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Abstract

In the present work, we study the oscillation dynamics of 3 mm-diameter bubbles generated through an orifice submerged 

in viscous liquids. The viscosity of those liquids is varied to change the behavior of the rising bubble. The details of the ris-

ing motion and shape oscillation of the bubbles are measured using a combination of high speed, high-resolution imaging, 

and an accurate digital image processing technique. Direct Numerical Simulations that mimic the experimental conditions 

are also performed using a front-tracking technique, called the Local Front Reconstruction Method. The predictions of the 

bubble shape and rising velocity obtained by the numerical simulations show good agreement with the experimental results. 

Our experimental and numerical results show that the oscillation frequency and the damping rate at lower modes can be 

predicted using available theoretical models found in the literature. However, discrepancies arise between our results with 

the theoretical predictions at higher order oscillation modes. We conclude that the discrepancies are due to the influence of 

rising motion and the vortex wave, which is not considered in the theoretical models.

Graphic abstract

1 Introduction

Because of its relevance in many industrial and natural 

phenomena, the dynamics of a rising gas bubble has been 

studied for many centuries and continues to be a problem 

of significant interest nowadays. This includes for example 

boiling, flotation, and intensification of heat and mass trans-

fer in bubble column reactors. However, the fundamental 

understanding of bubble dynamics is still incomplete due 

to the large number of parameters, the non-linearity, and 

the fully three-dimensional transient nature of the problem.

The process of bubble detachment and rise is illustrated 

in Fig. 1. In this case, the bubble is formed from an ori-

fice plate. After the detachment of the bubble from the 

orifice, the buoyant forces drive the rising motion of the 

bubble in the liquid. While rising, the bubble undergoes 

shape deformation until it reaches its equilibrium shape 

and subsequently oscillates around the equilibrium shape. 
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The characteristics of the rising motion (i.e., the shape, rise 

velocity, and trajectory) strongly depend on the fluid proper-

ties as well as the bubble volume, making it very difficult to 

develop a general understanding for all the cases.

Interestingly, Wu and Gharib (2002), Tomiyama et al. 

(2002), and Laqua et al. (2016) have independently reported 

that the method of bubble release from the orifice, i.e., the 

initial condition before detachment, affects the terminal rise 

velocity and the bubble shape. This unexpected experimental 

finding is attributed by the authors to the initial shape of the 

bubble at the beginning of its rise, which is in turn influ-

enced by the way that the bubble is formed. Upon release, a 

bubble created by a small capillary undergoes strong shape 

oscillations and is found to reach a higher terminal veloc-

ity than a bubble of equal volume released from a large 

capillary, whose detachment is a much gentler process. 

This behavior is in strong contrast with the more common 

assumption of a unique terminal rise velocity for a bubble, 

which is often used in literature (Clift et al. 1978).

The correlation between rising motion and shape oscilla-

tions has been investigated by several authors (Meiron 1989; 

Lunde and Perkins 1997; De Vries et al. 2002; Veldhuis et al. 

