.2) and (1.3) hold, and
for any t0 ≥ a there is a t1 > t0 such that
(3.12)

lim sup
t→∞

∫ t

t1

[
σ(s)

[
Kq(s) +

(
p(s)

2s

)∆

+
p(s)

4s2C(s)

]
− A2(s)C(s)

4B(s)

]
∆s = ∞,

where

A(s) :=
−1

sC(s)

(
1 +

1

s
µ(s)− C(s)

)
, B(s) :=

s+ µ(s)

s2p(s)
.

Then (1.1) is oscillatory on [a,∞).
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If p(t) = 1 and f(x) = x, then equation (1.1) reduces to the linear
dynamic equation

(3.13) x∆∆(t) + q(t)xσ = 0,

for t ∈ [a,∞). From Theorem 3.1 we have the following oscillation criterion
for equation (3.13) which improves some of the results in Bohner and Saker
[5] and Erbe and Peterson [8].

Corollary 3.3. Assume that (1.2) and (1.3) hold and for any t0 ≥ a there
is a t1 > t0 such that
(3.14)

lim sup
t→∞

∫ t

t1

[
σ(s)

[
q(s)−

(
1

2sσ(s)

)
+

1

4s2C1(s)

]
− A2

1(s)C1(s)

4B1(s)

]
∆s = ∞,

where

A1(s) =
−1

sC1(s)

(
1 +

1

s
µ(s)− C1(s)

)
B1(s) =

s+ µ(s)

s2
, C1(s) = 1 +

µ(s)

(s− t0)
.

Then equation (3.13) is oscillatory on [a,∞).

Example 3.1. Consider the Euler–Cauchy dynamic equation

(3.15) x∆∆ +
γ

tσ(t)
xσ = 0,

for t ∈ [a,∞). Here q(t) = γ
tσ(t)

. Then (3.14) in Corollary 3.3 reads

(3.16) lim sup
t→∞

∫ t

t1

[[
γ

s
− 1

2s
+

σ(s)

4s2C1(s)

]
− A2

1(s)C1(s)

4B1(s)

]
∆s = ∞.

If T = R, then the dynamic equation (3.15) is the second order Euler–
Cauchy differential equation

(3.17) x
′′

+
γ

t2
x = 0, t ≥ 1

and in this case µ(s) = 0, σ(s) = s, C1(s) = 1 and A1(s) = 0. Therefore
(3.16) can be rewritten as

lim sup
t→∞

∫ t

t1

[
γ

s
− 1

2s
+

s

4s2

]
∆s = lim sup

t→∞

∫ t

t1

[
γ − 1

4

s

]
∆s = ∞.

provided that γ > 1
4
. Hence every solution of (3.17) oscillates if γ > 1

4
, which

agrees with the well–known oscillatory behavior of (3.17), (see Li [15]).
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If T = Z, then (3.15) is the second order discrete Euler–Cauchy difference
equation

(3.18) ∆2xt +
γ

t(t+ 1)
xt+1 = 0, t = 1, 2, ...

and we have µ(s) = 1, σ(s) = s+ 1, C1(s) = s−t0+1
s−t0

,

A2
1(s)

B1(s)
=

t20
s2(s+ 1)(s− t0 + 1)2

.

Therefore (3.16) can be rewritten as

lim sup
t→∞

∫ t

t1

[[
γ

s
− 1

2s
+
s2 − 1

4s3

]
− t20

4s2(s+ 1)(s− t0)(s− t0 + 1)

]
∆s

= lim sup
t→∞

∫ t

t1

[
γ

s
− 1

2s
+

1

4s

]
∆s = ∞.

provided that γ > 1
4
. Hence every solution of (3.18) oscillates if γ > 1

4
,

which agrees with the well–known oscillatory behavior of (3.18). It is known
in Zhang and Cheng [16] that when µ ≤ 1/4, (3.18) has a nonoscillatory
solution. Hence, Theorem 3.1 and Corollary 3.3 are sharp. Note that the
results in Došlý and Hilger [6] and Erbe and Peterson [9] cannot be applied
to (3.15).

Theorem 3.2. Assume that (1.2) and (1.3) hold. Furthermore, assume
that there exists a function r ∈ R+ such that p · r is differentiable and given
any t0 ≥ a there is a t1 > t0 such that

(3.19) lim sup
t→∞

1

tm

∫ t

t1

(t− s)m

[
ψ(s)− Q2(s)C(s)

4Q1(s)

]
∆s = ∞,

where m is a positive integer. Assume further that(
1

tm

)∫ t

t1

eσ
r (s, t0)p

σ(s)rσ(s)
m−1∑
ν=0

(σ(s)− t)ν (s− t)m−ν−1∆s(3.20)

is bounded above. Then every solution of equation (1.1) is oscillatory on
[a,∞).

