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ABSTRACT. The objective of this paper is to systematically study oscillation and asymptotic

behavior of the third order-nonlinear delay differential equation

(∗)
(

(x′′(t))
γ)

′

+ q(t)xγ(τ(t)) = 0, t ≥ t0,

where q(t) is a positive function, γ > 0 is a quotient of odd positive integers and the delay function

τ(t) ≤ t satisfies limt→∞ τ(t) = ∞. We establish some sufficient conditions of Hille and Nehari types,

which ensure that (∗) is oscillatory or the solutions converge to zero. Our results in the nondelay

case extend and improve some known results in the literature and in the delay case the results can

be applied to new classes of equations which are not covered by the known criteria. Some examples

are considered to illustrate the main results.
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1. INTRODUCTION

In recent years, the qualitative theory and asymptotic behavior of differential

equations and their applications have been and still are receiving intensive atten-

tion. As far as oscillation theory is concerned, most texts in differential equations,

both elementary and advanced, deal with second-order equations. In fact, in the last

few years several monographs and hundreds of research papers concerning oscillation

theory have been written, see for example the monographs [1, 7, 9, 12, 16, 27]. Al-

though differential equations of second-order have been studied extensively, the study

of qualitative behavior of third-order differential equations has received considerably

less attention in the literature, especially the third-order delay differential equations,

we refer the reader to [4, 5, 6, 8, 10, 14, 15, 17, 20, 23, 24, 25, 26], however certain

results for third-order differential equations have been known for a long time along

with their applications in mathematical modeling in biology and physics.

Birkhoff in 1908 (see [3]), applied methods of projective geometry and started

the study of separation and comparison theorems for third-order equations. While

Birkhoff’s paper is a necessary reference for any paper on third-order equations, his

results or methods are seldom quoted. In 1961 Hanan [10] studied the oscillation
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and nonoscillation of two different types of third order differential equations and gave

definitions of two types of solutions. The paper was the starting point for many

investigations to the asymptotic behavior of third-order equations. In 1970 Barrett

[2] made a self-contained inductive developments from equations of one order to the

next. Most of the discussion dealt with equations of second, third and fourth orders,

but most of the results for third-order equations dealt with the canonical forms,

asymptotic behavior of the fundamental nonoscillatory solutions and the disconjuagcy.

In this paper, we are concerned with oscillation of third-order delay differential

equations of the form

(E0)
(

(x′′(t))
γ)′

+ q(t)xγ(τ(t)) = 0, t ≥ t0.

With regard of (E0) we will assume that the following condition is satisfied:

(h1). q(t) is a positive real-valued continuous function, τ(t) ≤ t and satisfies

limt→∞ τ(t) = ∞ and γ is a quotient of odd positive integers.

Let T0 = min{τ(t) : t ≥ 0} and τ−1(t) = sup{s ≥ 0 : τ(s) ≤ t} for t ≥ T0. Clearly

τ−1(t) ≥ t for t ≥ T0, τ−1(t) is nondecreasing and coincides with the inverse of τ(t)

when the latter exists. By a solution of (E0) we mean a nontrivial real-valued function

x(t) which has the properties x′(t) ∈ C1[τ−1(t0),∞), and (x′′(t))γ ∈ C1[τ−1(t0),∞).

Our attention is restricted to those solutions of (E0) which exist on some half line

[tx,∞) and satisfy sup{|x(t)| : t > t1} > 0 for any t1 ≥ tx. We make a standing

hypothesis that (E0) does possess such solutions. A solution of (E0) is said to be

oscillatory if it has arbitrarily large zeros; otherwise it is nonoscillatory. Equation

(E0) is said to be oscillatory in case there exists at least one oscillatory solution.

We recall that equation (E0) is disconjugate on an interval I = [t0,∞) in case no

nontrivial solution has more than two zeros on I = [t0,∞), counting multiplicity.

Our motivation for considering the third-order differential equation is that it is

an appropriate equation for some applications in extrema, biology and physics. For

completeness, we present some of the applications of third-order differential equations.

In the early years of eighteenth century a number of problems led to differential

equations of second and third orders. In 1701 James Bernoulli published the solution

to the Isoperimetric Problem- a problem in which it is required to make one integral a

maximum or minimum, while keeping constant the integral of a second given function,

thus resulting in a differential equation of the third-order, see [18].

In the early of 1950’s Alan Lloyd Hodgkin and Andrew Huxley developed a

mathematical model for the propagation of electrical pulses in the nerve of a squid.