2008; Lalanne et al. 2013, 2015). Meiron (1989) developed 

a numerical model to study the steady rise and stability of 

inviscid bubbles and showed that the interaction of hydro-

dynamic pressure and surface tension forces does not lead 

to linear instability of the bubble path. Lunde and Perkins 

(1997) performed an experimental study on bubbles rising in 

still tap water. They showed that the low modes of the shape 

oscillations account for the wobbly and rocking nature of the 

shape and motion of intermediately sized bubbles. De Vries 

et al. (2002) performed experiments with 2–4 mm-diameter 

bubbles interacting with a hot-film anemometer probe in 

ultra-clean water to study whether bubble shape oscillation 

affects the rising velocity. Their experiments showed that 

the oscillating bubbles do not have higher mean veloci-

ties than the non-oscillating bubbles, which is in contrast 

with the results of Wu and Gharib (2002) and Tomiyama 

et al. (2002). Veldhuis et al. (2008) investigated the surface 

oscillations on bubbles rising in water. They showed that 

shape oscillation is linked to the path instability by check-

ing the frequency of the main mode and the vortex shed-

ding. Recently, Lalanne et al. (2015) studied the influence 

of the rising movement on the shape oscillations of small 

bubbles using experiments and numerical simulations. They 

showed that the effect of the rising motion on the oscillations 

is negligible, provided that the mean shape of the oscilla-

tion remains close to a sphere. Their finding indicates that 

the shape oscillation and the rising motion is one-way cou-

pled. Lalanne et al. (2013) studied the distinct mechanism 

of the influence of rising motion on the oscillation of drops 

and bubbles. The oscillation dynamics taken at the transient 

stage are studied by DNS simulations, in which drops and 

bubbles are with initially prescribed deformations.

Limited by the requirements of high spatial and tempo-

ral resolutions and sophisticated data treatments of such 

a highly dynamic physics process, there have been only a 

few detailed studies. This motivates us to investigate larger 

bubbles, where the interface dynamics becomes even more 

pronounced. In the present work, we study the rising motion 

and shape oscillation of 3 mm bubbles generated through an 

orifice submerged in viscous liquids. The details of rising 

motion and shape oscillation of the bubbles are measured 

using a combination of a high-speed, high-resolution camera 

and an accurate digital image processing technique. Numeri-

cal simulations that mimic the experimental results are also 

performed using a front-tracking model, the Local Front 

Reconstruction Method (LFRM). Experiments and simula-

tions have different strengths and weaknesses, related to con-

trol and accuracy. Therefore, the correspondence of experi-

mental and simulation results makes the presented results 

more robust. This paper is organized as follows. The descrip-

tion of the experimental setup and measurement techniques 

is given in Sect. 2. Section 3 provides a detailed description 

of the numerical model. In Sect. 4, an extensive analysis of 

oscillation dynamics of a rising bubble in a viscous liquid 

Fig. 1  Bubble rising in a 

viscous liquid after its detach-

ment from an orifice plate. 

The dynamics of the bubble 

consists of two distinct stages: 

a transition stage and a terminal 

stage. The bubble undergoes 

shape deformation (left) until 

it reaches its equilibrium shape 

and subsequently oscillates 

(right) around the equilibrium 

shape
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is given. Finally, a summary of the main conclusions of the 

present work is provided.

2  Experimental method

2.1  Experimental setup

The experimental setup is schematically shown in Fig. 2. Air 

bubbles are formed from a submerged orifice plate made of 

stainless steel attached to the lower wall of the column. The 

orifice has an inner diameter of 1 mm. A capillary tube with 

an inner diameter of 0.5 mm and a length of 150 cm is used 

to generate sufficient pressure drop that ensures a constant 

flow condition. The volumetric gas flow rate is controlled 

using a combination of a kdScientific LEGATO 100 syringe 

pump and a 2.5 mL Hamilton 1000 series GASTIGHT 

syringe. The experiments are performed using three different 

glycerol–water mixtures listed in Table 1. The properties of 

the liquids are determined using a Brookfield DV-E viscom-

eter for measuring the viscosity and K20 EasyDyne digital 

of Krusse with the Wilhelmy plate method for measuring 

the surface tension.

2.2  Measurement and image processing techniques

The experimental images are captured using a pco.dimax 

HD high-speed digital video camera with a frame rate of 

2000 Hz and a resolution of 1.5 × 10−2 mm/pixel. A calibra-

tion plate with known size and distance was used to convert 

pixel distances to mm. On the plate, the center distance of 

two horizontal/vertical neighboring white dots is 5 mm and 

the size of the dots is 1.2 mm (Kong et al. 2018). The spatial 

resolution is high enough to capture the bubble interface 

without the help of any interpolative reconstruction. In addi-

tion, the selected temporal resolution ensures that the bubble 

moves 3–4 pixels on two consecutive images. The recordings 

are performed with the help of a back lighting, which is only 

switched on during the imaging to reduce the heating of the 

liquid by illumination of the channel. A calibration plate 

with specific markers is used to obtain the pixel size.

The captured images are then processed using an in-house 

Matlab code, which utilizes the image processing toolbox. 

