Oscillation, Nutation and Wobble of an Elliptical Rotating Earth with Liquid Outer Core

Po-Yu Shen and L. Mansinha
Department of Geophysics, University of Western Ontario, London, Ontario, Canada

(Received 1975 November 24: in original form 1975 May 20)

Summary

We have constructed a general first-order theory describing those small oscillations of a rotating elliptical earth that are affected by the presence of a liquid outer core. The theory is applicable to free core oscillations and earth tides. Care has been taken to include the effects of the wobble or nutation due to the rotation of the outer core relative to the solid earth. On the basis of the theory the free spheroidal modes of degree 2 and order 1 have been investigated. We have searched for and listed undertones with periods less than 28 hr . No upper limit to the eigenperiods has been detected. It is shown that stable, unstable and neutral polytropic cores are capable of free oscillation. At a period close to the sidereal day the spheroidal mode is accompanied by rigid rotation of the liquid outer core with respect to the solid earth. This is the well-known diurnal wobble of the Earth. It appears probable that the diurnal wobble is one of a class of similar wobbles that involve large toroidal motions in the outer core. Finally, the amplitudes of the $18 \cdot 6$-yr principal nutations has been computed. Excellent agreement is found with observed values.

1. Introduction

The theoretical study of oscillations of a non-rotating spherical earth presents no major problems. The spheroidal and toroidal displacement fields are separable and the dynamical equations of equilibrium can be solved exactly. With the introduction of ellipticity and rotation however, the problem is no longer simple. A complete analytical solution is impossible because of the coupling between the various constituents of the displacement field in the liquid outer core and to a lesser extent in the solid earth.

Historically, the dynamic effects of the liquid core have been recognized through the Chandler wobble and astronomical nutations of the Earth. The discrepancy between the observed and calculated nutation amplitudes, in particular, can only be explained by consideration of the fluidity of the outer core. Nutations are associated with diurnal earth tides, which have periods falling close to one of the free core modes. In the present report, we show that this core mode is essentially a $T_{1}{ }^{1}$ toroidal oscillation of the outer core relative to the solid earth. The possibility of this free mode for an incompressible fluid enclosed in a rigid elliptical shell was first considered by Poincaré (1910). Jeffreys (1948) pointed out its geophysical significance. When Poincare's theory is applied to the Earth, it is found that the period of the Chandler
wobble is shortened and the amplitude of the $18 \cdot 66-\mathrm{yr}$ principal nutation decreased, as compared to the corresponding values for a rigid earth model. Subsequent extensions of Poincare's theory, allowing for the elasticity of the mantle and core, were given by Jeffreys (1949, 1950), Jeffreys \& Vicente (1957a, b) and Molodensky (1961). Jeffreys \& Vicente used a variational method that leads to some ambiguity in the degree of approximation and some puzzling results. For example, for P_{1} tide with $n / \omega=1 / 183$, the function ζ / ζ_{0} was given by 0.9707 (Table 1, Jeffreys \& Vicente 1957b). This gives rise to a correction for the nutation amplitude of the wrong sign. A result which is difficult to understand, however, is the ratio of Love numbers, k / h. Jeffreys \& Vicente obtained a value of 0.412 for diurnal tides and 0.493 for semi-diurnal tides. Molodensky (1961), Shen (1975), and the present work, on the other hand, show that k / h is equal to about 0.495 for both diurnal and semi-diurnal tides. The present theory on diurnal carth tides and nutations is nearly identical with Molodensky's and agrees well with the observations on nutations. For a topical review of problems of the rotation of the Earth the reader is referred to the paper by Rochester (1973).

Free oscillation modes with periods longer than the fundamental elastic mode of the Earth have been ascribed to the liquid core (Alterman, Jarosch \& Pekeris 1959). These modes are now called undertones by Smylie (1974). Smylie considered the effects of rotation on a spherical earth. But he limited himself to the effects of self coupling due to Coriolis force. Crossley (1975) extends Smylie's work to cover cross-couplings. But the effects of centrifugal force and ellipticity are neglected. Smith (1974) gives a more complete treatment but without numerical results.

One approach to the problem of earth dynamics is to consider rotation and ellipticity as perturbations to a spherical, non-rotating earth. The eigenfrequency and eigenfunction are expanded in power series of the ratio of the angular speed of rotation to the unperturbed eigenfrequency, or, the ellipticity. For the elastic oscillations of the Earth, the first-order perturbation methods yield adequate results (Dahlen 1968; Luh 1974; Review by Alterman, Eyal \& Merzer 1974). This is because the power series converge rapidly. For long-period core oscillations the situation is different. The eigenfrequency may differ significantly from the unperturbed value so that the convergence of the power series become doubtful (Dahlen 1968). In this case very high order perturbation schemes must be used.

Initially we sought to extend Molodensky's theory to general harmonic oscillations of the Earth. However, this theory was formulated specifically for diurnal earth tides and required an Adams \& Williamson (1923) core and was unsuitable for a general treatment. In the present report we construct a general theory which takes into account the dynamic effects of the liquid core. The set of ordinary differential equations that govern the motion within the elliptical rotating earth and the motions in space is derived. The logical organization of the theory is illustrated in Fig. 1. It is emphasized here that Euler's equation for angular momentum is necessary for those oscillation modes that involve motion of the axis of rotation within the Earth.

Uniform rotation occurs when the axis of maximum or minimum moment of inertia concides with the axis of angular momentum and the rotation axis. Internal redistribution of angular momentum or mass gives rise to excursions of the principal axis and rotation axis from the angular momentum vector. Motion of rotation axis in space accompanies motion within the Earth. For brevity we depart somewhat from the conventional definitions of wobble and nutation. The free motion is called wobble and a forced motion is called nutation. Thus wobble implies the free motion of the rotation axis within the Earth as well as the accompanying motion in space. Similarly nutation implies the forced motion of the rotation axis in space and the simultaneous motion of the rotation axis within the Earth. In this report we are primarily concerned with wobbles related to free oscillation, and, nutations caused by the tidal potential.

The real difficulty in dealing with the oscillations of an elliptical rotating earth lies

Fig. 1. Logical organization of the theory.
in the numerical solution of the infinite set of coupled ordinary differential equations. Truncation of the coupling sequence is inevitable for a numerical solution. The problem is essentially the same as the one encountered in perturbation methods. Convergence of the truncation scheme has not been established. In the present work, to make numerical solutions possible, the hydrodynamic equations are simplified to the extent that the effects of rotation and ellipticity in the solid earth can be neglected. However, it is emphasized that such an approximation must be considered incomplete.

There is incomplete knowledge concerning the density stratification of the liquid outer core. The radial variation of density may be gravitationally unstable, neutral or stable (Pekeris \& Accad 1972). In a non-rotating earth oscillation is only possible with a stable stratification. We have computed the spectra of free spheroidal core oscillation of degree 2 and order 1 and the tidal Love numbers for diurnal earth tides. The results show that all three types of polytropic cores are capable of free oscillation. The periods however, depend on the nature of density stratification of the liquid core. Observation of the periods should prove to be of diagnostic value in choosing between various core models.

The free spheroidal oscillations of degree 2 and order 1 are associated with wobbles, and diurnal tides are associated with nutations. Due to the existence of a nearly diurnal free oscillation the diurnal tides and nutations exhibit resonance effects.

There has been a recent upsurge of interest in the diurnal wobble of the earth. (Rochester, Jensen \& Smylie 1974). Predictions of the diurnal wobble are based on rather simple calculations on rotating fluids in oblate containers (Poincaré 1910; Toomre 1974). We show that the diurnal wobble is the consequence of toroidal motion of the entire outer core associated with a tesseral spheroidal oscillation of the Earth. We also confirm Toomre's speculation on the possibility of a set of other wobbles of the Earth due to toroidal motion in the core.

Finally, we have computed the amplitudes of nutations for different core modes and compared with observed values. The results for neutral cores agree with those of Molodensky.