The original model described the ionic mechanisms underlying the initiation and

propagation of action potentials in the squid giant axon. The Hodgkin-Huxley model,

is a set of non-linear ordinary differential equations, that approximates the electrical

characteristics of excitable cells such as neurons and cardiac myocytes. The model has
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played a seminal role in biophysics and neuronal modeling. Alan Lloyd Hodgkin and

Andrew Huxley were awarded A Nobel prize in 1963 for this work. A reduced version

of the Hodgkin-Huxley model was proposed by Nagumo, he suggested a relatively

third-order differential equation of the form

y′′′(x) − cy′′(x) + f ′(y)y′(x) − (b/c)y(x) = 0, y′ =
dy

dx
0, f ′(y) =

df

dy
,

as a model exhibiting many of the features of the Hodgkin-Huxley equations, where

the function f is cubic function. For more details of Nagumo’s equation, we refer

the reader to the paper by Mckean [19] who gave some of the background of these

equations and summarized some of the numerical results of this model.

For application in physics, Vreeke and Sandquist [28] proposed the systems of

differential equations (which is equivalent to third-order differential equation),

dx1(t)
dt

= x1(γ1(1 − x2) + γ2(1 − x3)),
dx2(t)

dt
= γ3(x1 − x2),

dx2(t)
dt

= γ4(x1 − x3),











to describe the two temperature feedback nuclear reactor problem, where x1 is nor-

malized neutron density, x2 and x3 are normalized temperatures, x2 being associated

with fuel and x3, with the moderator or coolant, γ3 and γ4 are positive heat transfer

coefficients, γ1 and γ2 are normalized effective neutron lifetime parameters associated

with the temperature feedbacks. The expression ρ = γ1(1 − x2) + γ2(1 − x3) in the

first equation is called the reactivity and is a measure of multiplication factor of the

neutrons in the fission reactor.

Also in physics the Kuramoto-Sivashinsky equation

ut + uxxxx + uxx + f(u) = 0,

arises in a wide variety fascinating physical phenomena. For instance, we recall that

the Kuramoto-Sivashinsky equation is introduced to describe pattern formulation in

reaction diffusion systems, and to model the instability of flame front propagation,

see Kuramoto and Yamada [13] and Michelson [21]. To find the travelling wave

solutions of this partial differential equation, we may use the substitution of the form

u(x, ct) = u(x − ct) with speed c and one has to solve the nonlinear-third order

differential equation of the form

λu′′′(x) + u′(x) + f(u) = 0,

where λ is a parameter and f is an even function, (for example, f(u) = u2 or f(u) =

u2 − 1. It would be interesting to study the behavior of the nonlinear third-order

differential equation of Emden-Fowler type with forced term taking the form

u′′′(x) + a(x)u′(x) + b(x)uα = c(x), α ≥ 2, c(x) ≥ 0.
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For oscillation of second order equations, Hille [11] considered the equation

(1.1) x′′(t) + q(t)x(t) = 0, t ≥ t0,

and established a sharp sufficient condition for oscillation. He proved that every

solution of (1.1) oscillates if

(1.2) lim inf
t→∞

t

∫ ∞

t

q(s)ds >
1

4
.

Nehari [22] by a different approach proved that if

(1.3) lim inf
t→∞

1

t

∫ t

t0

s2q(s)ds >
1

4
,

then every solution of (1.1) oscillates. Hille [11] also extended Kneser’s theorem and

proved that if

q∗ = lim
t→∞

sup t2q(t) >
1

4
,

then (1.1) is oscillatory and nonoscillatory if

q∗ = lim
t→∞

inf t2q(t) <
1

4
.

The equation can be either oscillatory or nonoscillatory if either q∗ or q∗ = 1
4
. Note

that the oscillation constant of (1.1) is 1
4
.

For oscillation of third-order differential equations related to (E0), Hanan [10]

considered the equation

(E1) x′′′(t) + q(t)x(t) = 0, t ∈ (0,∞),

and established some sufficient conditions for oscillation and nonoscillation. He estab-

lished a sufficient conditions for oscillation and proved that if (1.1) is nonoscillatory

and

(1.4)

∫ ∞

t0

tq(t)dt = ∞,

then (E1)is oscillatory. For nonoscillation he proved that if (1.1) is nonoscillatory and

(1.5)

∫ ∞

t0

t2q(t)dt < ∞,

then (1.1) is nonoscillatory. He also used a comparison theorem and extended the

Hille-Kneser condition and established a sharp sufficient condition for oscillation and

nonoscilation. He proved that (E1) is nonoscillatory if

(1.6) lim sup
t→∞

t3q(t) <
2

3
√

3
,

and (E1) is oscillatory if

(1.7) lim inf
t→∞

t3q(t) >
2

3
√

3
.
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Note that the condition (1.7) cannot be weakened. Indeed, let q(t) = 2
3
√

3t3
for t ≥ 1.