The main image processing steps are the determination of 

a threshold for the gray-scale image, binarization of the 

images using this threshold value, and then determination 

of the bubble volume, center of gravity, and aspect ratio 

(Fig. 3). The uncertainty of the determined edge is about 

0.5% due to the high resolution of camera. The velocity 

and deformation of a bubble are derived from the centroid 

and axis lengths of bubbles, respectively. Furthermore, an 

advanced smooth spline fitting technique based on smooth-

ing parameter determination theories (De Boor et al. 1978; 

Wahba 1990; Hurvich et al. 1998; Krakauer and Krakauer 

2012) is applied to fit the bubble centroid as a function 

Fig. 2  Schematic diagram of the 

experimental setup of bubble 

formation from a submerged 

orifice and the calibration plate

Table 1  Fluid physical properties for air bubble formation in glyc-

erol–water mixture

Fluid �
l
 ( kg m−3) �

l
 ( kg m−1 s−1) � ( Nm

−1)

20 wt% glycerol 1.047 × 10
3

1.76 × 10
−3

7.09 × 10
−2

40 wt% glycerol 1.099 × 10
3

3.72 × 10
−3 6.95 × 10−2

60 wt% glycerol 1.153 × 103
1.08 × 10

−2
6.77 × 10

−2
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of time to suppress the noise of velocity calculation. The 

corrected Akaike information criterion (AICC) approach 

(Hurvich et al. 1998) is chosen to determine the smoothing 

parameter. In Fig. 3, the black dot, red lines, and blue lines 

represent the bubble centroid, major axis lines, and minor 

axis line of a typical bubble, respectively. The deformation 

is defined by aspect ratio as in the following equation:

In the present work, even though the sizes are relatively 

large, the surfaces of bubbles are less dynamic due to the 

higher viscosity. Therefore, the bubbles are generally axisym-

metric. This allows the implementation of calculations of 

center of 3D and bubble volume using Pappus second theorem 

(Legendre et al. 2012). It should be noted that the 2D centroid, 

C
2D

 , computed from area averaging of the planar (projected) 

bubble image, is not the same as the 3D volume averaged 

centroid, C
3D

 , especially for bubbles that have a strong shape 

deformation (Fig. 4). In the image processing, C
3D

 is com-

puted using the assumption of axisymmetry. This is further 

confirmed by analyzing a series of binary images obtained 

from the numerical simulation (Sect. 3). In Fig. 5, the rising 

velocities calculated using the displacement of C
rm2D

 and C
3D

 

are compared with the result obtained using the numerical 

simulation. We use C
3D

 for the comparison of experiments 

(1)� = lmajor∕lminor.

with simulations, because the simulations are fully 3D and 

thus the 3D centroid is computed.

3  Numerical model

The numerical model used in the present work is based on 

the Local Front Reconstruction Method (LFRM), originally 

developed by Shin et al. (2011) and adjusted by Mirsandi 

et al. (2018, 2019). In the sections below, the main charac-

teristics of the numerical model are described.

3.1  Governing equations and solution 
methodology

In the numerical model, both fluids are assumed to be 

incompressible, immiscible, and Newtonian. A one fluid 

formulation is used to describe the fluid flow for both phases. 

The governing mass and momentum conservation equations 

are expressed as follows:

(2)∇ ⋅ � =0

Fig. 3  Raw image (left), pro-

cessed image (right). Black dot: 

center, C; blue line: the minor 

axis; red line: the major axis

Fig. 4  2D/3D center shift of a bubble. The black dot is the center of 

2D C
2D

 and the red dot is the center of 3D C
3D

Fig. 5  The bubble rising velocity calculated using two different meth-

ods (displacement of 2D C
2D

 and center of 3D C
3D

 ) and numerical 

simulation
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where � is the fluid velocity, p is the pressure, and � is the 

stress tensor given by −�
[

∇� +
(

∇�
)T]

 . The local averaged 

density � and dynamic viscosity � depend on the local fluid 

phase distribution and, hence, are calculated from the local 

phase fraction, F, using normal and harmonic averaging, 

respectively (Prosperetti 2002). The local volumetric force 

accounting for the effect of surface tension, �
�
 , is obtained 

by employing the hybrid Lagrangian–Eulerian formulation 

representation of Shin et al. (2005) to minimize unphysical 

parasitic currents in the vicinity of the interface using the 

following:

where � is the surface tension coefficient and �
H

 is twice the 

mean interface curvature field calculated on the Eulerian 

grid using the information from the Lagrangian interface. 

