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OSCILLATION ESTIMATES RELATIVE TO p-HOMOGENEUOUS

FORMS AND KATO MEASURES DATA

MARCO BIROLI - S. MARCHI

We state pointwise estimate for the positive subsolutions associated to a
p-homogeneous form and nonnegative Radon measures data. As a by-product
we establish an oscillation’s estimate for the solutions relative to Kato measures
data.

1. Introduction.

The necessary part of the Wiener criterion for the regularity of
boundary points in the case of nonlinear elliptic problems has been
proved in a recent paper by Malỳ, [15] [16], using an estimate on
positive subsolutions of the problem. The estimate has been generalized
in the case of the subelliptic p-Laplacian in [8] and used to prove a
Wiener criterion for relaxed Dirichlet problems for the subelliptic p-
Laplacian, p > 1, [8] [9]. Moreover in [8] the estimate is used to prove
by suitable comparison method the local Hölder continuity of the solution
of a problem relative to the subelliptic p-Laplacian and to data that are

Entrato in redazione il 9 giugno 2006.

Mathematical Subject Classifications: 31C45, 35J60, 35H20.

Key words: Dirichlet forms, Nonlinear elliptic problems, Subelliptic problems.

The first Author has been supported by the MIUR Research Project n. 2005010173.



336 MARCO BIROLI - S. MARCHI

measures in the corresponding Kato class. In [10], [4] a notion of p-
homogeneous strongly local Dirichlet form is introduced and in [11] a
Harnack inequality is proved for the corresponding harmonic functions
in the Riemannian case.

The goal of the present paper is an extension of the above cited
estimate to the case of problems relative to a p-homogeneous Riemannian
strongly local Dirichlet form with measure data; we also use the estimate
to prove a local Hölder continuity result (with respect to the intrinsic
metric) in the case of data in suitable Kato classes. The result applies in
particular to the case of weighted subelliptic p-Laplacian. We now state
our framework and the result obtained.

1.1. Assumptions and preliminary results.

Firstly we describe the notion of strongly local p-homogeneous
Dirichlet form, p > 1, as given in [4].

We consider a locally compact separable Hausdorff space X with a
metrizable topology and a positive Radon measure m on X such that
supp[m] = X . Let � : L p(X,m) → [0,+∞], p > 1, be a l.s.c. strictly
convex functional with domain D, i.e. D = {v : �(v) < +∞}, such
that �(0) = 0. We assume that D is dense in L p(X,m) and that the
following conditions hold:

(H1) D is a dense linear subspace of L p(X,m), which can be endowed
with a norm ||.||D ; moreover D has a structure of Banach space with
respect to the norm ||.||D and the following estimate holds

c1||v||
p
D ≤ �1(v) = �(v) +

�

X

|v|pdm ≤ c2||v||
p
D

for every v ∈ D, where c1, c2 are positive constants.

(H2) We denote by D0 the closure of D∩C0(X ) in D (with respect
to the norm ||.||D ) and we assume that D ∩ C0(X ) is dense in C0(X )
for the uniform convergence on X .

(H3) For every u, v ∈ D ∩ C0(X ) we have u ∨ v ∈ D ∩ C0(X ),
u ∧ v ∈ D ∩ C0(X ) and

�(u ∨ v) + �(u ∧ v) ≤ �(u) + �(v)

We recall that we can define a Choquet capacity cap(E). Moreover
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we can also define in a natural way the quasi-continuity of a function
and prove that every function in D0 is quasi-continuous and is defined
quasi-everywhere (i.e. up to sets of zero capacity), [10].

The assumptions (H1)(H2)(H3) have a global character; now we
will recall the definition of strongly local Dirichlet functional with a
homogeneity degree p > 1. Let � satisfy (H1)(H2)(H3); we say that �
is a strongly local Dirichlet functional with a homogeneity degree p > 1
if the following conditions hold:

(H4) � has the following representation on D0: �(u) =
�
X α(u)(dx)

where α is a non-negative bounded Radon measure depending on u ∈ D0,
which does not charge sets of zero capacity. We say that α(u) is the
energy (measure) of our functional. The energy α(u) (of our functional) is
convex with respect to u in D0 in the space of measures, i.e. if u, v ∈ D0

and t ∈ [0, 1] then α(tu + (1 − t)v) ≤ tα(u) + (1 − t)α(v), and it is
homogeneous of degree p > 1, i.e. α(tu) = |t | pα(u), ∀u ∈ D0, ∀t ∈ R.

Moreover the following closure property holds: if u n → u in D0 and
α(un) converges to χ in the space of measures then χ ≥ α(u).

(H5) α is of strongly local type, i.e. if u, v ∈ D0 and u−v = constant
on an open set A we have α(u) = α(v) on A.

(H6) α(u) is of Markov type, i.e. if β ∈ C 1(R) is such that β �(t) ≤ 1
and β(0) = 0 and u ∈ D ∩ C0(X ), then β(u) ∈ D ∩ C0(X ) and
α(β(u)) ≤ α(u) in the space of measures.

Let �(u) =
�
X α(u)(dx) be a strongly local Dirichlet functional with

domain D0. Assume that for every u, v ∈ D0 we have

lim
t→0

α(u + tv) − α(u)

t
= µ(u, v)

in the weak� topology of M (where M is the space of Radon measures on
X ) uniformly for u, v in a compact set of D0, where µ(u, v) is defined
on D0 × D0 and is linear in v. We say that �(u, v) =

�
X µ(u, v)(dx) is

a strongly local p-homogeneous Dirichlet form. We observe that (H3) is
a consequence of (H1),(H2), (H4)-(H6).

The strong locality property allow us to define the domain of the form
with respect to an open set O , denoted by D0[O] and the local domain
of the form with respect to an open set O , denoted by Dloc[O]. We
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recall that, given an open set O in X we can define a Choquet capacity
cap(E; O) with respect to the open set O for a set E ⊂ E ⊂ O .
Moreover the sets of zero capacity are the same with respect to O and
to X .