Then, we have

lim inf
t→∞

t3q(t) =
2

3
√

3
,

and (E1) becomes the third-order Euler differential equation

x′′′(t) +
2

3
√

3

1

t3
x(t) = 0, t ≥ 1,

which has only nonoscillatory solutions. Note that the roots of the characteristic

equation are given by m = −0.153 06, m = 1.523 3, and m = 1.629 8. In other words

the oscillation constant 2
3
√

3
is the lower bound for oscillation for all solutions of (E1).

Mehri [20] considered the third-order linear differential equation (E1) and estab-

lished sufficient condition for oscillation and proved that (E1) is oscillatory if and

only if

(1.8)

∫ ∞

t0

q(t)dt = ∞.

Lazer [17] considered a third order differential equation in a general form and as a

corollary of his results he proved that (E1) is oscillatory in case

(1.9)

∫ ∞

t0

t1+δq(t)dt = ∞, for some 0 < δ < 1,

which improves the condition (1.8). But one can easily see that the conditions (1.4),

(1.8) and (1.9) can not be applied to the cases when q(t) = β

t2
and q(t) = β

t3
for some

β > 0.

For oscillation of third-order delay differential equations of type (E0), Ladas et.

al. [15] considered the equation

x′′′(t) + x(t − τ) = 0,

and proved that all solutions are oscillatory if and only if

(1.10) τe > 3.

The natural question now is: Can the oscillation conditions (1.2) and (1.3) that has

been established by Hille [11] and Nehari [22] for second-order differential equations

and the condition (1.7) that has been established by Hanan [10] for third-order dif-

ferential equation without delay can be extended to the third-order nonlinear delay

differential equation (E0)?

The purpose of this paper is to give an affirmative answer to this question. We will

establish some new oscillation criteria for (E0) which guarantee that every solution

oscillates or converges to zero. Our results improve the oscillation conditions (1.4),

(1.8), (1.9) and (1.10) that has been established by Hanan [10], Mehri [20] and Lazar

[17] and Ladas et. al. [15] and extend the condition (1.7) that has been established

by Hanan [10]. The approach that we will use to extend the condition of Hanan
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is different from the technique that has been applied in [10]. Some examples which

dwell upon the importance of our main results are given.

2. MAIN RESULTS

In this Section, we establish some new sufficient conditions which ensure that the

solution x(t) of (E0) is oscillatory or satisfies limt→∞ x(t) = 0. First, we state and

prove some useful lemmas, which we will use in the proof of our main results. We

note that if x(t) is a solution of (E0) then z = −x is also solution of (E0). Thus,

concerning nonoscillatory solutions of (E0) we can restrict our attention only to the

positive ones.

Lemma 2.1. Assume that (h1) holds and let x(t) be an eventually positive solution

of (E0). Then there are only the following two cases for t > t1 sufficiently large:

Case (I ). x(t) > 0, x′(t) > 0, x′′(t) > 0,

Case (II ). x(t) > 0, x′(t) < 0, x′′(t) > 0.

Proof. Assume that x(t) is a positive solution of (E0) on [t0,∞). Pick t1 ∈ [t0,∞) so

that t1 > t0 and x(τ(t)) > 0 on [t1, ∞). From (E0) and (h1), we have
(

(x′′(t))
γ)′

= −q(t)xγ(τ(t)) < 0 for t > t1.

Thus (x′′(t))γ is nonincreasing and of one sign and this implies that x′′(t) is of one

sign. If we admit that x′′(t) ≤ 0 then x′(t) is decreasing and there exists a negative

constant d and t2 > t1 such that

(x′′(t))
γ ≤ d for t > t2.

Integrating from t2 to t, we obtain

(2.1) x′(t) ≤ x′(t2) + d
1

γ

∫ t

t2

ds.

Letting t → ∞, then x′(t) → −∞. Thus, there is an integer t3 > t2 such that for

t > t3, x′(t) ≤ x′(t3) < 0. Integrating from t3 to t, we obtain

(2.2) x(t) − x(t3) ≤ a(t3)x
′(t3)

∫ t

t3

ds,

which implies that x(t) → −∞ as t → ∞, a contradiction with the fact that x(t) > 0.

Hence x′′(t) > 0 and x′(t) is increasing and of one sign. The proof is complete.

Lemma 2.2. Assume that (h1) holds and let x(t) be a solution of (E0) which satisfies

Case (II) of Lemma 2.1. If

(2.3)

∫ ∞

t0

∫ ∞

z

[
∫ ∞

u

q(s)ds

]
1

γ

du dz = ∞,

then limt→∞ x(t) = 0.
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Proof. Assume that Case (II) in Lemma 2.1 holds for t ≥ t1. In this case since x(t)

is positive and decreasing, it follows that

lim
t→∞

x(t) = l exists (finite).

We prove l = 0. Assume not, i.e., l > 0. Hence x(τ(t)) ≥ x(t) > l, for t ≥ t2 > t1

sufficiently large. Integrating (E0) from t to ∞, and using xγ(τ(t)) ≥ lγ we get

x′′(t) ≥ l

[
∫ ∞

t

q(s)ds

]
1

γ

.