Once the fluid flow is calculated, the Lagrangian marker 

points, which are used to track the interface, are moved using 

a fourth-order Runge–Kutta time stepping scheme with the 

locally cubic spline interpolated fluid velocities. Finally, the 

phase fraction in each Eulerian cell is updated using a geo-

metrical method based on the location of the marker ele-

ments (Dijkhuizen et al. 2010).

Due to the advection of the interface, the size of the 

marker elements changes, decreasing the quality of the 

interface mesh. To remedy this situation, the LFRM pro-

cedure is periodically performed to ensure that each part 

of the interface is represented with a sufficient resolution. 

The details of this procedure can be found in the work of 

Mirsandi et al. (2018).

3.2  Computational setup

The schematic of the computational domain is given in 

Fig. 6. The air bubble is injected through an orifice of 

radius R
o
 submerged in an initially quiescent liquid. The 

circular orifice is located at the bottom center of the numeri-

cal domain and represented with a staircase approximation. 

The gas injection is assumed to be at constant flow rate Q. 

The flow in the gas inlet is assumed fully developed lami-

nar and a parabolic inflow velocity is imposed. Initially, a 

hemispherical bubble is positioned above the orifice with 

a radius equal to R
o
 . The bubble base is pinned to the ori-

fice during the growth process. At the top of the simulation 

domain, the pressure-prescribed outlet boundary condition 

is imposed where the outlet pressure is set to atmospheric 

pressure, while at the side and lower walls, the no-slip 

boundary condition is used. The computational domain has 

a width, length, and height of 5, 5, and 10 equivalent bubble 

(3)�
��

�t
= − ∇p − �∇ ⋅ (��) − ∇ ⋅ � + �� + �� ,

(4)�
�
= ��

H
∇F,

diameters, respectively, to ensure that the bubble formation 

and rise are not significantly influenced by any wall effect.

For all simulations presented in this paper, a grid size 

Δ = 1.25 × 10−4 m and a time step of Δt = 4 × 10−5 s are 

used, for which the results are grid independent. The time 

step Δt is chosen, such that it satisfies both Courant–Frie-

drichs–Lewy (CFL) and capillary time step restrictions as 

follows (Brackbill et al. 1992):

Here, v
max

 is the maximum fluid velocity in the computa-

tional domain.

4  Results and discussion

4.1  Bubble shape and rising velocity

Figure 7 shows typical photographs of bubble detachment 

and rise from the orifice for three different liquids (Table 2). 

It can be seen that once the bubble detaches, the bubble 

undergoes shape deformation while rising. The shape 

evolves from a pendant shape at the time of detachment to 

an oblate spheroid. This shape deformation becomes more 

pronounced with decreasing liquid viscosity.

The corresponding bubble shapes obtained using the 

numerical model, which are represented with red lines, are 

(5)Δt <Δt
CFL

=
Δ

v
max

(6)Δt <Δt𝜎 =

√

(𝜌l + 𝜌g)Δ
3

4𝜋𝜎
.

Fig. 6  Schematic representation of the computational domain for the 

simulation of bubble formation and rise in quiescent liquid
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superimposed on top of the photographs. The spatial evolu-

tion of the numerically predicted bubble shapes is very close 

to the corresponding experimental results. The deviations in 

the detached bubble diameter in all cases are less than 1%, 

meaning that the total volume detaching from the orifice 

plate is roughly the same and unaffected by fluid viscosity.