2. Equations of motion

To describe the dynamic behaviour of the Earth, consider a cartesian reference frame (x_{1}, x_{2}, x_{3}) 'rotating with the Earth' in space at an angular velocity $\Omega=\left(\Omega_{1}, \Omega_{2}, \Omega_{3}\right)$. There are several methods of attaching the cartesian frame to the Earth (Munk \& Macdonald 1960). Because of the simple form of Euler's equations we choose to attach the rotating frame to the principal axes of the Earth. The polar axis of figure of the Earth is chosen as the z axis.

If the Earth is subject only to diurnal rotation, the vector Ω can be written as

$$
\begin{equation*}
\Omega=(0,0, \omega) . \tag{1}
\end{equation*}
$$

This is valid for all free or forced oscillations of the Earth with polar axial symmetry. However, the axis of rotation is disturbed by a class of tesseral spheroidal oscillations. In this report we are particularly concerned with spheroidal oscillations of the Earth of degree 2 and order 1. The rotation vector then becomes

$$
\begin{equation*}
\Omega=(\omega \varepsilon \cos \sigma t, \omega \varepsilon \sin \sigma t, \omega) . \tag{2}
\end{equation*}
$$

Here σ is the angular frequency of a spheroidal oscillation of degree 2 , order 1 , and ε is the amplitude of the related wobble or a constant proportional to the amplitude of the related nutation if the oscillation is forced.

The theoretical treatment of the problems of deformation of the Earth presents some difficulties due to the existence of the liquid core. However, for small oscillations, the Lagrangian and Eulerian formulations are equivalent. Then the deformation of the Earth can be described by the displacement vector $u=\left(u_{1}, u_{2}, u_{3}\right)$ of each material particle.

The equation of motion in tensor notation is

$$
\begin{equation*}
\rho \frac{d^{2} u_{i}}{d t^{2}}=\rho F_{i}+\rho \frac{\partial W}{\partial x_{i}}+\frac{\partial}{\partial x_{j}} T_{j i}, i=1,2,3, \tag{3}
\end{equation*}
$$

where ρ is the mass density, $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$ the external force density. W the potential of self gravitation, and $T_{i j}$ the stress tensor.

The acceleration $d^{2} u / d t^{2}$ is in an inertial reference frame. For motion in a rotating co-ordinate system, the acceleration in the inertial frame is given by

$$
\begin{equation*}
\frac{d^{2} \mathbf{u}}{d t^{2}}=\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+2 \boldsymbol{\Omega} \times \frac{\partial \mathbf{u}}{\partial t}+\frac{\partial \boldsymbol{\Omega}}{\partial t} \times \mathbf{r}+(\boldsymbol{\Omega} . \mathbf{r}) \boldsymbol{\Omega}-(\boldsymbol{\Omega} . \boldsymbol{\Omega}) \mathbf{r}, \tag{4}
\end{equation*}
$$

where $\partial / \partial t$ is the time deviative in the rotating frame. In equation (4) second-order quantitives in u have been ignored. In spherical co-ordinates, (4) becomes

$$
\begin{align*}
& \frac{d^{2} u_{r}}{d t^{2}}=\frac{\partial^{2} u_{r}}{\partial t^{2}}-2 \omega \sin \theta \frac{\partial u_{\phi}}{\partial t}-\frac{2}{3} \omega \sigma \varepsilon r P_{2}{ }^{1}(\cos \theta) \cos (\sigma t-\phi) \\
& -\frac{\partial}{\partial r}\left(W_{\mathrm{c}}+\frac{\sigma+\omega}{\omega} W_{\mathrm{T}}\right), \\
& \frac{d^{2} u_{\theta}}{d t^{2}}=\frac{\partial^{2} u_{\theta}}{\partial t^{2}}-2 \omega \cos \theta \frac{\partial u_{\phi}}{\partial t}+\frac{8}{5} \omega \sigma \varepsilon r \frac{P_{1}{ }^{1}(\cos \theta)}{\sin \theta} \cos (\sigma t-\phi) \tag{5}\\
& -\frac{4}{15} \omega \sigma \varepsilon r \frac{P_{3}{ }^{1}(\cos \theta)}{\sin \theta} \cos (\sigma t-\phi)-\frac{1}{r} \frac{\partial}{\partial \theta}\left(W_{\mathrm{c}}+\frac{\sigma+\omega}{\omega} W_{\mathrm{T}}\right), \\
& \left.\frac{d^{2} u_{\phi}}{d t^{2}}=\frac{\partial^{2} u_{\phi}}{\partial t^{2}}+2 \omega \sin \theta \frac{\partial u_{r}}{\partial t}+2 \omega \cos \theta \frac{\partial u_{\theta}}{\partial t}-\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(W_{\mathrm{c}}+\frac{\sigma+\omega}{\omega} W_{\mathrm{T}}\right) .\right)
\end{align*}
$$

The various terms used in (5) are defined as follows:
$P_{n}{ }^{m}(\cos \theta)$ is the associated Legendre function of degree n and order m.
For $m \geqslant 0, P_{n}{ }^{m}(u)$ is defined as

$$
P_{n}^{m}(u)=\frac{\left(1-u^{2}\right)^{m / 2}}{2^{n} n!} \frac{d^{n+m}}{d u^{n+m}}\left(u^{2}-1\right)^{n},(-1 \leqslant u \leqslant 1) .
$$

For - ve m it is defined as $P_{n}^{|m|}(\cos \theta)$.
W_{c} is the centrifugal potential, given by

$$
\begin{equation*}
W_{\mathrm{c}}=\frac{1}{2} \omega^{2} r^{2} \sin ^{2} \theta \tag{6}
\end{equation*}
$$

W_{T} is the tesseral potential arising from the variation of latitude caused by motion of the rotation axis and is given by

$$
\begin{equation*}
W_{\mathrm{T}}=W_{t}(r) P_{2}^{1}(\cos \theta) \cos (\sigma t-\phi), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{t}(r)=-\frac{1}{3} \varepsilon \omega^{2} r^{2} . \tag{8}
\end{equation*}
$$

In order to determine W and $T_{i j}$, we make the following assumptions:
(i) The Earth is initially in hydrostatic equilibrium.
(ii) In the initial state, the equipotential surfaces coincide with the surface of equal density, compressibility and rigidity etc.
(iii) The dynamic stress-strain relation is that for a perfectly elastic and isotropic earth.

We define the following terms: $e(r)$ is the ellipticity of a surface of equal density; $g(r)$ is the gravitational acceleration; $\rho_{0}(r)$ is the initial mass density; W_{m} is the initial gravitational potential due to $\rho_{0}(r) ; W_{0}$ is the total potential; $W_{r}(r)$ is a function of r only. The following relations hold (Jeffreys 1959, p. 145):

$$
\begin{gather*}
\nabla^{2} W_{\mathrm{m}}=-4 \pi G \rho_{0}, \tag{9}\\
W_{0}=W_{\mathrm{m}}+W_{\mathrm{c}}, \tag{10}\\
g(r)=-W_{0}^{\prime} \doteqdot-\frac{d}{d r} W_{0}(r), \tag{11}\\
W_{0}=W_{r}(r)+b(r) \sin ^{2} \theta, \tag{12}\\
b(r)=e(r) g(r) r \tag{13}\\
\nabla P=\rho_{0} \nabla W_{0} . \tag{14}
\end{gather*}
$$

The prime over W_{0} in equation (11) indicates the derivative of W_{0} along the external normal to the equipotential surface. This convention will be followed hereafter.