Integrating again from t to ∞, we have

−x′(t) ≥ l

∫ ∞

t

[
∫ ∞

u

q(s)ds

]
1

γ

du.

Integrating from t2 to ∞, we obtain

x(t2) ≥ l

∫ ∞

t2

∫ ∞

z

[
∫ ∞

u

q(s)ds

]
1

γ

du dz.

This is a contradiction with (2.3). Then l = 0 and the proof is complete.

Now, we state and prove the main results. For simplicity, we introduce the

following notations:

(2.4) P∗ := lim
t→∞

inf tγ
∫ ∞

t

P (s)ds and Q∗ := lim
t→∞

inf
1

t

∫ t

t0

sγ+1P (s)ds,

where P (s) = q(s)
(

τ(s)
s

)γ (

τ(s)−T

2

)γ

, and we assume that

(2.5)

∫ ∞

T

q(s)τ γ(s)(s − T )γds = ∞, for T ≥ t0.

Theorem 2.3. Assume that (h1) and (2.5) hold. Let x(t) be a nonoscillatory solution

of (E0) such that x(t) and x(τ(t)) > 0 and suppose that Case (I) of Lemma 2.1 holds

for t ≥ T > t0. Define w(t) :=
(

x′′(t)
x′(t)

)γ

, and

(2.6) r := lim
t→∞

inf tγw(t), and R := lim
t→∞

sup tγw(t).

Then

(2.7) P∗ ≤ r − r1+ 1

γ ,

and

(2.8) Q∗ ≤ γR − γR1+ 1

γ .

Proof. From Lemma 2.1 when the Case (I) is satisfied, we can easily see that there

exists T ≥ t0 such that x(t) satisfies

x(τ(t)) > 0, x′(t) > 0, x′′(t) > 0, x′′′ ≤ 0, t ∈ [T, ∞).
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From the definition of w(t) and (E0), we see that w(t) is positive and satisfies

w′(t) =
(x′(t)))γ ((x′′(t))γ)

′ − γ (x′(t)))γ−1 (x′′(t))γ+1

(x′(t)))2γ

=
((x′′(t))γ)

′

(x(τ(t)))γ

(x(τ(t)))γ

(x′(t)))γ − γw
γ+1

γ (t)

= −q(t)
(x(τ(t)))γ

(x′(t))γ − γw
γ+1

γ (t).(2.9)

Let h1(t, T ) = (t − T ), h2(t, T ) = (t−T )2

2
and define

X(t) := (t − T )x(t) − h2(t, T )x′(t).

Then X(T ) = 0, and

X ′(t) = (t − T )x′(t) + x(t) − h2(t, T )x′′(t) − (t − T )x′(t)

= x(t) − h2(t, T )x′′(t)

= x(t) −
(

∫ t

T

(u − T )du

)

x′′(t).

By Taylor’s Theorem, since x′′(t) is nonincreasing, we have

x(t) = x(T ) + h1(t, T )x′(T ) +

∫ t

T

h1(t, u)x′′(u)du

≥ x(T ) + h1(t, T )x′(T ) + x′′(t)

∫ t

T

h1(t, u)du.

Hence X ′(t) > 0 on [T,∞). Since X(T ) = 0, we get that X(t) > 0 on (T,∞). This

implies that

(2.10)
x(t)

x′(t)
>

h2(t, T )

(t − T )
=

(t − T )

2
, t ∈ (T,∞).

Next let

U(t) := x′(t) − tx′′(t).

Since U ′(t) = −tx′′′(t) > 0 for t ∈ [T , ∞), we have that U(t) is strictly increasing on

[T,∞). We claim that there is a t1 ∈ [T,∞) such that U(t) > 0 on [t1,∞). Assume

not. Then U(t) < 0 on [t1, ∞). Therefore,
(

x′(t)

t

)′

=
tx′′(t) − x′(t)

t2
= −U(t)

t2
> 0, t ∈ [t1,∞),

which implies that x′(t)/t is strictly increasing on [t1,∞). Pick t2 ∈ [t1, ∞) so that

τ(t) ≥ τ(t2), for t ≥ t2. Then, since x′(t)/t is strictly increasing, we have

x′(τ(t))/τ(t) ≥ x′(τ(t2))/τ(t2) =: d > 0,

so that x′(τ(t)) ≥ dτ(t) for t ≥ t2. This implies that, since x(t) ≥ (t−T )
2

x′(t),

xγ(τ(t)) ≥ dγτ γ(t)
(t − T )γ

2
.
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Now by integrating both sides of (E0) from t2 to t, we have

(x′′(t))
γ − (x′′(t2))

γ
+

dγ

2γ

∫ t

t2

q(s)τ γ(s)(s − T )γds ≤ 0.