The comparison of experimental and numerical rising 

velocity in the case of 60 wt% glycerol mixture is shown 

in Fig. 8. It is clear that the experimental result agrees well 

with the simulation result for Q = 1.1 ml/min, whereas for 

Q = 2.2 ml/min and Q = 5.1 ml/min, the rising velocities 

are higher in the experiments. The discrepancy is probably 

due to the wake effect from the preceding bubble, since this 

influence is nonexistent in the simulation. The comparison 

of experimental and numerical rising velocity and aspect 

ratio in the case of Q = 1.1 ml/min for three different liq-

uids is shown in Fig. 9. The numerically predicted rising 

velocity and aspect ratio agree well with the experimental 

results. This indicates that not only the wake effect but also 

the influence of surface-active impurities is negligible. For 

this reason, Q = 1.1 ml/min is chosen for further detailed 

analysis. The corresponding bubbling frequency is 1 Hz.

The shape evolution with the rising motion is a measure 

of the interaction of deformation and rising motion. The cor-

relation of the Weber number and the aspect ratio is shown 

in Fig. 10. Both of the Weber number and the aspect ratio 

are instantaneous values from experiments. The correla-

tion is compared with correlations developed by Benjamin 

(1989) based on potential theory, and Legendre et al. (2012) 

based on fitting of a collection of results taking viscosity into 

account, giving the following:

(7)� = 1∕
(

1 − 9∕64We
(

1 + 0.2Mo
0.1
)−1

)

.

Table 2  Equivalent diameter 

of the detached bubble and the 

corresponding dimensionless 

numbers for different fluids

Eo = g�
l
D2∕�,Mo = g�4∕��3 , Oh = �

l
∕
√

�
l
R� , Re = �UD∕�

l
 , We = �

l
U

2
d

b
∕�

Fluid D
eq

 (m) Eo (–) log (Mo) (–) Oh (–) Re (–) We (–)

20 wt% glycerol 3.22 × 10
−3 1.50 −9.60 0.5 × 10−2 574.6 4.28

40 wt% glycerol 3.16 × 10
−3 1.55 −8.29 1.1 × 10

−2 252.1 3.64

60 wt% glycerol 3.11 × 10
−3 1.62 −6.43 3.1 × 10

−2 73.1 2.57

Fig. 7  Bubble detachment and rising in three different liquids: a 60 

wt% glycerol, b 40 wt% glycerol, and c 20 wt% glycerol, for gas flow 

rate ± 1.1 ml/min. The simulation results are indicated with the red 

lines. The time interval between the figures is 3 ms

Fig. 8  Comparison of experimental and numerical rising velocities 

for 60 wt% glycerol at different gas flow rates
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Note that the velocity used to calculate the Weber num-

ber is the instantaneous velocities, whereas in those two 

approaches, velocities are terminal velocities. Therefore, 

the meaningful comparisons are on averaged sense.

From Fig. 10, it is also clear that the results match best 

for more viscous liquids at moderate We numbers, which 

are surface tension dominated. For higher We numbers, the 

difference between the two correlations becomes larger, and 

Fig. 9  Comparison of experi-

mental and numerical rising 

velocity and aspect ratio for 

three different liquids: a 60 wt% 

glycerol, b 40 wt% glycerol, and 

c 20 wt% glycerol
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also for the current experimental data, more dynamic behav-

ior can be observed.

There are several theoretical models available to predict 

the frequency of shape oscillation. Lamb (1932) gives an 

analytical expression for the frequency of shape oscillations 

of spherical bubbles as follows:

where n is the mode number. A spherical bubble is an iso-

tropic body, and hence, all modes of the same order have the 

same frequency. For mode 2 oscillations, the frequency is 

given by the following:

A bubble deformed into a spheroid is no longer isotropic and 

modes of the same order, but different degree will gener-

ally have different frequencies (Lunde and Perkins 1997). 

In addition, the influence of rising motion is not taken into 

account in the Lamb expression. A model to predict the 

(8)fn =
1

2�

√

(n + 1)(n − 1)(n + 2)�

�lR
3

,

(9)f
2
=

1

2�

√

12�

�lR
3

.

shape oscillation frequencies for non-spherical rising bub-

bles was derived in a study by Meiron using stability analysis 

based on potential flow theory (Meiron 1989). On the other 

hand, Lunde and Perkins (1997) proposed a simple model 

based on an assumption of a plane capillary wave traveling 

along the bubble surface, where the frequency is determined 

by the wave speed and the wave length. For mode 2,0 shape 

oscillation, the frequency is given as follows:

where � is the aspect ratio.