Assumption (ii) enables us to write

$$
\begin{align*}
& \frac{\partial \rho_{0}}{\partial x_{i}}=\frac{\rho_{0}^{\prime}}{W_{0}^{\prime}} \frac{\partial W_{0}}{\partial x_{i}}, \\
& \frac{\partial \lambda}{\partial x_{i}}=\frac{\lambda^{\prime}}{W_{0}^{\prime}} \frac{\partial W_{0}}{\partial x_{i}}, \tag{15}\\
& \frac{\partial \mu}{\partial x_{i}}=\frac{\mu^{\prime}}{W_{0}^{\prime}} \frac{\partial W_{0}}{\partial x_{i}},
\end{align*}
$$

where λ and μ are Lame's constants.
Furthermore, we can also write (Dahlen 1968)

$$
\begin{align*}
\rho_{0} & =\rho_{\mathrm{s}}(r)+\frac{\rho_{\mathrm{s}}^{\prime}}{W_{0}^{\prime}} b(r) \sin ^{2} \theta, \\
\lambda & =\lambda_{\mathrm{s}}(r)+\frac{\lambda_{\mathrm{s}}^{\prime}}{W_{0}^{\prime}} b(r) \sin ^{2} \theta, \tag{16}\\
\mu & =\mu_{\mathrm{s}}(r)+\frac{\mu_{\mathrm{o}}^{\prime}}{W_{0}^{\prime}} b(r) \sin ^{2} \theta,
\end{align*}
$$

where $\rho_{\mathrm{s}}, \lambda_{\mathrm{s}}$ and μ_{s} are the values of ρ_{0}, λ, and μ respectively for an equivalent spherical earth.

With assumption (iii) the additional stress $\tau_{i j}$ due to the deformation is given by

$$
\begin{equation*}
\tau_{i j}=\lambda \Delta \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\operatorname{div} \mathbf{u} \tag{18}
\end{equation*}
$$

is the dilatation, and $\delta_{i j}$ the Kronecker delta.

Due to deformation, there is a variation in volume density. The equation of continuity gives

$$
\begin{equation*}
\rho-\rho_{0}=\operatorname{div}(\rho \mathbf{u}) \tag{19}
\end{equation*}
$$

Using (15), we get

$$
\begin{equation*}
\rho-\rho_{0}=-\rho_{0} \Delta-\frac{\rho_{0}^{\prime}}{W_{0}^{\prime}} \eta . \tag{20}
\end{equation*}
$$

The work done by the deformation is η and is given by

$$
\begin{equation*}
\eta=u_{r} \frac{\partial W_{0}}{\partial r}+u_{\theta} \frac{1}{r} \frac{\partial W_{0}}{\partial \theta}+u_{\phi} \frac{1}{r \sin \theta} \frac{\partial W_{0}}{\partial \phi} . \tag{21}
\end{equation*}
$$

The variation in volume density gives rise to a change in gravitational potential, W_{a}, which satisfies

$$
\begin{equation*}
\nabla^{2} W_{\mathrm{a}}=-4 \pi G\left(\rho-\rho_{0}\right)=4 \pi G\left(\rho_{0} \Delta+\frac{\rho_{0}^{\prime}}{W_{0}^{\prime}} \eta\right) \tag{22}
\end{equation*}
$$

The total potential of self-gravitation is then given by

$$
W=W_{\mathrm{m}}+W_{\mathrm{a}}
$$

Since $W_{\mathrm{m}}=W_{0}-W_{\mathrm{c}}$, we get

$$
\begin{equation*}
W=W_{0}+W_{\mathbf{a}}-W_{\mathrm{c}} . \tag{23}
\end{equation*}
$$

The stress $T_{i j}$ consists of the initial hydrostatic stress $T_{0 i j}$ and the additional stress $\tau_{i j}$. Since the initial hydrostatic pressure at a point \mathbf{r} in the deformed state is the hydrostatic pressure at the point originally at $(\mathbf{r}-\mathbf{u})$, we find

$$
\begin{aligned}
T_{0 i j} & =-P(\mathbf{r}-\mathbf{u}) \delta_{i j} \\
& =-(P(\mathbf{r})-\mathbf{u} \cdot \nabla P) \delta_{i j} .
\end{aligned}
$$

Using (14) and (21) in the above equation, we get

$$
\begin{equation*}
T_{0 i j}=-\left(P-\rho_{0} \eta\right) \delta_{i j} \tag{24}
\end{equation*}
$$

Combining (24) and (17), we find that

$$
\begin{equation*}
T_{i j}=\left(-P+\rho_{0} \eta+\lambda \Delta\right) \delta_{i j}+\mu\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) . \tag{25}
\end{equation*}
$$

Using (5), (23) and (25) in (3), we obtain, with the help of (15), the equation of motion for an elliptical rotating earth:

$$
\begin{align*}
\frac{\partial^{2} u_{r}}{\partial t^{2}}- & 2 \omega \sin \theta \frac{\partial u_{\phi}}{\partial t}-2 / 3 \omega \sigma \varepsilon r P_{2}^{1}(\cos \theta) \cos (\sigma t-\phi) \\
= & F_{r}+\frac{\partial}{\partial r}\left(W_{\mathrm{a}}+\frac{\sigma+\omega}{\omega} W_{\mathrm{T}}+\eta+\frac{\lambda \Delta}{\rho_{0}}\right)-\beta(r) \Delta \frac{\partial W_{0}}{\partial r} \\
& +\frac{1}{\rho_{0}}\left\{\nabla \mu \cdot\left(\nabla u_{r}+\frac{D \mathbf{u}}{\partial r}\right)+\mu\left(\nabla^{2} u_{r}+\frac{\partial \Delta}{\partial r}\right)\right. \\
& \left.+\frac{2 \mu}{r}\left(\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}-\Delta\right)\right\}, \tag{26}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial^{2} u_{\theta}}{\partial t^{2}}-2 \omega \cos \theta \frac{\partial u_{\phi}}{\partial t}+\frac{8}{5} \omega \sigma \varepsilon r \frac{P_{1}{ }^{1}(\cos \theta)}{\sin \theta} \cos (\sigma t-\phi) \\
& -\frac{4}{15} \omega \sigma \varepsilon r \frac{P_{1}{ }^{3}(\cos \theta)}{\sin \theta} \cos (\sigma t-\phi) \\
& =F_{\theta}+\frac{1}{r} \frac{\partial}{\partial \theta}\left(W_{\mathrm{a}}+\frac{\sigma+\omega}{\omega} W_{\mathrm{T}}+\eta+\frac{\lambda \Delta}{\rho_{0}}\right)-\beta(r) \frac{\Delta}{r} \frac{\partial W_{0}}{\partial \theta} \\
& +\frac{1}{\rho_{0}}\left\{\nabla \mu \cdot\left(r \nabla\left(\frac{u_{\theta}}{r}\right)+\frac{D \mathbf{u}}{r \partial \theta}\right)+\mu\left(\nabla^{2} u_{\theta}+\frac{\partial \Delta}{r \partial \theta}\right)\right. \\
& \left.+\frac{2}{r^{2}} \frac{\partial}{\partial \theta}\left(\mu u_{r}\right)-\frac{\mu}{r^{2} \sin ^{2} \theta}\left(u_{\theta}+2 \cos \theta \frac{\partial u_{\phi}}{\partial \phi}\right)\right\}, \tag{27}\\
& \frac{\partial^{2} u_{\phi}}{\partial t^{2}}+2 \omega \sin \theta \frac{\partial u_{r}}{\partial t}+2 \omega \cos \theta \frac{\partial u_{\theta}}{\partial t} \\
& =F_{\phi}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}\left(W_{\mathrm{a}}+\frac{\sigma+\omega}{\omega} W_{\mathrm{T}}+\eta+\frac{\lambda \Delta}{\rho_{0}}\right)-\beta(r) \frac{\Delta}{r \sin \theta} \frac{\partial W_{0}}{\partial \phi} \\
& +\frac{1}{\rho_{0}}\left\{\nabla \mu .\left(r \sin \theta \nabla\left(\frac{u_{\phi}}{r \sin \theta}\right)+\frac{1}{r \sin \theta} \frac{D \mathbf{u}}{\partial \phi}\right)+\mu\left(\nabla^{2} u_{\phi}+\frac{1}{r \sin \theta} \frac{\partial \Delta}{\partial \phi}\right)\right. \\
& \left.+\frac{2}{r^{2} \sin \theta} \frac{\partial \mu}{\partial \phi}\left(\cot \theta u_{\theta}+u_{r}\right)+\frac{\mu}{r^{2} \sin \theta}\left(2 \frac{\partial u_{r}}{\partial \phi}+2 \cot \theta \frac{\partial u_{\theta}}{\partial \phi}-\frac{u_{\phi}}{\sin \theta}\right)\right), \tag{28}
\end{align*}
$$