We recall now some properties of strongly local (p-homogeneous)
Dirichlet forms, which will be used in the following, [4] [10]:

(a) µ(u, v) is homogeneous of degree p − 1 in u and linear in v;
we have also µ(u, u) = pα(u).

(b) Chain rule : if u, v ∈ D0 and g ∈ C1(R) with g(0) = 0 and g
�

bounded on R, then g(u), g(v) belong to D0 and

(1.1) µ(g(u), v) = |g
�

(u)|p−2g
�

(u)µ(u, v)

(1.2) µ(u, g(v)) = g
�

(v)µ(u, v)

We observe that we have also a chain rule for α

(1.3) α(g(u)) = |g
�

(u)|pα(u)

(c) Truncation property: for every u, v ∈ D0

(1.4) µ(u+, v) = 1{u>0}µ(u, v)

(1.5) µ(u, v+) = 1{v>0}µ(u, v)

where the above relations make sense, since u and v are defined quasi-
everywhere.

(d) ∀a ∈ R+

(1.6) |µ(u, v)| ≤ α(u + v) ≤ 2p−1a−pα(u)+ 2p−1a p(p−1)α(v)

(e) Leibniz rule with respect to the second argument:

(1.7) µ(u, vw) = vµ(u, w) + wµ(u, v)

where u ∈ D0, v, w ∈ D0 ∩ L∞(X,m).

(f) For any f ∈ L p
�

(X, α(u)) and g ∈ L p(X, α(v)) with 1/p+1/p
�
=

1, f g is integrable with respect to the absolute variation of µ(u, v) and
∀a ∈ R+

(1.8)
| f g|µ(u, v)|(dx) ≤ 2p−1a−p| f |p

�

α(u)(dx)

+ 2p−1a p(p−1)|g|pα(v)(dx)
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(g) Properties (e) and (f) give a Leibniz inequality for α, that is:
there exists a constant C > 0 such that

α(uv) ≤ C[|u|pα(v) + |v|pα(u)]

for every u, v ∈ D0 ∩ L∞(X,m).

We assume that a distance d is defined on X , such that α(d) ≤ m
in the sense of the measures and

(i) The metric topology induced by d is equivalent to the original
topology of X .

(ii) Denoting by B(x, r) the ball of center x and radius r (for the
distance d ), for every fixed compact set K there exist positive constants
c0 and r0 such that

(1.9) m(B(x, r)) ≤ c0m(B(x, s))
�r

s

�ν

∀x ∈ K and 0 < s < r < r0,

We assume without loss of generality p < ν .

Remark 1.1. (a) Assume that

d(x, y) = sup{ϕ(x) − ϕ(y) : ϕ ∈ D ∩ C0(X ), α(ϕ) ≤ m on X }

define a distance on X , which satisfies (i); then d is in Dloc[X ] and
α(d) ≤ m ; so we can use the above defined d as distance on X .

(b) We observe that from (i) and (ii) X has a structure of locally
homogeneous space, [12]. Moreover the condition: for every fixed compact
set K there exist positive constant c1 and r0 such that

0 < m(B(x, 2r)) ≤ c1m(B(x, r)) ∀x ∈ K and 0 < r < 2r0

c1 < 1, implies (ii) for a suitable ν .

(c) From the properties of d it follows that for any x ∈ X there exists
a function φ(.) = φ(d(x, .)) such that φ ∈ D0[B(x, 2r)], 0 ≤ φ ≤ 1,
φ = 1 on B(x, r) and

α(φ) ≤
2

r p
m.

(d) From the assumptions on X and from (ii) the following property
follows: for every fixed compact set K , such that the neighborhood of K
of radius r0 (for the distance d ) is strictly contained in X , there exist a
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positive constant c�
0, depending on c0, such that m(B(x,2r)− B(x, r)) ≥

c�0m(B(x, 2r)) for every x ∈ K and 0 < r <
r0

2
.

We assume also that the following scaled Poincaré inequality holds:
for every fixed compact set K there exist positive constants c2, r1 and
k ≥ 1 such that for every x ∈ K and every 0 < r < r1

(1.10)

�

B(x,r)

|u − ux,r |
pm(dx) ≤ c2r

p

�

B(x,kr)

µ(u, u)(dx)

for every u ∈ Dloc[B(x, kr)], where ux,r =
1

m(B(x, r))

�

B(x,r)

um(dx).

A strongly local p-homogeneous Dirichlet form, such that the above
assumptions hold, is called a Riemannian Dirichlet form. As proved in
[17] the Poincaré inequality imply the following Sobolev inequality : for
every fixed compact set K there exist positive constants c3, r2 and k ≥ 1
such that for every x ∈ K and every 0 < r < r2

(1.11)

�
1

m(B(x, r))

�

B(x,r)

|u|p
∗

m(dx)

� 1
p∗

≤

≤ c3

�
r p

m(B(x, r))

�

B(x,kr)

µ(u, u)(dx)+
r p

m(B(x, r))

�

B(x,r)

|u|pm(dx)

� 1
p

with p∗ =
pν

ν − p
and c3, r2 depending only on c0, c2, r0, r1. We observe

that we can assume without loss of generality r0 = r1 = r2.

Remark 1.2. (a) From (1.10) we can easily deduce by standard methods
that

1

m(B(x, r))

�

B(x,r)

|u|pm(dx) ≤ c�2
r p

m(B(x, r) ∩ {u = 0})

�

B(x,kr)

µ(u, u)(dx)

where c�2 is a positive constant depending only on c2.

(b) From (a) it follows that for every fixed compact set K , such
that the neighborhood of K of radius r0 is strictly contained in X ,

�

B(x,r)

|u|pm(dx) ≤ c�2r
p

�

B(x,r)

µ(u, u)(dx)

for every x ∈ K , u ∈ D0[B(x, r)] and 0 < r <
r0

2
, where c�2 depends

only on c�
2 and c0.
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(c) As a consequence of (d) Remark 1.1 and of the Poincaré inequality
we have the following estimate on the capacity of a ball: for every fixed
compact set K , such that the neighborhood of K of radius r0 is strictly
contained in X , there exists positive constants c4 and c5 such that

c4
m(B(x, r))

r p
≤ cap(B(x, r), B(x, 2r)) ≤ c5

m(B(x, r))

r p

where x ∈ K and 0 < 2r < r0.