This implies that

(x′′(t2))
γ ≥ dγ

2γ

∫ t

t2

q(s)τ γ(s)(s − T )γds,

which contradicts (2.5). Hence there is a t1 ∈ [T , ∞) such that U(t) > 0 on [t1, ∞).

Consequently,
(

x′(t)

t

)′

=
tx′′(t) − x′(t)

t2
= −U(t)

t2
< 0, t ∈ [t1, ∞).

Then x′(t) > tx′′(t) and x′(t)
t

is strictly decreasing on [t1, ∞). This implies that

x′(τ(t))

τ(t)
≥ x′(t)

t
.

Substituting into (2.9), we have

w′(t) ≤ −q(t)

(

τ(t)

t

)γ
(x(τ(t)))γ

(x′(τ(t))γ − γw
γ+1

γ (t).

Using (2.10) and the fact that x(t) ≥ (t−T )
2

x′(t), we have

(2.11) w′(t) + P (t) + γw
γ+1

γ (t) ≤ 0.

Since P (t) > 0 and w(t) > 0 for t ≥ t1, we have from (2.11) that w′(t) ≤ 0, and

(2.12) −
(

w′(t)/γw
γ+1

γ (t)
)

> 1, for t ≥ t1.

This implies that

(2.13)
(

1/w
1

γ (t)
)′

> 1.

Integrating the last inequality from t1 to t, we obtain

(2.14) (t − t1)
γw(t) < 1.

This implies that

(2.15) lim
t→∞

w(t) = 0, lim
t→∞

tµw(t) = 0, for µ < γ, lim
t→∞

1

t

∫ t

t1

sγ−1w(s)ds = 0.

From (2.6) and (2.14), we have

(2.16) 0 < r < 1 and 0 < R < 1,

since if r = 0 and R = 0, there is nothing to prove. Now, we prove that (2.7) holds.

Integrating (2.11) from t to ∞ (t ≥ t1) and using (2.15), we have

(2.17) w(t) ≥
∫ ∞

t

P (s)ds + γ

∫ ∞

t

w
γ+1

γ (s)ds for t ≥ t1.
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This implies that

r = lim
t→∞

inf tγw(t) ≥ P∗.

It follows from (2.6) that for any arbitrary ε > 0 and sufficiently small there exists

t2 ≥ t1 such that

(2.18) r − ε < tγw(t) < r + ε, tγ
∫ ∞

t

P (s)ds ≥ P∗ − ε, t ≥ t2.

Again from (2.17), we have

tγw(t) ≥ tγ
∫ ∞

t

P (s)ds + γtγ
∫ ∞

t

w
γ+1

γ (s)ds

≥ tγ
∫ ∞

t

P (s)ds + γtγ
∫ ∞

t

sγ+1w
γ+1

γ

sγ+1
ds

≥ tγ
∫ ∞

t

P (s)ds + tγ
∫ ∞

t

(r − ε)1+ 1

γ

γ

sγ+1
ds

≥ tγ
∫ ∞

t

P (s)ds + (r − ε)1+ 1

γ tγ
∫ ∞

t

(−1

sγ

)′

ds

= tγ
∫ ∞

t

P (s)ds + (r − ε)1+ 1

γ .(2.19)

Then from (2.18) and (2.19), we have

r ≥ P∗ − ε + (r − ε)1+ 1

γ .

Then (since ε is arbitrary small), we have

P∗ ≤ r − r1+ 1

γ ,

and this proves (2.7). Now, we prove (2.8). Form (2.11), we see that

(2.20) w′(t) + P (t) + γ (w(t))λ ≤ 0, for t ≥ t1,

where λ = 1 + 1
γ
. Multiplying (2.20) by sγ+1, and integrating from t1 to t (t ≥ t1)

and using integration by parts, we obtain
∫ t

t1

sγ+1P (s)ds ≤ −
∫ t

t1

sγ+1w′(s)ds − γ

∫ t

t1

sγ+1 (w(s))λ ds

=
[

−sγ+1w
]t

t1
+

∫ t

t1

(sγ+1)′w(s)ds − γ

∫ t

t1

sγ+1 (w(s))λ ds

≤ −tγ+1w(t) + tγ+1
1 w(t1) +

∫ t

t1

(γ + 1)sγw(s)ds

−γ

∫ t

t1

sγ+1(w(s))λds

= −tγ+1w(t) + tγ+1
1 w(t1)

+

∫ t

t1

(γ + 1)sγw(s)ds −
∫ t

t1

γsγ+1(w(s))λds
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Thus
∫ t

t1

sγ+1P (s)ds ≤ −tγ+1w(t) + tγ+1
1 w(t1) +

∫ t

t1

(γ + 1)sγw(s)ds

−
∫ t

t1

γsγ+1(w(s))λds.