where

$$
\begin{gather*}
\beta(r)=-\frac{\lambda \rho_{0}^{\prime}}{\rho_{0}^{2} W_{0}^{\prime}}+1, \\
\frac{D \mathbf{u}}{\partial r}=\rho \frac{\partial u_{r}}{\partial r}+\hat{\theta} r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)+\hat{\phi} r \frac{\partial}{\partial r}\left(\frac{u_{\phi}}{r}\right), \tag{29}\\
\frac{D \mathbf{u}}{r \partial \theta}=\rho \frac{\partial u_{r}}{r \partial \theta}+\hat{\theta} \frac{\partial u_{\theta}}{r \partial \theta}+\hat{\phi} \sin \theta \frac{\partial}{r \partial \theta}\left(\frac{u_{\phi}}{\sin \theta}\right),
\end{gather*}
$$

and

$$
\frac{1}{r \sin \theta} \frac{D \mathbf{u}}{\partial \phi}=r \frac{1}{r \sin \theta} \frac{\partial u_{r}}{\partial \phi}+\hat{\theta} \frac{1}{r \sin \theta} \frac{\partial u_{\theta}}{\partial \phi}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi} .
$$

Equations (26), (27) and (28) are equivalent to the equations of motion derived by Molodensky (1961).

3. Expansion in spherical harmonics

The displacement vector $\mathbf{u}=\left(u_{r}, u_{\theta}, u_{\phi}\right)$ for a harmonic oscillation of the Earth of angular frequency σ can be expanded in spheroidal and toroidal fields. The displacement fields are generally given in complex form which includes spatial and temporal phase information. However, for the purpose at hand phase is irrelevant and the real
form may be used. Then the components of a spheroidal field $\mathrm{S}_{n}{ }^{m}(r, \theta, \phi)$ of degree n and order m are given by

$$
\begin{align*}
\left(\mathbf{S}_{n}^{m}\right)_{r} & =U_{n}^{m}(r) P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi), \\
\left(\mathbf{S}_{n}^{n}\right)_{\theta} & =V_{n}^{m}(r) \frac{\partial}{\partial \theta} P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi), \tag{30}\\
\left(\mathbf{S}_{n}^{m}\right)_{\phi} & =m V_{n}^{m}(r) \frac{1}{\sin \theta} P_{n}^{m}(\cos \theta) \sin (\sigma t-m \phi),
\end{align*}
$$

and the components of a toroidal field of degree n and order m by

$$
\begin{align*}
& \left(\mathbf{T}_{n}^{m}\right)_{r}=0, \\
& \left(\mathbf{T}_{n}^{m}\right)_{\theta}=-m T_{n}^{m}(r) \frac{1}{\sin \theta} P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi), \tag{31}\\
& \left(\mathbf{T}_{n}^{m}\right)_{\psi}=-T_{n}^{m}(r) \frac{\partial}{\partial \theta} P_{n}^{m}(\cos \theta) \sin (\sigma t-m \phi)
\end{align*}
$$

The factor $(\sigma t-m \phi)$ determines the sense of motion as prograde or retrograde. For $m \geqslant 0$ a positive σ gives a prograde motion and a negative σ gives a retrograde motion. In the present work, we follow the convention adopted by Molodensky (1961) and consider σ as negative.

The main effect of ellipticity and rotation of the Earth is to bring about a coupling between spheroidal and toroidal fields of the same order. Thus an eigenfunction will have a displacement of the form

$$
\mathbf{u}=\mathbf{S}_{m}^{m}+\mathbf{T}_{m+1}^{m}+\mathbf{S}_{m+2}^{m}+\mathbf{T}_{m+3}^{m}+\ldots,
$$

or

$$
\mathbf{u}=\mathbf{T}_{m}^{m}+\mathbf{S}_{m+1}^{m}+\mathbf{T}_{m+2}^{m}+\mathbf{S}_{m+3}^{m}+\ldots,
$$

(Dahlen 1968; Smith 1974; Crossley 1975; Shen 1975). In the outer core, due to the vanishing of rigidity, the coupling between spheroidal and toroidal fields is strong. Crossley (1975), in treating the $\mathbf{S}_{\mathbf{2}}{ }^{2}$ core oscillations for a stable core, considered the effects of coupling from $\mathbf{S}_{n}{ }^{2}$ and $\mathbf{T}_{n}{ }^{2}$ up to $\mathbf{S}_{52}{ }^{2}$. The results indicate that due to the rotation of the Earth, there exist infinite number of critical periods by which the free periods are divided into allowed and forbidden zones. The first allowed zone is found to be bounded above by a decreasing period which eventually reaches 12 sidereal hours. In view of Crossley's analysis, it is obvious that large errors will be introduced when a severe truncation of the coupling chain is made. However, until a better approach to the problem is found, numerical solutions are possible only for simple approximations. As a preliminary work, here we consider a displacement for the liquid outer core of the form

$$
\begin{equation*}
\mathbf{u}=\mathbf{T}_{n-1}^{m}+\mathbf{S}_{n}^{m}+\mathbf{T}_{n+1}^{m} \tag{32}
\end{equation*}
$$

Here \mathbf{T}_{n-1}^{m} does not exist if n is equal to or smaller than m. We note that (32) is of the same form considered by Smith (1974) and Crossley (1975). With (32) as displacement for the outer core, the effects of rotation and ellipticity can be neglected in the solid Earth. This simplification is permitted by the boundary conditions (see equations (42)) and its validity has been demonstrated numerically by Crossley (1975). Thus corresponding to (32), the displacement in the solid earth assumes the simple form of $\mathrm{S}_{n}{ }^{m}$.

The equations of motion for the liquid outer core may be expanded in spherical harmonics using (32) as the displacement. The resulting finite set of ordinary differential equations over radius is of the fourth order. However, the exact expansion
is possible and requires about the same amount of work. We therefore work out the infinite set of ordinary differential equations which may prove useful in future when numerical methods can be improved upon.

The general displacement for an elliptical, rotating Earth under harmonic oscillation of angular frequency σ are given by

$$
\begin{equation*}
\mathbf{u}=\sum_{n} \mathbf{S}_{n}^{m}+\sum_{l} \mathbf{T}_{l}^{m} \tag{32a}
\end{equation*}
$$

where the displacement fields $\mathbf{S}_{n}{ }^{m}$ and $\mathbf{T}_{n}{ }^{m}$ are given by (30) and (31) respectively. The summations in (32a) are over

$$
\begin{aligned}
n & =|m|,|m|+2,|m|+4, \ldots \\
\text { and } l & =|m|+1,|m|+3,|m|+5, \ldots
\end{aligned}
$$

or over

$$
\begin{aligned}
n & =|m|+1,|m|+3,|m|+5, \ldots \\
\text { and } l & =|m|,|m|+2,|m|+4, \ldots
\end{aligned}
$$

A summation over m is not necessary at present since displacement fields with different m are separable. For the same reason, from now on, we can drop the superscript m without any danger of confusion.

The equations of equilibrium can be reduced to an infinite set of ordinary differential equations. Our notation differs from the conventional y notations introduced by Alterman et al. (1959). However, the y notation is convenient only for treatment of a spherical Earth. In the present study we choose to follow a different but more descriptive notation.