Finally we give the definition of Kato space of measures, generalizing
the definition given in [1] in the subelliptic framework:

Definition 1.1. Let σ be a Radon measure. We say that σ is in the Kato
space K (X ) if

limr→0ησ (r) = 0

where

ησ (r) = sup
x∈X

� r

0

� |σ |(B(x, ρ))

m(B(x, ρ))
ρ p

�1/(p−1)dρ

ρ

Let � ⊂ X be an open set; K (�) is defined as the space of Radon
measures σ on � such that the extension of σ by 0 out of � is in
K (X ).

In section 3 we investigate the properties of the space K (�). In
particular we prove that if � is a relatively compact open set of diameter
R̄

2
, then

||σ ||K (�) := ησ (R̄)
p−1

is a norm on K (�) and, as in [3] for the bilinear case, we can prove
that K (�) endowed with this norm is a Banach space. Moreover we
prove that K (�) is contained in D

�
[�], where D

�
[�] denotes the dual

of D0[�].

1.2 Results.

We give now the result that we will prove in the following sections.
Firstly we generalize to our case the pointwise estimate obtained in [2]
in the subelliptic framework.

Let � ⊂ X be a relatively compact open set. We denote by c0, c2, r0
the constants appearing in (1.9) (1.10) relative to the compact set �̄. We
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assume that a neighborhood of � of radius
R̄

2
+r0 is strictly contained in

X ( R̄ = 2diam�), that
�
X µ(u, v)(dx) is a Riemannian (p-homogeneous)

Dirichlet form and that u ∈ Dloc(�) with
�
�
µ(u, u)(dx) < +∞ is a

subsolution of the problem

(1.12)

�

�

µ(u, v) =

�

�

vσ(dx) for every v ∈ D0[�], supp(v) ⊂ �

where σ ∈ D
�
[�], i.e.

(1.13)

�

�

µ(u, v)≤

�

�

vσ(dx) for every positive v ∈ D0[�], supp(v) ⊂ �

Theorem 1.1. Let u ∈ Dloc[�] with
�
�
µ(u, u)(dx) < +∞ be a bounded

subsolution of (1.12). For every x0 ∈ �̄ and r ≤
r0

2

(1.14)

p − f ine − limsupx→x0u(x) ≤

≤ C
� 1

m(B(x0, r))

�

B(x0,r)∩�∩{u>0}

uγm(dx)
� 1

γ

+

+C

� r

0

� σ(B(x0, ρ))

m(B(x0, ρ))
ρ p

� 1
(p−1) dρ

ρ
+ C(1 + ||u||L∞)×

×

� 2r

0

�
cap(B(x0, ρ)\�, B(x0, 2ρ))

ρ p

m(B(x0, ρ))

� 1
(p−1) dρ

ρ
.

Here p−1 < γ <
ν(p−1)
ν+1−p

. Moreover if B(x0, 2r) ⊂ �, then the third term
in the right hand side of (1.14) disappears and the result holds again
for unbounded subsolutions of (1.12).

We observe that we have p − f ine − limsupx→x0u(x) = u(x0) q.e.
in �. Let now σ be in K (�); we are able in this case to generalize the
result obtained in [1] in the subelliptic case to our framework:

Theorem 1.2. Let u be a solution of (1.13); then u is continuous

in �. Moreover if σ(B(x, r)) ≤ C
m(B(x, r))

r p−�
, � > 0, for all small

r ≤ min(r0, d(x, ∂�)), then u is locally Hölder continuous in �.
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2. Proof of Theorem 1.1.

This Section is devoted to prove Theorem 1.1. It is founded on some
preliminaries Lemmas which we state and prove with accuracy. The proof
follow the lines of the proof given in the Euclidean framework in [15],
[16]. We observe that in the proof we denote always by C different
structural constants.

2.1 Preliminaries Lemmas.

Lemma 2.1. Let l ∈ [0,+∞) and let ϕ be a non-negative bounded
Borel measurable function on R which vanishes on (−∞, l). Let λ be
the L1-norm of ϕ . Let ω ∈ D0(�), 0 ≤ ω ≤ 1. Then

(2.1)

�

�

ϕ(u)ω pα(u)(dx) ≤ λp

�

�∩{u>l}

ω p−1|µ(u, ω)|(dx)+λσ({ω > 0})

Proof.. Let �(t) :
� t
0 ϕ(s)ds , L := � ∩ {u > l}. Using the test function

ξ = �(u)ω p in (1.13), we obtain
�

L

ϕ(u)ω pα(u)(dx) ≤ p

�

L

�(u)ω p−1|µ(u, ω)|(dx)+

�

L

�(u)ω p σ(dx)

and then, as � ≤ λ, (2.1) follows.

Let now B = B(x0, r), 0 < r < ro , be an open ball in X . Let ϕ ,
ψ ∈ Dloc[B] ∩ C(X ), η ∈ D0[B] such that 0 ≤ η ≤ 1, 0 ≤ ϕ,ψ ≤ 1,
ηψ ∈ D0[B ∩ �], (1 − ϕ)(1 − ψ) = 0 and α(η) ≤ C

r p
m . Let l ≥ 0.

Moreover we denote ω = ψη and ω0 = ωϕ

Lemma 2.2. (1) If δ > 0, then
�

L

α(wδ)(dx) ≤ Cr−p

�

E

�
1 +

u − l

δ

�γ

m(dx)+

+δ1−p
�
Mp−1

�

L

α(ω0)(dx) + σ(B)
�

where

wδ =

��
1 +

(u − l)+

δ

�γ/q

− 1

�

ω
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where q is defined by the relation
1

γ
=

1

q
+

1

p(p − 1)

(2) There exists a constant κ > 0, depending only on the structural
constants, such that either

� 1

m(B)

�

L

(u − l)γ ωq m(dx)
�(p−1)/γ

≤

≤ C
r p

m(B)

�
(1 + ||u||∞)p−1

�

B

α(ω0)(dx)+ σ(B)
�

if
�

B

α(ω0)(dx) �= 0

or
�

1

m(B)

�

L

(u − l)γωqm(dx)

�(p−1)/γ

≤ C
r p

m(B)
[σ(B)]

(where u may be unbounded) otherwise, provided that

(2.2) m(E) ≤ κc�0m(B)

and

(2.3)

�

E

(u − l)γdx ≤ 2γ c�0

�

L

(u − l)γωq m(dx)

where L := B ∩ � ∩ {u > l}, E := L ∩ {ϕ < 1} and c�0 = 2νc−1
0 .