It follows that

tγ+1w(t) ≤ (t1)
γ+1w(t1) −

∫ t

t1

sγ+1P (s)ds

+

∫ t

t1

(

(w(s))
1

γ s
)γ [

γ + 1 − γsγ+1(w(s))
1

γ

]

ds.

Then, we have

tγw(t) ≤ (t1)
γ+1w(t1)

t
− 1

t

∫ t

t1

sγ+1P (s)ds

+
1

t

∫ t

t1

(

(w(s))
1

γ s
)γ [

γ + 1 − γsγ+1(w(s))
1

γ

]

ds.(2.21)

Using the fact that Bu − Au
γ+1

γ ≤ γγ

(γ+1)γ+1

Bγ+1

Aγ , where A and B are constants and

A > 0, we see that
(

(w)
1

γ s
)γ [

γ + 1 − γsγ+1(w)
1

γ

]

≤ 1.

This and (2.21) imply that

(2.22) tγw(t) ≤ (t1)
γ+1w(t1)

t
− 1

t

∫ t

t1

sγ+1P (s)ds + 1 − t1
t
.

Thus

lim
t→∞

sup tγw(t) ≤ 1 − lim
t→∞

inf
1

t

∫ t

t1

sγ+1P (s)ds.

This implies that

R = lim
t→∞

sup tγw(t) ≤ 1 − Q∗.

It follows from (2.4) and (2.6) that for any arbitrary ε > 0 and sufficiently small there

exists t2 ≥ t1 such that

(2.23) R − ε < tγw(t) < R + ε,
1

t

∫ t

t0

sγ+1P (s)ds > Q∗ − ε, t ≥ t2.

Then from (2.21) and (2.23), we have

(2.24) R ≤ −Q∗ + ε + (R + ε)

(

(γ + 1) − γ(R + ε)
1
γ

)

.

Then (since ε is arbitrary small), we obtain

Q∗ ≤ γR − γR1+ 1

γ .

which proves (2.8). This completes the proof.
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From Theorem 2.3 we have the following new oscillation criteria of (E0), which

is of Nehari [22] type.

Theorem 2.4. Assume that (h1), (2.3) and (2.5) hold. Let x(t) be a solution of (E0).

If

(2.25) Q∗ = lim inf
t→∞

1

t

∫ t

t0

sγ+1q(s)

(

τ(s)

s

)γ

(τ(s) − T )γ ds >
2γγγ+1

(γ + 1)γ+1
,

then x(t) is oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Suppose that x(t) is a nonoscillatory solution of equation (E0) with x(τ(t)) > 0

on [t1,∞). Assume that the part (I) of Lemma 2.1 holds. Let w(t) be as defined

in Theorem 2.3 and R = lim supt→∞ tγw(t). Then from Theorem 2.3, we see that R

satisfies the inequality

Q∗ ≤ γR − γR1+ 1

γ .

Using the fact that

Bu − Au
γ+1

γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
, for A > 0,

we have

Q∗ ≤
γγ+1

(γ + 1)γ+1
,

which contradicts (2.25). If part (II) of Lemma 2.1 holds, then by (2.3) and Lemma

2.2, we can easily prove that limt→∞ x(t) = 0. This completes the proof.

From Theorem 2.3, we have the following oscillation criteria of (E0) which of Hille

[11] type.

Theorem 2.5. Assume that (h1), (2.3) and (2.5) holds and let x(t) be a solution of

(E0). If

(2.26) P∗ = lim inf
t→∞

tγ
∫ ∞

t

q(s)

(

τ(s)

s

)γ

(τ(s) − T )γ ds >
2γγγ

(γ + 1)γ+1
,

then x(t) oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Suppose that x(t) is a nonoscillatory solution of equation (E0) with x(τ(t)) > 0

on [t1,∞). Assume that the part (I) of Lemma 2.1 holds. Let w(t) be as defined

in Theorem 2.3 and r = lim inf t→∞ tγw(t). Then from Theorem 2.3, we see that r

satisfies the inequality

P∗ ≤ r − r1+ 1

γ .

As in the proof of Theorem 2.3, we see that

P∗ ≤
γγ

(γ + 1)γ+1
,

which contradicts (2.26). Now if part (II) of Lemma 2.1 holds, then by (2.3) and

Lemma 2.2, limt→∞ x(t) = 0. This completes the proof.
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From Theorems 2.4 and 2.5 as a special case when γ = 1 and τ(t) = t, we have

the following new oscillation result for equation (E1).

Corollary 2.6. Assume that q(t) is a positive function such that
∫ ∞

t0

q(s)τ(s)(s − T )ds = ∞, and

∫ ∞

t0

∫ ∞

z

∫ ∞

u

q(s)ds du dz = ∞.