With the displacement given by (32a), the following expressions are general:

$$
\begin{align*}
W_{\mathrm{a}} & =\sum_{n} H_{n}(r) P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi) \tag{33.1}\\
\eta & =\sum_{n} \eta_{n}(r) P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi) \tag{33.2}\\
\Delta & =\sum_{n} \Delta_{n}(r) P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi) \tag{33.3}
\end{align*}
$$

$$
\begin{equation*}
\frac{\lambda \Delta}{\rho_{0}}=\sum X_{n}(r) P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi) \tag{33.4}
\end{equation*}
$$

$$
\begin{equation*}
F_{r}=\sum_{n} F_{n}(r) P_{n}^{m}(\cos) \theta \cos (\sigma t-m \phi), \tag{33.5}
\end{equation*}
$$

$$
\begin{equation*}
F_{\theta}=\sum_{n} F_{n}(r) \frac{\partial}{\partial \theta} P_{n}^{m}(\cos \theta) \cos (\sigma t-m \phi), \tag{33.6}
\end{equation*}
$$

$$
\begin{equation*}
F_{\phi}=m \sum_{n} F_{n}(r) \frac{1}{\sin \theta} P_{n}^{m}(\cos \theta) \sin (\sigma t-m \phi) \tag{33.7}
\end{equation*}
$$

The summations over n in (33) are the same as in (32a).
Using (32a) in (21), and equating the resulting equation to (33.2) we find

$$
\begin{aligned}
\eta_{n}(r)= & -\frac{(n-1-m)(n-m)}{(2 n-3)(2 n-1)}\left(b(r) U_{n-2}-(n-2) \frac{2 b}{r} V_{n-2}\right) \\
& +m\left(-\frac{n-m}{2 n-1}\right) \frac{2 b}{r} T_{n-1}+\left(-\frac{n(n+1)-3 m^{2}}{(2 n-1)(2 n+3)}\right) \frac{2 b}{r} V_{n}
\end{aligned}
$$

$$
\begin{align*}
& +\left(\frac{2\left(n^{2}+n-1+m^{2}\right)}{(2 n-1)(2 n+3)} b-g\right) U_{n}+m\left(-\frac{n+1+m}{2 n+3}\right) \frac{2 b}{r} T_{n+1} \\
& +\left(-\frac{(n+1+m)(n+2+m)}{(2 n+3)(2 n+5)}\right)\left(b U_{n+2}+(n+3) \frac{2 b}{r} V_{n+2}\right) \tag{34}
\end{align*}
$$

The dot over b in (34) indicates the derivative witth respect to the radius. This convention will be followed hereafter.

Using (32) in (18), and equating the resulting equation to (33.3), we find

$$
\begin{equation*}
\Delta_{n}=\dot{U}_{n}+\frac{2}{r} U_{n}-\frac{n(n+1)}{r} V_{n} . \tag{35}
\end{equation*}
$$

Using (16) in $\lambda \Delta / \rho_{0}$, we find

$$
\begin{align*}
& X_{n}(r)=\frac{\lambda_{s}}{\rho_{s}} \Delta_{n}+\frac{\lambda_{s}}{\rho_{s}}\left(\frac{\lambda_{s}}{\lambda_{s}}-\frac{\dot{\rho}_{s}}{\rho_{s}}\right) \frac{b(r)}{W_{0}^{\prime}}\left(-\frac{(n-1-m)(n-m)}{(2 n-3)(2 n-1)} \Delta_{n-2}\right. \\
&\left.+\frac{2\left(n^{2}+n-1+m^{2}\right)}{(2 n-1)(2 n+3)} \Delta_{n}-\frac{(n+1+m)(n+2+m)}{(2 n+3)(2 n+5)} \Delta_{n+2}\right) . \tag{36}
\end{align*}
$$

Using (32) and (33) in (26), (27), and (28), we obtain

$$
-\sigma^{2} U_{n}+2 \omega \sigma\left(\frac{(n-1)(n-m)}{2 n-1} T_{n-1}-m V_{n}\right.
$$

$$
\left.-\frac{(n+2)(n+1+m)}{2 n+3} T_{n+1}\right)-2 / 3 \omega \sigma \varepsilon r \delta_{n}^{2} \delta_{m}{ }^{1}
$$

$$
\begin{align*}
= & \frac{d}{d r}\left(H_{n}+\frac{\omega+\sigma}{\omega} W_{1} \delta_{n}{ }^{2} \delta_{m}^{1}+\eta_{n}+X_{n}\right)+\beta g \Delta_{n}+{ }_{r} F_{n} \\
& +\left(-\frac{(n-1-m)(n-m)}{(2 n-3)(2 n-1)} \Delta_{n-2}+\frac{2\left(n^{2}+n-1+m^{2}\right)}{(2 n-1)(2 n+3)} \Delta_{n}\right. \\
& \left.-\frac{(n+1+m)(n+2+m)}{(2 n+3)(2 n+5)} \Delta_{n+2}\right) \beta b, \tag{37}
\end{align*}
$$

$\frac{(n-3)(n-2-m)(n-1-m)}{(2 n-5)(2 n-3)} 2 \omega \sigma T_{n-3}+\left(-\frac{n-1-m}{2 n-3}\right)\left(2 m \omega \sigma+(n-2) \sigma^{2}\right) V_{n-2}$

$$
+\left(-\frac{n(n-1)-3 m^{2}}{(2 n-3)(2 n+1)} 2 \omega \sigma+m \sigma^{2}\right) T_{n-1}+\left(-\frac{n+m}{2 n+1}\right)\left(2 m \omega \sigma-(n+1) \sigma^{2}\right) V_{n}
$$

$$
+\left(-\frac{(n+2)(n+m)(n+1+m)}{(2 n+1)(2 n+3)}\right) 2 \omega \sigma T_{n+1}
$$

$$
+\frac{8}{5} \omega \sigma \varepsilon r \delta_{n}{ }^{2} \delta_{m}{ }^{1}-\frac{4}{15} \omega \sigma \varepsilon r \delta_{n}{ }^{4} \delta_{m}{ }^{1}
$$

$$
\left.\frac{n-2)(n-1-m)}{2 n-3}\right) \frac{1}{r}\left(H_{n-2}+\frac{\omega+\sigma}{\omega} W_{t} \delta_{n}{ }^{4} \delta_{m}{ }^{1}+\eta_{n-2}+X_{n-2}+r_{\theta} F_{n-2}\right)
$$

$$
\begin{align*}
& +\left(-\frac{(n+1)(n+m)}{2 n+1}\right) \frac{1}{r}\left(H_{n}+\frac{\omega+\sigma}{\omega} W_{t} \delta_{n}^{2} \delta_{m}^{1}+\eta_{n}+X_{n}+r_{\theta} F_{n}\right) \\
& +\left(\frac{(n-3-m)(n-2-m)(n-1-m)}{(2 n-7)(2 n-5)(2 n-3)}\right) \frac{2 \beta b}{r} \Delta_{n-4} \\
& -\left(+\frac{(n+m)}{(2 n-1)(2 n+1)}\right)\left(\frac{2\left(n^{2}+n-1+m^{2}\right)}{2 n+3}-\frac{(n-1-m)(n-1+m)}{2 n-3}\right) \\
& \times \frac{2 \beta b}{r} \Delta_{n}-\left(-\frac{n-1-m}{(2 n-3)(2 n-1)}\right)\left(\frac{(n-m)(n+m)}{2 n+1}\right. \\
& \left.-\frac{2\left(n^{2}-3 n+1+m^{2}\right)}{2 n-5}\right) \frac{2 \beta b}{r} \Delta_{n-2} \\
& -\left(-\frac{(n+m)(n+1+m)(n+2+m)}{(2 n+1)(2 n+3)(2 n+5)}\right) \frac{2 \beta b}{r} \Delta_{n+2}, \tag{38}
\end{align*}
$$

and

$$
\begin{align*}
& \left(-\frac{(n-2)(n-1-m)(n-m)}{(2 n-3)(2 n-1)}\right) 2 \omega \sigma V_{n-2}+\left(\frac{n-m}{2 n-1}\right)\left(2 m \omega \sigma+(n-1) \sigma^{2}\right) T_{n-1} \\
& \quad+\left(\frac{n(n+1)-3 m^{2}}{(2 n-1)(2 n+3)} 2 \omega \sigma-m \sigma^{2}\right) V_{n}+\left(\frac{n+1+m}{2 n+3}\right)\left(2 m \omega \sigma-(n+2) \sigma^{2}\right) T_{n+1} \\
& \quad+\left(\frac{(n+3)(n+1+m)(n+2+m)}{(2 n+3)(2 n+5)}\right) 2 \omega \sigma V_{n+2}+\left(\frac{(n-1-m)(n-m)}{(2 n-3)(2 n-1)}\right) 2 \omega \sigma U_{n-2} \\
& \quad+\left(-\frac{2\left(n^{2}+n-1+m^{2}\right)}{(2 n-1)(2 n+3)}\right) 2 \omega \sigma U_{n}+\left(\frac{(n+1+m)(n+2+m)}{(2 n+3)(2 n+5)}\right) 2 \omega \sigma U_{n+2} \\
& =\frac{m}{r}\left(H_{n}+\frac{\omega+\sigma}{\omega} W_{t} \delta_{n}{ }^{2} \delta_{m}{ }^{1}+\eta_{n}+X_{n}+r_{\phi} F_{n}\right) . \tag{39}
\end{align*}
$$