Proof. We proceed as in the proof of Theorem 3.1. We may assume that
(1.1) has a nonoscillatory solution x such that x(t) > 0, x∆(t) ≥ 0, (p(t)x∆(t))∆ ≤
0 for t ≥ t1. Define w by (3.4) as before, then as in the proof of Theorem
3.1 we obtain (3.8) so[

ψ(t)− Q2(t)C(t)

4Q1(t)

]
< −w∆(t).
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Pick t1 > t0 so that (3.19) holds. Note that

(3.21)

∫ t

t1

(t− s)m

[
ψ(s)− Q2(s)C(s)

4Q1(s)

]
∆s ≤ −

∫ t

t1

(t− s)mw∆(s)∆s,

Using the integration by parts formula (2.8) gives∫ t

t1

(t− s)mw∆(s)∆s = (t− s)mw(s)|tt1

+(−1)m+1

∫ t

t1

m−1∑
ν=0

(σ(s)− t)ν (s− t)m−ν−1w(σ(s))∆s,

where we have used the power rule for differentiation (2.7). It follows that∫ t

t1

(t− s)mw∆(s)∆s = −(t− t1)
mw(t1)

+

∫ t

t1

w(σ(s))
m−1∑
ν=0

(t− σ(s))ν (t− s)m−ν−1∆s.

From (3.4) we get that

w(t) ≥ −1

2
p(t)r(t)er(t, t0),

for t ≥ t1. It follows that∫ t

t1

(t− s)mw∆(s)∆s ≥ −(t− t1)
mw(t1)

−1

2

∫ t

t1

pσ(s)rσ(s)eσ
r (s, t0)

m−1∑
ν=0

(t− σ(s))ν (t− s)m−ν−1∆s.

Then from (3.21) we have∫ t

t1

(t− s)m

[
ψ(s)− Q2(s)C(s)

4Q1(s)

]
∆s

≤ (t− t1)
mw(t1) +

1

2

∫ t

t1

eσ
r (s, t0)p

σ(s)rσ(s)
m−1∑
ν=0

(σ(s)− t)ν (s− t)m−ν−1∆s.

Then

1

tm

∫ t

t1

(t− s)m

[
ψ(s)− Q2(s)C(s)

4Q1(s)

]
∆s

≤
(
t− t1
t

)m

w(t1) +
1

2

(
1

tm

)∫ t

t1

eσ
r (s, t0)p

σ(s)rσ(s)
m−1∑
ν=0

(σ(s)− t)ν (s− t)m−ν−1∆s,
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which gives a contradiction using (3.19) and (3.20). The proof is complete.
�

Note that if r ∈ R+ and r(t) ≤ 0, then (3.20) holds. When r(t) = 0, then
(3.19) reduces to

(3.22) lim sup
t→∞

1

tm

∫ t

t1

(t− s)mq(s)∆s = ∞,

which can be considered as an extension of Kamenev type oscillation criteria
for second order differential equations, (see Kamenev [14]).

When T = R, then (3.22) becomes

(3.23) lim sup
t→∞

1

tm

∫ t

t1

(t− s)mq(s)ds = ∞,

and when T = Z, then (3.22) becomes

(3.24) lim sup
t→∞

1

tm

t−1∑
s=t1

(t− s)mq(s) = ∞,

We next give some sufficient conditions for the case when (1.4) holds,
which guarantee that every solution of the dynamic equation (1.1) oscillates
or converges to zero on [a,∞). The next result removes a monotonicity
assumption on f in Bohner and Saker [5].

Theorem 3.3. Assume that (1.2) and (1.4) hold and assume there exists
r ∈ R+ such that p · r is differentiable and such that (3.3) holds. Further-
more, assume

(3.25)

∫ ∞
a

1

p(t)

∫ t

a

q(s)∆s∆t = ∞.

and let (A) hold. Then every solution of equation (1.1) is either oscillatory
or converges to zero on [a,∞).

Proof. Let x be a nonoscillatory solution of (1.1) and, without loss of gen-
erality, suppose that x(t) > 0 for t > t0 ≥ a. There are two cases:

(1) x∆(t) > 0 for all t > t0, or
(2) there exists t1 > t0 with x∆(t1) ≤ 0.

If (1) holds, then we proceed as in the proof of Theorem 3.1 (with w and the
auxiliary functions C, ψ, Q1, Q as defined before the statement of Theorem
3.1.) It follows that (3.10) holds and again, by condition (A) this leads to
a contradiction. Therefore, (1) cannot hold.