Let x(t) be a solution of (E1). If for T ≥ t0

(2.27) lim inf
t→∞

1

t

∫ t

t0

s2q(s) (s − T ) ds >
1

2
,

or

(2.28) lim inf
t→∞

t

∫ ∞

t

q(s) (s − T ) ds >
1

2
,

then x(t) is oscillatory or satisfies limt→∞ x(t) = 0.

Remark 2.7. From Corollary 2.6, we note that the oscillation constant that we

obtained, which is 1
2
, for the third order differential equation (E1) is different from the

oscillation constant 1
4

for second-order differential equation that has been established

by Hille and Nehari. One may ask that why the two conditions are different. To give

the answer to this question, we consider the equation of the form

x′′′(t) +
3

10t3
x(t) = 0, t ≥ 1.

In this case the roots of the characteristic equation

m(m − 1)(m − 2) +
3

10
= 0,

are given by m = −0.125 42, m = 1. 338 9 and m = 1. 786 5. One can easily see that

there is no any oscillatory solutions. Note that 1
4

< 3
10

< 1
2
. But for the third order

differential equation

x′′′(t) +
6

10t3
x(t) = 0, t ≥ 1.

The roots of the characteristic equation of this equation are given by m = 1.610 6 −
0.344 23i, m = 1.610 6 + 0.344 23i and m = −0.221 20. Then the solutions are oscil-

latory or converge to zero. Note that 6
10

> 1
2
.

Open problems. (i). What are the sufficient conditions for oscillation of (E1)

when (2.25) and (2.26) are not satisfied.

(ii). If the conditions in Theorems 2.4 and 2.5 can be improved to fill the gap

between 1/2 and 2
3
√

3
when γ = 1.

Example 2.8. Consider the Euler third-order linear differential equation

(2.29) x′′′(t) +
6

t3
x(t) = 0, t ≥ 1.
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It is clear that the conditions (2.3) and (2.5) hold. To apply Theorem 2.5 it remains

to prove that (2.26) is satisfied. In our case the condition reads

lim inf
t→∞

tγ
∫ ∞

t

P (s)

(

τ(s)

s

)γ

(τ(s) − T )γ ds

= lim inf
t→∞

t

∫ ∞

t

6

s3
(s − 1) ds = lim inf

t→∞
t

∫ ∞

t

[

6

s2
− 6

s3

]

ds

= lim inf
t→∞

t

[

6

t
− 3

t2

]

= 6 > 1/2.

Then any solution of (2.29) oscillates or satisfies limt→∞ x(t) = 0. One can easily see

that the basis of solution space of (2.29) is given by

{t−1, t2 cos
√

2 log t, t2 sin
√

2 log t}.

Example 2.9. Consider the linear differential equation

(2.30)
(

(x′′(t))
3
)′

+
3

t7
x3(t) = 0, t ≥ 1.

It is clear that the (2.3) and (2.5) hold. To apply Theorem 2.5 it remains to prove

that (2.26) is satisfied. In this case (2.26) reads

lim inf
t→∞

tγ
∫ ∞

t

P (s)

(

τ(s)

s

)γ

(τ(s) − T )γ ds = lim inf
t→∞

t3
∫ ∞

t

3

s7
(s − 1)3 ds = 1 >

27

32
.

Then the solutions of (2.30) oscillates or satisfy limt→∞ x(t) = 0. Note the results

by [5, 6, 10, 17, 15, 20] cannot be applied to the equations (2.29) and (2.30). So our

results improve the results in [5, 6, 10, 17, 15, 20].

In the following, we consider the equation

(E2) x′′′(t) + q(t)x(τ(t)) = 0, t ≥ t0,

and prove that the equation is oscillatory or the solutions tend to zero.

Theorem 2.10. Assume that (h1) holds. Let x(t) be a solution of (E2). If

(2.31)

∫ ∞

t0

[

τ 2(s)q(s) − 2

3
√

3s

]

ds = ∞,

then x(t) is oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Let x(t) be a nonoscillatory solution of (E2) on [t0,∞). Without loss of gen-

erality we may assume that x(t) > 0 and x(τ(t)) > 0 for t > t1. It follows by Lemma

2.1 that here exists t2 ≥ t1 such that either:

(I) x(t)x′(t) > 0, x′′(t) > 0 and x′′′(t) < 0 for t ≥ t2, or

(II). x(t)x′(t) < 0, x′′(t) > 0 and x′′′(t) < 0 for t ≥ t2.

First, we consider the Case (I) and define

(2.32) u(t) :=
tx(t)

x′(t)
> 0.
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Using (E2), we see that u(t) satisfies the second-order equation

(2.33) ((tu)′ +
3

2
u2 − 4u)′ +

1

t

(

u3 − 3u2 + 2u + t3q(t)
x(τ(t))

x(t)

)

= 0.