Finally, using (33.2) and (33.4) in (22), we get

$$
\begin{equation*}
\dot{H}_{n}+\frac{2}{r} \dot{H}_{n}-\frac{n(n+1)}{r^{2}} H_{n}=+4 \pi G \rho_{s} \beta \Delta_{n}+\frac{4 \pi G \rho_{s}^{\prime}}{W_{0}^{\prime}}\left(\eta_{n}+X_{n}\right) . \tag{40}
\end{equation*}
$$

Equations (34)-(40) with $n=m, m+2, m+4, \ldots$, or $n=m+1, m+3, m+5, \ldots$ form the infinite set of ordinary differential equations that govern the small oscillations in the outer core.

Equations (34)-(40) for a spherical carth (e.g. Smylie 1974; Crossley 1975) are generally given in the y notations introduced by Alterman et al. (1959). The introduction of the present notations stems from the desire to retain explicitly the stability parameter β and to use the functions η_{n} and X_{n} in the equations. Notice that η_{n} and X_{n} correspond to $-g U_{n}$ and $\lambda \Delta_{n} / \rho$ respectively in the spherical earth, and $-\rho\left(\eta_{n}+X_{n}\right)$ is the nth degree harmonic change in hydrostatic pressure. For readers who are familiar with the y notations, we give the following identification:

$$
y_{1}{ }^{n}=U_{n}, y_{2}{ }^{n}=\lambda_{s} \Delta_{n}, y_{3}{ }^{n}=V_{n}, y_{4}{ }^{n}=0, y_{5}{ }^{n}=H_{n},
$$

and $y_{6}{ }^{n}=\dot{H}_{n}-4 \pi G \rho_{s} U_{n}$. In Appendix A, the simplified set of hydrodynamic equations for $S_{2}{ }^{1}$ oscillations is given in y notations. For the mantle and inner core equations which follow, $y_{2}{ }^{n}=Z_{n}, y_{4}{ }^{n}=Y_{n}$, and $y_{6}{ }^{n}=Q_{n}$.

In the mantle and inner core, each spheroidal oscillation is governed by a set of sixth order ordinary differential equations. These equations are

$$
\begin{align*}
\dot{U}_{n}= & -\frac{2 \lambda}{\lambda+2 \mu} \frac{1}{r} U_{n}+\frac{1}{\lambda+2 \mu} Z_{n}+\frac{n(n+1) \lambda}{\lambda+2 \mu} \frac{1}{r} V_{n}, \\
\dot{Z}_{n}= & \left(-\rho_{0} \sigma^{2}-\frac{4}{r} \rho_{0} g+4 \mu \frac{3 \lambda+2 \mu}{\lambda+2 \mu} \frac{1}{r^{2}}\right) U_{n} \\
& -\frac{4 \mu}{\lambda+2 \mu} \frac{1}{r} Z_{n}-\rho_{0}\left(Q_{n}+\frac{\sigma+\omega}{\omega} \frac{d W_{s}}{d r} \delta_{n}{ }^{2} \delta_{m}{ }^{1}\right)-\rho_{0} F_{n} \\
& +\left(\frac{n(n+1)}{r} \rho_{0} g-\frac{2 n(n+1) \mu}{\lambda+2 \mu} \frac{(3 \lambda+2 \mu)}{r^{2}}\right) V_{n}+\frac{n(n+1)}{r} Y_{n}, \\
\dot{V}_{n}= & -\frac{1}{r} U_{n}+\frac{1}{r} V_{n}+\frac{1}{\mu} Y_{n}, \tag{41}\\
\dot{Y}_{n}= & \left(\frac{1}{r} \rho_{0} g-\frac{2 \mu(3 \lambda+2 \mu)}{(\lambda+2 \mu) r^{2}}\right) U_{n}-\frac{\lambda}{\lambda+2 \mu} \frac{1}{r} Z_{n} \\
& -\frac{\rho_{0}}{r}\left(H_{n}+\frac{\omega+\sigma}{\omega} W_{t} \delta_{n}{ }^{2} \delta_{m}{ }^{1}\right)-\rho_{0} F_{n}+\left\{-\rho_{0} \sigma^{2}\right. \\
& \left.+\frac{2 \mu}{\lambda+2 \mu}\left(\left(2 n^{2}+2 n-1\right) \lambda+2\left(n^{2}+n-1\right) \mu\right) \frac{1}{r^{2}}\right\} V_{n}-\frac{3}{r} Y_{n}, \\
\dot{H}_{n}= & 4 \pi G \rho_{0} U_{n}+Q_{n}, \\
\dot{Q}_{n}= & -4 \pi G \rho_{0} \frac{n(n+1)}{r} V_{n}+\frac{n(n+1)}{r^{2}} H_{n}-\frac{2}{r} Q_{n},
\end{align*}
$$

where U_{n} is the radial displacement, Z_{n} the change in normal stress, V_{n} the transverse displacement, Y_{n} the change in transverse stress, H_{n} the change in gravitational potential, and Q_{n} the change in radial gravitational flux density.

The set of equations (41) can be solved numerically for the inner core and mantle respectively. The inner core solution must satisfy the regularity conditions at the origin while the mantle solution is subject to the conditions at the free surface which require that stress across the boundary vanishes and that the change in gravitational potential is harmonic. These are

$$
Z_{n}\left(r_{e}\right)=Y_{n}\left(r_{e}\right)=0,
$$

and

$$
H_{n}\left(r_{\mathrm{e}}\right)+r_{\mathrm{c}} Q_{n}\left(r_{\mathrm{e}}\right) /(n+1)=0,
$$

where r_{e} is the radius of the Earth.
The solution for the outer core is related to the solutions for mantle and inner core through conditions at the outer core boundaries. These conditions are the continuity of: the normal displacement, the change in normal stress, the change in transverse stress, the change in gravitational potential, and the change in normal gravitational flux density. Let a be the radial distance to the outer core-mantle
boundary. Then we have

$$
\begin{align*}
\eta_{n}(a-) & =W_{0}^{\prime}(a) U_{n}(a+), \\
\lambda(a-) \Delta_{n}(a-) & =Z_{n}(a+), \\
0 & =Y_{n}(a+), \tag{42}\\
H_{n}(a-) & =H_{n}(a+), \\
H_{n}^{\prime}(a-)-4 \pi G \rho_{0}(a-) \frac{\eta_{n}(a-)}{W_{0}^{\prime}} & =Q_{n}(a+)
\end{align*}
$$

A similar set of conditions obtains at the inner core-outer core boundary. The boundary conditions (42) involve errors of the order of the ellipticity of the boundary. A complete formulation for the boundary conditions has been given by Smith (1974). However, for our present purpose, such formulation is unnecessary because errors of at least the order of ellipticity exist in the core solution.