Next consider case (2), that is, assume there exists t1 > t0 with x∆(t1) ≤
0, then since (

p(t)x∆(t)
)∆

= −q(t)f(xσ(t)) ≤ 0
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for t ≥ t1, it follows that

p(t)x∆(t) ≤ p(t1)x
∆(t1) ≤ 0

for t ≥ t1. Therefore x∆(t) ≤ 0 for all t ≥ t1, so limt→∞ x(t) =: b ≥ 0 exists.
we need to show that b = 0. If not, then b > 0 and hence x(σ(t)) ≥ b > 0,
for all t ≥ t1 and so from condition (1.2), we have

f(x(σ(t)) ≥ Kx(σ(t)) ≥ Kb > 0.

But this implies that(
p(t)x∆(t)

)∆
= −q(t)f(xσ(t)) ≤ −Kbq(t)

and so

p(t)x∆(t) ≤ p(t1)x
∆(t1)−Kb

∫ t

t1

q(s)∆s ≤ −Kb
∫ t

t1

q(s)∆s,

for t ≥ t1. Hence, dividing by p(t) and integrating gives

x(t)− x(t1) ≤ −Kb
∫ t

t1

1

p(s)

∫ s

t1

q(τ)∆τ∆s→ −∞

as t→∞ which is a contradiction. Hence b = 0 and the proof is complete.
�

In a similar manner, one may establish the following theorem.

Theorem 3.4. Let all of the conditions of Theorem 3.3 hold with condition
(3.19) replacing (3.3). Then every solution of equation (1.1) is oscillatory
or converges to zero on [a,∞).

4. Application to equations with damping

Our aim is to apply the results in Section 3, to give some sufficient condi-
tions for oscillation of all solutions of the dynamic equations (1.6) and (1.7)
with damping terms. We note that all of the results in Section 3, are true
in the linear case, i.e., for the equations of the form (1.5), where the term
Kq(t) is replaced by q(t).

Before stating our main results in this section we will need the following
Lemmas, (see Bohner and Peterson [4]).

Lemma 4.1. If α, β ∈ Crd and

(4.1) 1− µ(t)α(t) + µ2(t)β(t) 6= 0, t ∈ T,

then the second order dynamic equation (1.6) can be written in the self-
adjoint form (1.5), where

p(t) = eγ(t, t0), q(t) = [1 + µ(t)γ(t)]p(t)β(t)(4.2)
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γ(t) =
α(t)− µ(t)β(t)

1− µ(t)α(t) + µ2(t)β(t)
.(4.3)

Lemma 4.2. If α is a regressive function, then the second order dynamic
equation (1.7) can be written in the self-adjoint form

(4.4) (p(t)x∆(t))∆ + q(t)f ◦ xσ = 0,

where

(4.5) p(t) = eα(t, t0) and q(t) = β(t)p(t)

Now, by using the results in Section 3 and Lemma 4.1 we have the following
results immediately.

Theorem 4.1. Let p, q be defined as in (4.5) and ssume that (1.3) holds.
Furthermore, assume that there exists a r ∈ R with r differentiable such
that (3.3) holds with

(4.6) ψ(t) = er(σ(t), t0)

[
q(t) +

1

2
(p(t)r(t))∆ +

r2(t)p(t)

4C(t)

]
.

Then equation (1.6) is oscillatory on [a,∞).

The proof follows from Lemma 4.1 and Theorem 3.1 and hence is omitted.

Corollary 4.1. Assume that (1.3) and (3.11) hold, where p and q are as
defined in (4.2). Then equation (1.6) is oscillatory on [a,∞).

Corollary 4.2. Assume that (1.3) and (3.12) hold except that the term
Kq(t) is replaced by q(t), where p and q are as defined in (4.2). Then
equation (1.6) is oscillatory on [a,∞).

Theorem 4.2. Assume that (1.3) holds. Furthermore, assume that there
exists r ∈ R with r differentiable such that (3.17) holds, where p, q and ψ
are as defined by (4.2) and (4.6) respectively, and m is odd integer. Then
(1.6) is oscillatory on [a,∞).

Theorem 4.3. Assume that all the assumption of Theorem 4.1 hold except
that the condition (1.3) is replaced by (1.4). If (3.25) holds, then every
solution of equation (1.6) is oscillatory or converges to zero on [a,∞).

Theorem 4.4. Assume that all the assumption of Theorem 4.2 hold except
that the condition (1.3) is replaced by (1.4). If (3.25) holds, then every
solution of equation (1.6) is oscillatory or converges to zero on [a,∞).

Oscillation criteria for equation (1.7) are now elementary consequences
of the oscillation results in Theorems 4.1-4.4. The details are left to the
reader.
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[5] M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations
on time scales, preprint.
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