Define P (u) := u3 − 3u2 + 2u + t3q x(τ(t))
x(t)

. One can easily see that P (u) attends its

minimum at u = 1
3

√
3 + 1, and

(2.34) P (u) ≥ t3q(t)
x(τ(t))

x(t)
− 2

3
√

3
.

Substituting the estimate (2.34) into (2.33), we have

(2.35) ((tu)′ +
3

2
u2 − 4u)′ ≤ −1

t

(

t3q(t)
x(τ(t))

x(t)
− 2

3
√

3

)

.

From Kiguradze Lemma [12], which show that if a function x(t) satisfies x(i) > 0,

i = 0, 1, 2, . . . , n and x(n+1) < 0, then

x

tn/ni
≥ x′

tn−1/(n − 1)i
.

Then, from (I), we see that n = 2, and then from the last inequality we have

x′(t)

x(t)
≤ 2

t
, for t ≥ t2.

Integrating the last inequality from τ(t) to t, we obtain

(2.36) x(τ(t)) ≥ τ 2(t)

t2
x(t).

Substituting (2.36) into (2.35), we have

((tu)′ +
3

2
u2 − 4u)′ ≤ −

(

q(t)τ 2(t) − 2

3
√

3t
)

3

2

)

.

Integrating the above inequality from t2 to t, we have

(tu)′ +
3

2
u2 − 4u ≤ K0 − (

3

2
u2 − 4u) −

∫ t

t2

(

q(s)τ 2(s) − 2

3
√

3s
)

3

2

)

ds,

where K0 is a constant. Since 3
2
u2 − 4u ≥ −8

3
, then

(tu)′ ≤ K1 −
∫ t

t2

(

q(s)τ 2(s) − 2

3
√

3s
)

3

2

)

ds,

where K1 = K0 + 8
3
. An integration the above inequality again form t2 to t, yields

that

tu ≤ K2 + K1t −
∫ t

t2

∫ s

t2

(

q(v)τ 2(v) − 2

3
√

3v
)

3

2

)

dvds,

where K2 is a constant. So it follows from (2.31) that u(t) < 0 for sufficiently large t,

which contradicts the positivity of u(t). Next, we consider the Case (II) and suppose



466 S. H. SAKER

that x′(t) < 0 for t ≥ t2. Hence limt→∞ x(t) = L ≥ 0 exists. Let L > 0. Then

x(τ(t)) ≥ x(t) ≥ L for t ∈ [t2,∞). From (2.31), it follows that, since τ(t) ≤ t,
∫ ∞

t0

s2q(s)ds ≥
∫ ∞

t0

τ 2(s)q(s)ds = ∞.

Multiplying (E2) by t2 and integrating from t2 to t, we have

t2x′′(t) − 2tx′(t) +
9

4
x(t) ≤ K − L

∫ t

t2

s2q(s)ds,

where K is some constant. From the last inequality, we see that x′′(t) < 0 for large

t, which is a contradiction. Hence L = 0 and then limt→∞ x(t) = 0. The proof is

complete.

From Theorem 2.10, we have the following result which of Hille-Kneser type and

can be considered as the extension of the condition (1.7) of Hanan [10].

Corollary 2.11. Assume that (h1) holds. Let x(t) be a solution of (E2). If

(2.37) lim
t→∞

inf τ 2(s)sq(s) >
2

3
√

3
,

then x(t) is oscillatory or satisfies limt→∞ x(t) = 0.

The following example illustrates the main results in Theorem 2.10.

Example 2.12. Consider the third order linear delay differential equation

(2.38) x′′′(t) +
2

3
√

3τ 3(t)
x(τ(t)) = 0, t ≥ 1,

where τ(t) = t/2. Now the condition (2.31) reads
∫ ∞

t0

[

τ 2(s)q(s) − 2

3
√

3s

]

ds =

∫ ∞

1

[

τ 2(s)
2

3
√

3τ 3(s)
− 2

3
√

3s

]

ds

=

∫ ∞

1

[

4

3
√

3s
− 2

3
√

3s

]

ds

=

∫ ∞

t0

2

3
√

3s
ds = ∞.

Thus (2.31) is satisfied. Then by Theorem 2.10, if x(t) is a solution of (2.38), then

x(t) is oscillatory or satisfies limt→∞ x(t) = 0. In fact the corresponding characteristic

equation which is given by

2m−4m(m − 1)(m − 2) +
1

3
√

3
= 0,

has only a negative real root given by −1.0232, which implies that the corresponding

solution tends to zero. Note that when τ(t) = t, equation (2.38) becomes the third-

order Euler differential equation

x′′′(t) +
2

3
√

3t3
x(t) = 0, t ≥ 1,
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which is disconjugate and has a negative root and two equal positive roots given by

1+ 1√
3
. This means that this equation is not oscillatory and the delay in the equation

has a large effect on the asymptotic behavior of the solutions.
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