Proof. (1) We shall suppose
�
B α(ω0)(dx) �= 0 and ||u||∞ < +∞

as otherwise the proof would be easier. We write v =
(u − l)+

δ
, M =

1+||u||∞ and F := L∩{ϕ = 1}. Let us observe that wδ = ((1+v)
γ
q −1)ω

and

((1 + v)
γ
q − 1)p ≤ C min{v p−τ , v p} ≤ Cmin{(1 + v)γ , v p−1}

α(wδ) =

�
γ

q

�p

(1 + v)−τα(v)

where (p − 1)τ = γ , ω = η on E , ω = σ on F . Then
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(2.4)

�

L

α(wδ)(dx) ≤

≤C
� �

L

((1+v)
γ
q −1)pα(ω)(dx)+

�

L

ω pα(((1 +v)
γ
q −1))(dx)

�

≤ C
� �

L

(1 + v)
γ
q − 1)pα(ω)(dx)+

�

L

ω p(1 + v)−τα(v)(dx)
�

≤ C
� �

E

(1 + v)γ α(η)(dx)+ Mp−1δ1−p
�

F

α(ω)(dx)
�

+δ−p

�

E

ω p(1 + v)−τα(u)(dx)+ δ−p

�

F

ω p(1 + v)−τα(u)(dx)

where we take into account that α(ω) ≤ C(α(ω − ω0) + α(ω0)) =

Cα((ω − ω0)
+) + Cα(ω0)) = C(1(ω−ω0)>0α(ω − ω0) + α(ω0)), then

α(ω) ≤ α(ω0) on F ( we recall that 1T denotes the characteristic function
of the set T ).

We estimate the third term in the right hand side of (2.4). We define

ϕ(t) =






�

1 +
(t − l)+

δ

�−τ

if t ≥ l

0 if t < l

and we apply the Lemma 2.1. The L1-norm of ϕ is bounded by (τ−1)−1δ.
We obtain

�

L

ω p(1 + v)−τα(u)(dx) ≤ Cδ
� �

L

ω p−1|µ(u, ω)|(dx)+ σ(B)
�

We consider the integral in the right hand side and we split the integration
on the domains E and F

�

E

ω p−1|µ(u, ω)|(dx) ≤

≤ Cδ
��

δ

�

L

ω p(1 + v)−τα(u)(dx)+ (
�

δ
)1−p

�

E

(1 + v)γ α(ω)(dx)
�

As ω = η on E (E is an open set), then

(2.5)

�

E

ω p−1|µ(u, ω)|(dx) ≤

≤ C
�
�
�
L ω

p(1 + v)−τα(u)(dx)+ δ p�1−p
�
E(1 + v)γ α(η)(dx)

�
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We use now (2.1) with ϕ as the characteristic function of the interval
[l,M] and ω0 instead of ω. We obtain

�

L

ω
p
0α(u)(dx) = CM

� �

L

ω
p−1
0 |µ(u, ω0)|(dx) + σ(B)

�

≤ C�

�

L

ω
p
0α(u)(dx)+ C�1−pδ

�
Mp−1

�

L

α(ω0)(dx)+ σ(B)
�
.

If � is fixed small enough then it follows
�

L

ω
p
0α(u)(dx) ≤ Cδ

�
Mp−1

�

L

α(ω0)(dx)+ σ(B)
�

Then

(2.6)

�

F

ω p(1 + v)−τα(u)(dx) ≤ Cδ
�
Mp−1

�

L

α(ω0)(dx)+ σ(B)
�

where we take into account that ω = ω0 on F . By the same methods
we obtain also

(2.7)

�

F

ω p−1|µ(u, ω)|(dx) ≤ Cδ
�
Mp−1

�

L

α(ω0)(dx)+ σ(B)
�

From (2.4),...,(2.7) we get

(2.8) �

L

α(wδ)(dx) ≤

≤ C

�

E

(1 + v)γ α(η)(dx)+ Cδ1−p
�
Mp−1

�

L

α(ω0)(dx) + σ(B)
�
.

Since α(η) ≤ Cr−pm , then

(2.9)

�

L

α(wδ)(dx) ≤

≤ Cr−p

�

E

(1 + v)γ m(dx)+Cδ1−p
�
Mp−1

�

L

α(ω0)(dx)+σ(B)
�
.

(2) We will use the same notations of the part (1).

Let

δ :=
� 1

km(B)

�

L

(u − l)γωqm(dx)
� 1
γ

where k > 0 is a constant whose choice will be specified later. Let us
observe that k = m(B)−1

�
L v

γωqm(dx). Then, by (2.2) we obtain
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kc�0m(B) = 2c�0

�

L

vγωqdm ≤

�

L

ωq m(dx)+ +2c0

�

L∩{2c�
0
vγ ≥1}

vγωqm(dx)

≤
1

2

�
|E | +

�

F

ω
q
0m(dx)

�
+

�

L

vγωqm(dx)

≤
1

2
k c�0m(B) +

1

2

�

F

ω
q
0m(dx) +

�

L

vγωqm(dx)

Then

km(B) ≤ C
� �

L

vγ ωqm(dx)+

�

B

ω
q
0m(dx)

�

≤ C
� �

L

w
q
δm(dx) +

�

B

ω
q
0m(dx)

�

Using the Sobolev inequality [17] we obtain

(2.10)

k p/q ≤ Cm(B)−p/q
� �

B∩�

w
q
δm(dx)+

�

B

ω
q
0m(dx)