The oscillation frequencies obtained from the experiments 

and numerical simulations are compared with these models 

in Table 3. The frequencies are extracted through the peaks 

of curves readily. It is clear that the present results agree 

well with the models proposed by Meiron and Lunde, but 

disagree with the spherical model of Lamb. This is further 

confirmed by comparing the normalized frequency against 

deformation in Fig. 11. Surprisingly, Meiron’s model based 

on the potential flow theory is still valid, even though it does 

not take into account the influences of wake. Although the 

assumption of a plane wave in Lunde and Perkins should 

fail for non-spherical bubbles as pointed out by van Wijn-

gaarden and Veldhuis (2008), it coincidentally works well. 

(10)f2,0 =
1

2�

�

16
√

2�2

(�2 + 1)1.5

�

�

�lR
3

,

Fig. 10  Instantaneous aspect ratio against instantaneous Weber num-

ber and comparisons with models of Benjamin and Legendre

Table 3  Comparison of 

oscillation frequencies for three 

different fluids

Fluid f
exp

 (Hz) f
DNS

 (Hz) f
Lunde

 (Hz) f
Meiron

 (Hz) f
Lamb

 (Hz)

20 wt% glycerol 55.6 55.1 55.2 56.0 70.2

40 wt% glycerol 57.2 57.3 57.3 58.8 69.8

60 wt% glycerol 60.6 60.9 58.6 62.6 68.9

Fig. 11  Normalized frequency against bubble aspect ratio
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Similarly, Lalanne et al. (2013, 2015) also showed that the 

predictions obtained using a potential flow theory agree well 

with the DNS results for a slightly deformed spherical bub-

ble. This indicates that the wake and viscosity effects are 

minor, which needs to be further investigated.

4.2  Analysis and discussion

In this section, the shape oscillations are studied in detail by 

decomposing the interface obtained from both experimental 

and numerical results on the basis of the Legendre polyno-

mials given as follows: (Becker et al. 1991):

where a
0
 is unity in general due to the assumption that the 

bubble volume is constant and a
l
 is the amplitude of the 

mode. The series is truncated at l = 20 , which ensures an 

accurate description of the present bubble shapes. The evolu-

tion of amplitudes for orders l = 2–5 in three different liquids 

is shown in Fig. 12. A satisfactory agreement between the 

experimental and numerical results with respect to the evolu-

tion of various harmonics is obtained, i.e., the amplitudes of 

modes 2–5 of bubbles are similar. In general, the amplitudes 

are much lower for higher modes, which is more pronounced 

for cases with a higher liquid viscosity. Moreover, Fig. 12 

shows that in higher viscosity liquids, the amplitude of the 

shape oscillations dampens faster. In the low viscosity liq-

uid, however, the damping rate gradually weakens, and for 

certain higher modes, the amplitude increases. It is impor-

tant to note that the modes are not rigorous eigenmodes due 

to non-spherical steady-state shape of the rising bubble, 

while the spherical harmonic solutions assumes oscillatory 

perturbation on a spherical surface. The eigenmodes shift 

with the evolving shape. However, the decomposed modes 

still can be used to quantify the effect of rising motion on 

the shape oscillation (Lalanne et al. 2013).

Figure 12 also reveals that mode 2 is the main mode. The 

a
2
 is basically the representative of main shape of bubble and 

a similar to the aspect ratio in that it describes the extent of 

shape deformation. The value starts from a positive value 

due to the prolateness of the initial shape, while it decreases 

gradually to negative when the shape evolves to an oblate 

shape. For all three set of comparisons, the results of experi-

ments and simulation match very well on mode 2, which was 

also evident in the qualitative visualization in Fig. 7. The 

match deteriorates for higher modes and longer time. This 

might be attributed to the spatial resolution of the simula-

tion and the inherent in-stable nature of the higher modes. 