4. Spheroidal oscillations of the Earth of degree 2 and order 1-free core oscillations and diurnal earth tides

The importance of this class of spheroidal oscillations lies in the fact that the axis of rotation of the earth is disturbed. We derive first the simplified set of differential equations using the approximation (32). Substituting $n=2$ and $m=1$ we have

$$
\begin{gather*}
\eta_{2}=-\frac{2 b}{r}\left(\frac{1}{3} T_{1}+\frac{1}{7} V_{2}+\frac{4}{7} T_{3}\right)+\left(\frac{4}{7} b-g\right) U_{2}, \tag{43.1}\\
\Delta_{2}=\dot{U}_{2}+\frac{2}{r} U_{2}-\frac{6}{r} V_{2}, \tag{43.2}\\
X_{2}=\frac{\lambda_{s}}{\rho_{s}} \Delta_{2}+\frac{4}{7} \frac{\lambda_{s}}{\rho_{s}}\left(\frac{\lambda_{s}}{\lambda_{s}}-\frac{\dot{\rho}_{s}}{\rho_{s}}\right) \frac{b(r)}{W_{0}^{\prime}} \Delta_{2}, \tag{43.3}\\
\left(\omega \sigma+\sigma^{2}\right) T_{1}-\frac{9}{5} \omega \sigma V_{2}=\frac{3}{5} \omega \sigma U_{2}-\frac{3}{5} \frac{\beta b}{r} \Delta_{2}-\omega \sigma \varepsilon r, \tag{43.4}\\
\frac{8}{15} \omega \sigma V_{2}-\left(\frac{1}{6} \omega \sigma+\sigma^{2}\right) T_{3}=\frac{4}{15} \omega \sigma U_{2}+\frac{1}{15} \frac{\beta b}{r} \Delta_{2}, \tag{43.5}\\
r B_{2}=\eta_{2}+X_{2}+H_{2}, \tag{43.6}\\
\frac{d}{d r}\left(r B_{2}\right)=-\sigma^{2} U_{2}-\beta\left(g-\frac{4}{7} b\right) \Delta_{2} \\
+\omega \sigma\left(\frac{2}{3} T_{1}-2 V_{2}-\frac{32}{7} T_{3}\right)+\frac{2}{3} \omega \sigma \varepsilon r, \tag{43.7}\\
H_{2}+\frac{2}{r} \dot{H}_{2}+\left(\frac{4 \pi G \rho_{s}^{\prime}}{W_{0}^{\prime}}-\frac{6}{r^{2}}\right) H_{2}=+4 \pi G \rho_{s} \beta \Delta_{2}+\frac{4 \pi G \rho_{s}^{\prime}}{W_{0}^{\prime}} r B_{2}, \tag{43.8}
\end{gather*}
$$

where

$$
\begin{align*}
& B_{2}=\left(\frac{2}{3} \omega \sigma+\frac{1}{3} \sigma^{2}\right) T_{1}+\left(\frac{2}{7} \omega \sigma-\sigma^{2}\right) V_{2} \\
&+\left(\frac{8}{7} \omega \sigma-\frac{16}{7} \sigma^{2}\right) T_{3}-\frac{8}{7} \omega \sigma U_{2} . \tag{44}
\end{align*}
$$

In (43), the function H_{2} has been modified to include the term $(\omega+\sigma) W_{t} / \omega$, and the external force density \mathbf{F} has been set to zero.

The equations (43) are arranged to facilitate numerical computations. For example, (43.4), (43.5), and (43.6) can be solved algebraically for T_{1}, V_{2} and T_{3} in terms of U_{2}, Δ_{2}, H_{2}, and ε. Thus the set of equations (43) can be conveniently rearranged as a fourth-order ordinary differential equation in U_{2}, Δ_{2}, and H_{2}. The constant ε is related to the motion of the axis of rotation of the Earth and must be determined from Euler's equation for the angular momentum.

The coefficients ($\omega \sigma+\sigma^{2}$) for T_{1} and ($\omega \sigma+6 \sigma^{2}$) for T_{3} in (43.4) and (43.5) are important. When $\left(\omega \sigma+\sigma^{2}\right) \simeq 0, T_{1}$ approaches infinity. The result is an inertial oscillation of the Earth with a period of 23.883 hr . Similarly inertial oscillation takes place when ($\omega \sigma+6 \sigma^{2}$) $\simeq 0$ and T_{3} approaches infinity.

Equations (43.4), (43.5) and (43.6) show that except for inertial oscillations of the outer core, the functions T_{1}, U_{2}, V_{2} and T_{3} are of the same order of magnitude when σ is comparable to ω. This suggests that the neglected fields $\mathbf{S}_{n}{ }^{1}$ and $\mathbf{T}_{n}{ }^{1}$ may also be of the same order of magnitude. Therefore for such core oscillations, the approximation (32) is incomplete as has been emphasized earlier. On the other hand, for the inertial oscillation with a period of $23.883 \mathrm{hr}, \mathrm{T}_{1}{ }^{1}$ is the dominating displacement field in the outer core. The ellipticity couples a small $\mathrm{S}_{2}{ }^{1}$ to $\mathrm{T}_{1}{ }^{1}$. But $\mathrm{S}_{4}{ }^{1}, \mathrm{~T}_{5}{ }^{1}$, and so on can be expected to be negligible. Thus in this case, (32) is a good approximation. However, this conclusion must await numerical confirmation.

In vector notation, Euler's equation is (Munk \& Macdonald 1960)

$$
\begin{equation*}
\frac{\partial \mathbf{M}}{\partial t}+\boldsymbol{\Omega} \times \mathbf{M}=\mathbf{L} \tag{45}
\end{equation*}
$$

where \mathbf{M} is the angular momentum,
$\frac{\partial \mathbf{M}}{\partial t}$ is the time derivative of \mathbf{M} in the rotating frame,
\mathbf{L} is the external torque,

$$
\begin{equation*}
\mathbf{\Omega}=(\omega \varepsilon \cos \sigma t, \omega \varepsilon \sin \sigma t, \omega) . \tag{46}
\end{equation*}
$$

The components of \mathbf{M}, to first order in ε, in the cartesian system, are

$$
\begin{align*}
& M_{x}=\omega\left(I_{x x} \varepsilon \cos \sigma t-I_{x z}\right)+\Delta M_{x}, \\
& M_{y}=\omega\left(I_{y y} \varepsilon \sin \sigma t-I_{y z}\right)+\Delta M_{y}, \tag{47}\\
& M_{z}=\omega I_{x z}+\Delta M_{z} .
\end{align*}
$$

Here $I_{i j}$ are components of the inertia tensor and $\Delta \mathbf{M}$ is the change in angular momentum due to motion relative to the rotating frame. The rather simple form of (47) is due to proper choice of the rotating earth fixed system.

We have

$$
\begin{equation*}
\Delta \mathbf{M}=\int_{\text {earth }} \rho_{0} \mathbf{r} \times \frac{\partial \mathbf{u}}{\partial t} d \tau \tag{48}
\end{equation*}
$$

Using (32) in (48) we obtain

$$
\begin{align*}
\Delta M_{x} & =\sigma \zeta \cos \sigma t, \tag{49}\\
\Delta M_{y} & =\sigma \zeta \sin \sigma t,
\end{align*}
$$

correct to first order in the ellipticity of the Earth with

$$
\begin{equation*}
\zeta=\frac{8 \pi}{3} \int_{\text {outer core }} \rho r^{3} T_{1} d r \tag{50}
\end{equation*}
$$

In the present problem, toroidal fields $\mathrm{T}_{1}{ }^{1}$ is neglected in the mantle and inner core so that the integration in (50) is over the outer core only.

The products of inertia $I_{x z}$ and $I_{y z}$ are due to the redistributions of volume density

$$
\rho-\rho_{0}=-\rho_{0} \Delta-\frac{\rho_{0}^{\prime}}{W_{0}^{\prime}} \eta
$$

and the surface density $\rho \eta / W_{0}{ }^{\prime}$ at every surface of discontinuity.

$$
\begin{align*}
& I_{x z}=\int_{\tau}\left(\rho-\rho_{0}\right) x z d \tau+\sum_{s} \int_{s} \frac{\rho \eta}{W_{0}^{\prime}} x z d s, \tag{51}\\
& I_{y z}=\int_{\tau}\left(\rho-\rho_{0}\right) y z d \tau+\sum_{s} \int_{s} \frac{\rho \eta}{W_{0}^{\prime}} y z d s
\end{align*}
$$

Using (22) it can be shown that

$$
\begin{align*}
& I_{x z}=f \cos \sigma t, \tag{52}\\
& I_{y z}=f \sin \sigma t,
\end{align*}
$$

where

$$
\begin{equation*}
f=\frac{1}{5 G} d^{3}\left(2 H_{2}(d)-d Q_{2}(d)\right) \delta_{m}{ }^{1} \tag{53}
\end{equation*}
$$

where d is the radius of the Earth, and H_{2} and Q_{2} are defined in (41).
Using (49), (51) and (47) in (45) and letting the external torque $\mathbf{L}=0$ we get, for free oscillation,

$$
\begin{equation*}
\varepsilon-\frac{\sigma+\omega}{\omega^{2}} \frac{1}{C}\left(\omega(A \varepsilon-f)+\sigma_{\zeta}^{\zeta}\right)=0 \tag{54}
\end{equation*}
$$

where $C=I_{z z}$ is the polar moment of inertia, and $A=I_{x x}=I_{y y}$ the equatorial moment of inertia.