�p/q

≤ C
r p

m(B)

� �

B∩�

α(wδ)(dx)+

�

B

α(ω0)(dx)
�

By (2.9) and (2.10) we obtain

(2.11)

k
p
q
m(B)

r p
≤ C

� �

L

α(wδ)(dx) +

�

B

α(ω0)(dx)
�

≤ Cr−p

�

E

(1 + v)γm(dx)

+ Cδ1−p
�
Mp−1

�

B

α(ω0)(dx)+ σ(B)
�

The assumptions (2.2) and (2.3) imply

(2.12)

�

E

(1 + v)γm(dx) ≤ C
�
m(E) +

�

E

vγm(dx)
�

≤ C
�
m(E) +

�

L

vγωqm(dx)
�

≤ Ckm(B)

From (2.11) and (2.12) we obtain

k
p
q ≤ C∗k + Cδ1−pm(B)−1r p

�
(M + δ)p−1

�

B

α(ω0)(dx) + σ(B)
�
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for some structural constant C ∗. If k < 1 is so small that k p/q−C∗k > 0,
then we obtain

� 1

km(B)

�

L

(u − l)γψqηqm(dx)
�(p−1)/γ

≤

≤ δ p−1 ≤ C
r p

m(B)

�
(M + δ)p−1

�

B

α(ω0)(dx)+ σ(B)
�

So the proof of (2) is completed, since δ ≤ CM .

2.2 Proof of Theorem 1.2.

This proof follows the lines of the proof relative to the Euclidean
case in [15], [16]. We can suppose M = 1 + ||u||∞ < +∞ without lost
of generality otherwise the proof will be simpler. Let B = B(x0, r) and
for any integer j ≥ 0 let r j = 2− j r and Bj = B(x0, rj). Let ηj ∈ D0[Bj],

ηj = 1 on Bj+1 and α(ηj) ≤
C

r
p
j

m . Let gj ∈ D0[Bj−1] ∩ C(X ) such that

0 ≤ gj ≤ 1, gj = 1 on Bj\� and

1

r
p
j−1

�

X

g
p
j m(dx) ≤ c�2

�

X

α(gj)(dx) ≤ Ccap(Bj\�, Bj−1)

We denote

ψj = min(1, (2 − 3gj)
+)

ϕj = min(1, 3gj + 3gj−1) j ≥ 1

and

L j = Bj ∩ � ∩ {u ≥ lj}, Ej = L j ∩ {ϕj < 1}, Fj = L j ∩ {ϕj = 1}.

Then

(2.13)

�

Bj

α(φj)(dx) ≤ C(cap(Bj−1\�, Bj−2) + cap(Bj\�, Bj−2))

�

Bj

α(ψj)(dx) ≤ Ccap(Bj\�, Bj−1)

We define recursively l0 = 0

lj+1 = lj +
� 1

km(Bj)

�

L j

(u − lj)
γψ

q
j η

q
j dm

� 1
γ
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Let

δj = lj+1 − lj

For j ≥ 1 we prove that either

(2.14) δj ≤
1

2
δj−1+C

�� σ(Bj)

m(Bj)
r
p
j

� 1
p−1

+M
� (cap(Bj−1\�, Bj−2)

m(Bj)
r
p
j

�1p−1
�

if
� 2r

0

�capp(B(x0, ρ)\�, B(x0, 2ρ)

m(B(x0, ρ))
ρ p

� 1
p−1 dρ

ρ
�= 0

and

δj ≤
1

2
δj−1 + C

�σ(Bj)

m(Bj)
r
p
j

�1/(p−1)

otherwise. As the second case is easier we prove the first.

The proof is trivial when δ j ≤
1

2
δj−1, so assume δj−1 ≤ 2δj . In this

case, since ψj−1ηj−1 = 1 on Ej , we have

m(Ej)δ
γ

j−1 ≤

�

Ej

(lj − lj−1)
γψ

q
j−1η

q
j−1m(dx) ≤

≤

�

Ej

(u − lj−1)
γψ

q
j−1η

q
j−1m(dx) = km(Bj−1) ≤ kc�0m(Bj)

and
�

Ej

(u − lj)
γm(dx) ≤

�

L j−1

(u − lj−1)
γψ

q
j−1η

q
j−1m(dx) =

= δ
γ

j−1km(Bj−1) ≤ 2γ c�0km(Bj)δ
γ

j =

= 2γ c�0

�

L j

(u − lj)
γψ

q
j η

q
j m(dx)

Thus (2.2) and (2.3) are verified and in virtue of Lemma 2.3 we obtain

δj ≤ C

�� σ(Bj)

m(Bj)
r
p
j

� 1
p−1

+ M
�cap(Bj−1\�, Bj−2)

m(Bj)
r
p
j

� 1
p−1

�

which proves (2.14). A summing routine machinery on (2.14), [15] [16]
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[8] gives now

(2.15)

lim
j
l j ≤ C

�� 1

m(B(x0, r)

�

B(x0,r)∩�∩{u>0}

uγm(dx)
� 1

γ

�

+ C

� r

0

� σ(B(x0, ρ)

m(B(x0, ρ))
ρ p

� 1
p−1 dρ

ρ

+ CM

� 2r

0

�cap(B(x0, ρ)\�, B(x0, 2ρ))

m(B(x0, ρ)
ρ p

� 1
p−1 dρ

ρ

so it remains to prove that p-fine-lim supx→x0
u(x) ≤ C limj l j .