Furthermore, clearly, all the curves of the modes show that 

the deformations consist of a main shape evolution and a 

dampened oscillation. The later one is of our interest.

(11)R(�, t)∕R0 = a0(t) +

∞
∑

l=2

al(t)Pl(cos �),

To investigate the oscillation energy decay of these 

modes, the following window-moving average decomposi-

tion is applied:

(12)Y = Ȳ + Ỹ ,

Fig. 12  Time evolution of spherical harmonic amplitudes a
l
 for 

l = 2 -5 for three different liquids: a 60 wt% glycerol, b 40 wt% glyc-

erol, and c 20 wt% glycerol
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where Y is the instantaneous variable, Ȳ  is the average 

value, and Ỹ  is the fluctuation. Then, the instantaneous 

frequency can be calculated by the time interval of peaks, 

f = 1∕(ti+1
− ti) and the damping factors are calculated 

by fitting the peaks with an exponential damping function 

y = ae−bt . Note that the shape information at the instant after 

the detachment is excluded from calculation. These mode 

fluctuations are shown in Fig. 13.

 Prosperetti (1980) derived a model by an eigenvalue 

analysis of spectrum of the vortex form of Naiver–Stokes 

equation neglecting gravity and buoyancy forces. A general 

equation that describes the damping of oscillation can be 

reduced to Lamb’s equation if the surrounding liquid is less 

viscous ( Oh ≪ 0.1):

Then, a dimensionless theoretical damping factor for each 

mode is given by the following:

The dimensionless damping factors extracted from experi-

mental results (Fig. 13) and the theoretical values are shown 

in Fig. 14 (left). The damping factors generally increase with 

increasing Oh number. The oscillation energy needs less 

time to decay in more viscous liquids. Moreover, it shows 

(13)b
n
= (n + 2)(2n + 1)�∕(�

l
R

2).

(14)b
∗

n
= (n + 2)(2n + 1)Oh.

that for mode 2, the match between our study and the theo-

retical equation proposed by Prosperetti (Eq. 14) is satis-

factory. However, our study shows that higher modes need 

more time to decay in contrast to the prediction from the 

theory. This is mostly due to the mode shift. The weight of 

high modes that contributes to the total fluctuation becomes 

more significant gradually with the more and more flattened 

shape. Note that for the case of Oh = 5 × 10−3 , the damping 

factors for mode 4 and above are negative, i.e., the energy 

no longer decays (not shown). Simulation studies of Lalanne 

et al. (2013) also revealed this departure of higher modes 

from the theoretical study (Fig. 14). Moreover, they also 

found a negative damping factor on mode 4 as well.

Moreover, we observed that most of the surface oscilla-

tion energy (mainly mode 2) damps only for a short period 

of time. In the case of 60% glycerol solution, the oscilla-

tions are damped after t = 0.08 s. In contrast, for bubbles 

rising in 20% glycerol solution, path instability occurs after 

t = 0.08 s, producing an increase of the oscillation ampli-

tude. On the other hand, in the case of 40% glycerol solu-

tion, for each mode, the oscillations maintain their ampli-

tude. Here, our results differ from the theoretical results of 

Prosperetti (1980) and simulation studies of Lalanne et al. 

(2013). They reported that the oscillation damping of bub-

bles is close to the theoretical prediction at the initial stages 

Fig. 13  Fluctuations of a mode 

2 and b modes 3–5 for three 

different liquids
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(or transient stages). In other words, the oscillation behav-

ior of the rising bubble at the initial stages is similar to the 

oscillation of bubble in zero gravity, i.e., all modes dampen 

gradually. However, in our study, the oscillations are not 

damped at lower Oh numbers for any of the modes after the 

damping at the initial stage of bubble rise, which has also 

been reported by Lunde and Perkins (1997). Similarly, in 

the study of Gordillo et al. (2012), the agreement between 

the analytical model and DNS simulations deteriorates for 

longer times. The authors attribute this to the viscous dis-

sipation including the boundary layer and wake, which are 

not considered in the analytical model.