We denote l = lim j lj . For any � > 0 denote

wj = (2
γ
q − 1)−1

��
1 +

(u − l − �)+

�

� γ
q

− 1

�

ψjηj

on � and wj = 0 elsewhere. Then wj ∈ D0[Bj], wj ≥ 1 on
L�
j+1 := Bj+1 ∩ � ∩ {u > l + 2�}. Denote E �

j = L�
j ∩ {ϕj < 1}. Using

Lemma 2.2 we obtain

cap (L�
j+1, Bj) ≤ C

�

Bj

α(wj)(dx) ≤ Cr
−p
j

�

E�
j

�
1 +

u − l − �

�

�γ

m(dx)

+ C�1−p
�

σ(L j) + Mp−1

�

Bj

(α(ϕj) + α(ψj)
�
(dx)

�

It follows

(2.16)
∞�

j=1

�cap(L j+1, Bj)

m(Bj+1)
r
p
j

�1/(p−1)

≤ C

∞�

j=1

�
1

m(Bj)

�

E�
j

�
1 +

u − l − �

�

�γ

m(dx)

�1/(p−1)

+

+C�−1

� �

j

� σ(Bj)

m(Bj)
r
p
j

�1/(p−1)
�

+

MC�−1

� ∞�

j=1

�capp(Bj−1\�, Bj−2)

m(Bj)
r
p
j +

capp(Bj\�, Bj−1)

m(Bj)
r
p
j

�1/(p−1)
�
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We take into account the following estimate

∞�

j=1

(
1

m(Bj)

�

E �
j

(1 +
(u − l − �)

�
)γm(dx))

1
p−1 ≤

≤ C

∞�

j=1

(
1

m(Bj)

�

E �
j

�−γ (u − lj−1)
γm(dx))

1
p−1 ≤

C

∞�

j=1

(
1

m(Bj)

�

L j−1

�−γ (u − lj−1)
γ ηj−1ψj−1 m(dx))

1
p−1 ≤

≤ C

∞�

j=1

(k�−γ δ
γ

j−1)
1
p−1 < +∞

As the remaining part in the right hand side of (2.16) is finite, then
the set � ∩ {u > l + 2�} is p-thin at x0 for any � > 0, so we have
p-fine-lim supx→x0u(x) ≤ C limj l j .

3. Kato Classes of Measures.

Given σ ∈ K (�) we denote again by σ the extension by 0 of
σ to �. In this section we will prove for sake of completeness some
properties of the measures in the Kato class K (�) (relative to the form
under consideration ):

Proposition 3.1. Let σ ∈ K (�). Then |σ |(�) < +∞.

Proof. Let R̄ = 2 diam�. We assume R̄ ≤ r0. By the definition of
K (�), there exists r � > 0 such that

C0

� |σ |(B(x, r�))

m(B(x, r�))
(r �)p

� 1
(p−1)

≤ ησ (r
�) ≤ 1

for every x ∈ X , where C0 is a structural constant. Let x1, x2,..., xn
be such that �̄ ⊆

�n
i=1 B(xi , r

�). Due to the homogeneous structure of

X we have that n can be chosen less than C1

�
R̄

r �

�ν

, where C1 is a
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structural constant. Then

|σ |(�) ≤

n�

i=1

|σ |(B(xi , r
�)) ≤ C−1

0

n

(r �)p
m(BR̄)

≤ C−1
0 C1

�
R̄

r �

�ν
1

(r �)p
m(BR̄)

The result in the general case follows by a covering argument.

Proposition 3.2. Let σ ∈ K (�). Then ησ (R̄) < +∞, where R̄ =

2diam(�).

Proof. By the definition of K (�), there exists r � > 0 such that ησ (r
�) ≤ 1

for every x . Then we have

ησ (R̄) ≤ ησ (r
�) + supx∈X

� R̄

r�

� |σ |(B(x, ρ))

m(B(x, ρ))
ρ p

�1/(p−1)dρ

ρ
≤

≤ 1 + C(r �)[|σ |(�)]1/(p−1)

In virtue of Proposition 3.2, the definition ||σ ||K (�) := ησ (R̄)
(p−1) is well

posed and it is easy to verify that || · ||K (�) is a norm in K (�).

Proposition 3.3. The space K (�) is a Banach space for the norm
||.||K (�) .

Proof. Let σk be a Cauchy sequence in K (�). For every fixed � > 0
there exists k� such that for h, k ≥ k�

ησh−σk (R̄) ≤ �

We have

(|σh − σk |(�))
1

(p−1) ≤ C

�
m(B(x0, R̄))

R̄ p

� 1
(p−1)

ησh−σk (R̄) ≤

≤ C

�
m(B(x0, R̄))

R̄ p

� 1
(p−1)

�

where x0 is a fixed point in � and C a structural constant. Then σk is a
Cauchy sequence in the Radon measures. Since the space of the bounded
Radon measures is complete, the sequence σk converges to a bounded
Radon measure σ , which is zero out of �.



OSCILLATION ESTIMATES RELATIVE TO p-HOMOGENEUOUS, ... 353

We prove that σ ∈ K (�). For every x and r > 0 we have

R̄�

r

�
|σ |(B(x, ρ))

m(B(x, ρ))
ρ p

�1/(p−1)
dρ

ρ
≤ lim

k→0

R̄�

0

�
|σk |(B(x, ρ))

m(B(x, ρ))
ρ p

�1/(p−1)
dρ

ρ

= lim
k→0

ησk (R̄)

then
� R̄

0

� |σ |(B(x, ρ))

m(B(x, ρ))
ρ p

�1/(p−1)dρ

ρ
≤ lim

k→0
ησk (R̄)

so ησ (R̄) ≤ limk→0 ησk (R̄) is finite. By the same methods we can prove
that

ησ (r) ≤ lim
k→0

ησk (r)

for every r > 0. For every � > 0 there exists k� such that

ησ (r) ≤ ησk� (r) + �

Since σk� ∈ K (�), there exists r� such that

ησk� (r�) ≤ �

Then for 0 < r < r�
ησ (r) ≤ 2�

so

lim
r→0

ησ(r) = 0

and σ ∈ K (�).

We prove now that σk converges to σ in K (�). By the same methods
used above we obtain that

R̄�

r

�
|σk − σ |(B(x, ρ))

m(B(x, ρ))
ρ p

�1/(p−1)
dρ

ρ
≤

≤

�
1

p − 1

R̄ p

m(B(x, r))
|σk − σ |(B(x, R̄))

� 1
p−1

We recall that σk converges to σ in the Radon measures and that
σk is a Cauchy sequence in K (�). Then for every � > 0 there exists k�
such that for k ≥ k�

|σk − σ |(X ) ≤ �
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and for h, k ≥ k�

ησk−σh (R̄) ≤ �

We have for k ≥ k�

ησk−σ (R̄) ≤

�
1

p − 1
sup

x∈B(x0,2R̄)

R̄ p

m(B(x, r))
�

� 1
p−1

+ ησ (r) + ησk (r)

Since inf x∈B(x0,2R̄)m(B(x, r)) ≥ δ(r) > 0 the above relation implies that

lim
k→∞

σk = σ

in K (�). Then K (�) is a Banach space.