Because the initial surface energies are close for all the 

cases (see Fig. 13), any oscillation energy should eventu-

ally dampen if the system is isolated. In the case of low 

Re number ( Oh = 3.1 × 10
−2 ), there is no strong wake 

effect beneath the bubble and the surface energy is eventu-

ally damped. Whereas in bubbles with higher Re numbers 

( Oh = 1.1 × 10
−2 , 0.5 × 10−2 ), there are standing vortices 

and vortex shedding appears in the wakes. In addition, 

our results also suggest that this energy is mainly added to 

higher modes instead of mode 2 at the initial stage of rising. 

Later, mode 2 also gains energy, which makes the oscillation 

system at all modes a forced oscillation system. Therefore, 

the oscillation behavior of bubbles at lower Oh numbers are 

different from bubbles in zero gravity in our results.

The role of rising motion, or more specific the wake, in 

shape oscillation is still unclear. Nevertheless, our inference 

is supported by extra measurements of two different size of 

bubbles rising in 40% glycerol solution (Fig. 15). The diam-

eters of the bubbles are 2.63 mm and 3.22 mm, respectively, 

and the Oh numbers of these bubbles are almost identical. 

However, according to the study of Blanco and Magnaudet 

(1995), the wakes of these bubbles are of two type: one has 

no vortex wake, whereas the later one has a vortex wake. 

We have noticed that for the simulations conducted in the 

study of Lalanne et al. (2013) vortex wakes would develop 

in none of those cases. The properties of the most oscillating 

bubble in their studies are close to the bubble of 2.63 mm 

in the present study. It is clear from the figure that the shape 

oscillation is damped at the initial stage for the one without 

vortex wake, while the oscillating deformation continues for 

the one with vortex wake even after the initial stage of ris-

ing. Veldhuis et al. (2008) reported that bubbles with vortex 

shedding in wakes have a much more dynamic interface, 

in which the vortex shedding time scale is larger than the 

typical oscillation damping time scale. This suggests that if 

the time scale of a sudden move of the bubble or a change 

of surrounding flow is shorter than the time scale of the 

damping, the oscillation behavior will be similar to the one 

in zero gravity. Otherwise, the oscillations gain external 

energy. This phenomenon could be more pronounced when 

bubbles interact with turbulence, which includes a range of 

varied size eddies.

The dimensionless frequency is shown in Fig. 14 (right). 

It can be seen that the frequency increases with Oh num-

ber. The trend of mode 2 is consistent with Fig. 11, which 

Fig. 14  The dimensionless 

damping factor (left) and 

frequency (right) against 

Ohnesorge number. Mode 2: 

red circle; Mode 3: green filled 

square; Mode 4: blue circle; 

Mode 5: deep red diamond. 

Theoretical prediction (Prosper-

etti 1980) for Mode 2: red solid 

line; Theoretical prediction for 

Mode 3: green dash line

Fig. 15  The rising velocity and aspect ratio of 2.63 mm and 3.22 mm 

bubbles in 40% glycerol solution
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correlates the frequency with the terminal shape of the bub-

ble. Because the aspect ratio is a result of fluid properties 

and hydrodynamics, it is meaningful to correlate the dimen-

sionless frequency with Oh number.

5  Conclusions

In the present work, we study the oscillation dynamics of 

3 mm-diameter bubbles generated through an orifice sub-

merged in viscous liquids by means of experiments and 

detailed numerical simulations. First, our results confirm 

that the potential flow theory can still predict the oscillation 

frequency of large size bubbles, where the dynamics are 

pronounced. This finding is also in accordance with several 

experimental studies reported in the literature (Lunde and 

Perkins 1997; van Wijngaarden and Veldhuis 2008; Gordillo 

et al. 2012; Lalanne et al. 2015). Second, it is found that the 

damping factor at mode 2 can still be described by a theoreti-

cal model (Prosperetti 1980), which takes into account vis-

cosity effects and neglects the rising motion effect. However, 

at higher modes, the damping factor cannot be explained 

by the theoretical model and so far no available theoretical 

model can be used to interpret the damping behavior. Wake 

effects seem to play a very important role as an external 

energy source driving the shape oscillations of rising bub-

bles, particularly for the higher modes.
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