In the next Proposition we prove that K (�) is contained in D
�
[�],

where D
�
[�] denotes the dual of D0[�]. Moreover we are also able

to estimate ||σ ||D�
[�] in term of the norm ||σ ||K (�) as described in the

following Theorem.

Theorem 3.1. Let σ ∈ K (�). Then σ ∈ D
�
[�] and

(3.1) ||σ ||D�
[�] ≤ C[|σ |(�)ησ (R̄)]

(p−1)/p

Proof. First step. We prove (3.1) in a fixed ball B = B(x0, r), r ≤
r̄0

2
supposing σ ∈ D

�
[B]. Let w ∈ D0[B] be the solution of the problem

(3.2)

�

B

µ(w, v)(dx) =

�

B

vσ(dx)

for every v ∈ D0[B]. By Theorem 1 applied to w± we have

(3.3) sup
B

|w| ≤ C

�� 1

m(B)

�

B

|w|p m(dx)
� 1
p

+ ησ (2r)

�

By (3.3) and the Poincaré inequality we obtain

(3.4) sup
B

|w| ≤ C

�� r p

m(B)

�

B

α(w)(dx)
�1/p

+ ησ (2r)

�

By (3.2) and (3.4) we have

(3.5)

�

B

α(w)(dx) ≤ C|σ |(B)
� r p

m(B)

�

B

α(w)(dx)
� 1
p
+C|σ |(B)ησ (2r)
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Applying Young’s inequality to the first term in the right hand-side of
(3.4) gives

(3.6)

�

B

α(w)(dx) ≤ C|σ |(B)ησ (2r)

From (3.2) we obtain

||σ ||D�
[B] ≤

� �

B

α(w)(dx)
� (p−1)

p

so from (3.5) we conclude the proof of the first step.

Second step. We can assume without loss of generality σ positive.
Fix a small number s > 0. We consider a finite covering of � by balls

Bi = Bxi ,s with s/2 ≤ d(xi , xj) ≤ s ≤
r

8
and such that every point of �

is covered by at most M balls, where M is independent on s . Define

σs =
�

i

σ(Bi)

m(Bi)
1Bim

where 1Bi denotes the characteristic function of Bi . For any arbitrary
x ∈ � and ρ > 0 we have:

(a) If ρ ≥ s , then

σs(B(x, ρ)) ≤ Mσ(B(x, 2ρ))

(b) If ρ < s , then

σs(B(x, ρ)) ≤ C
σ(B(x, 4s))

m(B(x,4s))
m(B(x, ρ))

for a structural constant C .

In fact if ρ ≥ s , then σs(B(x, ρ)) ≤
�

Bi∩B(x,ρ) �=∅

σ(Bi) ≤ Mσ(B(x, 2ρ)).

If ρ < s then for any i such that Bi ∩ B(x, ρ) �= ∅ we have
B(xi , s) ⊂ B(x, 4s) ⊂ B(xi , 8s), so by the duplication property

m(B(xi, s)) ≥ Cm(B(xi, 8s)) ≥ Cm(B(x,4s)).

Then σs(B(x, ρ)) ≤
�

Bi∩B(x,ρ) �=∅

σ(B(x, 4s))

m(B(x,4s))
m(B(x, ρ))
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It follows that for any arbitrary x ∈ � we have
� r

0

�σs(B(x, ρ))

m(B(x, ρ))
ρ p

� 1
(p−1) dρ

ρ
≤ C

� 2r

0

�σ(B(x, ρ))

m(B(x, ρ))
ρ p

� 1
(p−1) dρ

ρ

After extraction of a subsequence we have that σs converges weakly�

to a measure χ ≥ σ . Then we have

||σ ||D�
[B] ≤ C||χ ||D�

[B] ≤ C[σ(�)ησ(2r)]
p−1
p

and the proof is concluded.

The proof in the general case follows by a covering argument.

4. Proof of Theorem 1.2.

Lemma 4.1. Let u ∈ L∞(B(x, r),m), where B(x, 2r) ⊂ �, 2r ≤ r0.
Assume that there exist positive constants C, K and L such that for each

s and t with
1

2
≤ s < t ≤ 1

sup
B(x,sr)

|u| ≤
C

(t − s)L

� 1

m(B(x, tr))

�

B(x,tr)

|u|dm(dx)
� 1
d

+ K

for a certain d > 0. Then for every fixed q > 0 we have

sup
B(x, 1

2
r)

|u| ≤ Cq

�� 1

m(B(x, r))

�

B(x,r)

|u|qm(dx)
� 1
q

+ K

�

where Cq is a structural constant depending on q,C and L.

Proof. If q ≥ d the result follows directly from the assumptions. Let us
assume q < d . If







1

m

�

B

�

x,
2

3
r

��

�

B
�
x, 2

3
r
� |u|dm(dx)







1
d

≤ K

we have

sup
B(x, 1

2
r)

|u| ≤ (6LC + 1)K

and the result follows.
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If
� 1

m(B(x, 2
3r))

�

B(x, 23 r)

|u|dm(dx)
� 1
d

≥ K

we have that for each s and t with
2

3
≤ s < t ≤ 1

(4.1) sup
B(x,sr)

|u| ≤
C1

(t − s)L

� 1

m(B(x, tr))

�

B(x,tr)

|u|dm(dx)
� 1
d

where C1 is a constant depending on C and c0 (the constant in the
duplication inequality). From (4.1) the result follows by the same proof
as in Lemma 5.2 [5].

We prove now a Harnack type inequality, which generalizes the one
given in [11] in the case σ = 0; we think that this inequality can have
an interest in itself.

Proposition 4.2. Let u be a positive solution of (1.12) and B(x, r) ⊂

B(x, (4k + 12)r) ⊂ B(x, R) ⊂ �, 2r ≤ r0. Then

sup
B(x,r)

u ≤ C1 inf B(x,r)u+C2

�� 1

m(B(x, R))

�

B(x,R)

u p+η(R̄)
�2

+1

�

ησ (2r)

Proof. In the proof we indicate by C possibly different structural constants.
Let u be a positive solution of (1.12). We apply Theorem 1.1 with γ = p,
taking into account that u is a subsolution of (1.12) with σ replaced by
|σ |; we obtain

(4.2) sup
B(x,r)

u ≤ C
� 1

m(B(x,2r))

�

B(x,2r)

u pm(dx)
� 1
p

+ Cησ (2r)

where B(x, 4r) ⊂ �. We consider now a fixed ball B(x, r) such that

B(x, 4r) ⊂ � and
1

2
≤ s < t ≤ 1. We consider a finite covering of

B(x, sr) by balls

B(xi,
(t − s)

2
r) = Bi

xi ∈ B

�

x,
(t + s)

2
r

�

. We apply (4.1) to every ball Bi and we obtain

sup
Bi

u ≤ C
� 1

m(2Bi)

�

2Bi

u pm(dx)
� 1
p

+ Cησ(2r)
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where 2Bi = B(xi , (t − s)r)

There exists x̄ in the ball Bī such that supB(x,sr)u − ησ (2r) ≤ u(x̄).
Then

sup
B(x,sr)

u ≤ C
� 1

m(2Bī)

�

2Bī

u p m(dx)
� 1
p

+ Cησ(2r) ≤

≤ C

�
t

(t − s)

� ν
p � 1

m(B(x, tr))

�

B(x,tr)

u pm(dx)
� 1
p

+ Cησ (2r)

Then by Lemma 4.1 for every q > 0 there exists a structural constant
Cq depending on q such that

(4.3) sup
B(x, 12 r)

u ≤ Cq

�� 1

m(B(x, r))

�

B(x,r)

uqm(dx)
� 1
q

+ ησ (2r)

�

where Cq is a structural constant depending on q . Assume that

in f
B(x, R̄

2
)
u ≥ 1 then

1

u
is a a subsolution of (1.12) with σ replaced

by |σ | in B

�

x,
R̄

2

�

. Then we have again

(4.4) sup
B(x, 1

2
r)

1

u
≤ Cq

�� 1

m(B(x, r))

�

B(x,r)

u−qm(dx)
� 1
q

+ ησ (2r)

�

Moreover for any v ∈ D0[B(x,
R

2
)] bounded we have

�

B(x, R
2
)

v pµ(logu, logu)(dx) =

�

B(x, R
2
)

v p(
1

u
)pµ(u, u)(dx) =

=
1

(1 − p)

�

B(x, R
2
)

µ

�

u,

�
1

u

�(p−1)

v p

�

(dx)−
p

(1 − p)

�

B(x, R
2
)

�v

u

�(p−1)

µ(u, v)(dx)=

=
1

(1 − p)

�

B(x, R
2
)

�
1

u

�p−1

v pσ(dx)−
p

(1 − p)

�

B(x, R
2
)

�v

u

�(p−1)

µ(u, v)(dx)

From the above relation,taking into account that in f
B(x, R̄

2
)
u ≥ 1 and

choosing v as a cut-off function between balls we obtain that u is a
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locally bounded mean variation function in B(x, R
2
), i.e.

1

m(B(y, s))

�

B(y,s)

|u − ū y,s|m(dx) ≤ C(1 + ||σ ||K (�))

B(y, 2s) ⊂ B

�

x,
R

2k

�

, s ≤ r0, where C is a structural constant. As in

[5] there exists a suitable fixed q ∈ (0, 1) such that

(4.5) (
1

m(B(x, r))

�

B(x,r)

uqm(dx))(
1

m(B(x,r))

�

B(x,r)

u−qm(dx)) ≤ C

From (4.3) (4.4) (4.5) we obtain

sup
B(x, 1

2
r)

u ≤ C inf B(x, 1
2
r)u+

+C[(inf B(x, 1
2
r)u)(

1

m(B(x, r))

�

B(x,r)

uqm(dx))
1
q + 1]ησ (2r)

To remove the assumption inf
B(x, R̄2 )

u ≥ 1 we apply the above

inequality to (u + 1) and we obtain

sup
B(x, 1

2
r)

u ≤ C inf B(x, 1
2
r)u+

+C{(inf B(x, 1
2
r)u + 1)[(

1

m(B(x, r))

�

B(x,r)

uqm(dx))
1
q + 1] + 1}ησ (2r)

Using now Theorem 1.1 we obtain

sup
B(x, 1

2
r)

u ≤ C inf B(x, 1
2
r)u + C[( sup

B(x, R̄
2
)

u + 1)2 + 1]ησ (2r) ≤

≤ C inf B(x, 1
2
r)u + C

�� 1

m(B(x, R))

�

B(x,R)

u p + η(R̄) + 1
�2

+ 1

�

ησ (2r)

We are now in condition to conclude the proof of Theorem 1.2.
We apply the result in Proposition 4.2 to M2 − u and to u − m2 where
M2 = supB(x,2r)u (m2 = in fB(x,2r)u) and we obtain

oscB(x,r)u ≤ θ oscB(x,2r)u

+ 2C2

�� 1

m(B(x, R))

�

B(x,R)

u p + η(R̄) + 1
�2

+ 1

�

ησ (2r)
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where 0 < θ < 1 is a structural constant. By standard methods ( see
Lemma 8.23 [14]) we obtain

(4.6)
oscB(x,r)u ≤ C

�r

s

�
�
−
lg(θ)
lg2

�

oscB(x,s)u

+ 2C2

�� 1

m(B(x, R))

�

B(x,R)

u p+η(R̄)+1
�2

+1

�

ησ(2s)

for r < 2r < s < R. From (4.6) the result of Theorem 1.2 easily follows.
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