The equations (54), (41) and (43) with the help of conditions at the origin, the surface, and the outer core boundaries completely determine the solution.

The equations developed above can be conveniently applied to the problem of diurnal earth tides and nutations by the inclusion of the forcing terms. The diurnal tidal potentials are of the form

$$
\begin{equation*}
W_{2}{ }^{1}(r, \theta, \phi)=A_{m} r^{2} P_{2}{ }^{1}(\cos \theta) \cos (\sigma t-\phi) \tag{55}
\end{equation*}
$$

where A_{m} is the amplitude.
Inclusion of the tidal potential is effected by replacing the function H_{2} in (43) with the function $H_{2}+A_{m} r^{2}$.

The torque exerted on the equatorial bulge by the tidal force is given by

$$
\begin{equation*}
\mathbf{L}=\int \rho_{0} \mathbf{r} \times \nabla W_{2}^{1} d \tau \tag{56}
\end{equation*}
$$

In Cartesian co-ordinates

$$
\begin{align*}
& L_{x}=-\mathscr{L} \sin \sigma t \\
& L_{y}=\mathscr{L} \cos \sigma t \tag{57}\\
& L_{z}=0
\end{align*}
$$

where $\mathscr{L}=A_{m}(C-A)$.

The inclusion of the torque (56) is effected by replacing the right-hand side of (54) by $-\left(\mathscr{L} / \omega^{2} C\right)$.

At this point, it is interesting to show that the theory of diurnal earth tides and nutations by Molodensky (1961) can be derived from our equations. Molodensky assumed that the Adams \& Williamson condition (Adams \& Williamson 1923) is satisfied in the liquid core so that

$$
\begin{equation*}
\beta(r)=-\frac{i \rho_{0}^{\prime}}{\rho_{0}^{2} W_{0}^{\prime}}+1=0 \tag{58}
\end{equation*}
$$

Next, we observe that for diurnal earth tides $(\omega+\sigma) / \omega \ll 1$. From the equations (43.4), (43.5) and (43.6) it can be seen that V_{2}, U_{2} and T_{3} are of the order ($\omega+\sigma$) T_{1} / ω. Thus, equation (44) may be approximated by

$$
\begin{equation*}
B_{2}=\left(\frac{2}{3} \omega \sigma+\frac{1}{3}-\sigma^{2}\right) T_{1} . \tag{59}
\end{equation*}
$$

Using (59) in (43.7), and neglecting small terms, we get

$$
\left(\frac{2}{3} \omega \sigma+\frac{1}{3} \sigma^{2}\right) \frac{d}{d r}\left(r T_{1}\right)=\frac{2}{3} \omega \sigma T_{1}+\frac{2}{3} \omega \sigma \varepsilon r .
$$

The last equation means

$$
\begin{equation*}
T_{1}=-x r, \tag{60}
\end{equation*}
$$

where α is the resonant parameter in Molodensky's theory. If we write

$$
\begin{equation*}
K(r)=H_{2}(r)-r B_{2}(r) \tag{61}
\end{equation*}
$$

then (43.8) becomes

$$
\begin{equation*}
\ddot{K}+\frac{2}{r} \dot{K}+\left(\frac{4 \pi G \rho_{s}^{\prime}}{W_{0}^{\prime}}-\frac{6}{r^{2}}\right) K=0 . \tag{62}
\end{equation*}
$$

This is equation (30) in Molodensky's paper. Now, the function $b(r)$ given by (13) satisfies (62) so that we can write

$$
\begin{equation*}
2 b(r)=K_{1}(r) \tag{63}
\end{equation*}
$$

Next, we rewrite (43.4) as

$$
\begin{equation*}
9 V_{2}=-3 U_{2}+5\left(\varepsilon-\frac{\sigma+\omega}{\omega} \alpha\right) r . \tag{64}
\end{equation*}
$$

Substituting (64) in (43.2), we find

$$
\begin{equation*}
\Delta_{2}=\frac{1}{r^{4}} \frac{d}{d r}\left(r^{4} U_{2}\right)-\frac{10}{3}\left(\varepsilon-\frac{\sigma+\omega}{\omega} \alpha\right) \tag{65}
\end{equation*}
$$

To relate U_{2} to η_{2}, we neglect terms of the order $\sigma+\omega / \omega$ in (43.1), and get

$$
\eta_{2}=-\frac{2}{3} \cdot \frac{b}{r} T_{1}-g U_{2}
$$

Upon using (60) and (63), the above equation becomes

$$
\begin{equation*}
U_{2}=\frac{1}{W_{0}^{\prime}}\left(\eta_{2}+\frac{1}{3} \times K_{1}\right) \tag{66}
\end{equation*}
$$

Now, using (61) and (58) in (43.6) and neglecting small terms, we get

$$
\begin{equation*}
\Delta_{2}=-\frac{\rho_{s}^{\prime}}{\rho_{s} W_{0}^{\prime}}\left(\frac{1}{3} K+\eta_{2}\right) . \tag{67}
\end{equation*}
$$

Combining (65), (66) and (67), we find

$$
\begin{align*}
\frac{d}{d r}\left(\frac{\rho_{s} r^{4} \eta_{2}}{W_{0}^{\prime}}+\frac{1}{3} \alpha \frac{\rho_{s} r^{4} K_{1}}{W_{0}^{\prime}}\right)+\frac{1}{3} \frac{\rho_{s}^{\prime} r^{4}}{W_{0}^{\prime}}(K & \left.-\alpha K_{1}\right) \\
& =\frac{10}{3} r^{4} \rho_{s}\left(\varepsilon-\frac{\sigma+\omega}{\omega} \alpha\right) \tag{68}
\end{align*}
$$

But from (62),

$$
\begin{equation*}
r^{4} \frac{\rho_{s}^{\prime}}{W_{0}^{\prime}}\left(K-\alpha K_{1}\right)=-\frac{1}{4 \pi G} \frac{d}{d r}\left(r^{6} \frac{d}{d r}\left(\frac{K-\alpha K_{1}}{r^{2}}\right)\right) \tag{69}
\end{equation*}
$$

Substituting (69) in (68) and integrating over the outer core, we finally get

$$
\begin{equation*}
\left\{\frac{3}{W_{0}^{\prime}} \rho_{s} r^{4} \eta_{2}+\frac{\alpha}{W_{0}^{\prime}} \rho_{s} r^{4} K_{1}-\frac{r^{6}}{4 \pi G} \frac{d}{d r}\left(\frac{K-\alpha K_{1}}{r^{2}}\right)\right\}_{c}^{b}=5 v \int_{c}^{b} \rho_{s} r^{4} d r \tag{70}
\end{equation*}
$$

This is equation (39) in Molodensky's paper, except that here the constant v is given by

$$
\begin{equation*}
v=2\left(-\frac{\omega+\sigma}{\omega} \alpha+\varepsilon\right) \tag{71}
\end{equation*}
$$

while in Molodensky's theory it is given by

$$
\begin{equation*}
v=2\left(\frac{\omega+\sigma}{\sigma} \alpha-\frac{\omega}{\sigma} \varepsilon\right) \tag{72}
\end{equation*}
$$

However, this difference can be eliminated by replacing the parameter α and the function K_{1} with $(\omega / \sigma) \alpha$ and $(\sigma / \omega) K_{1}$ respectively.

We note that in deriving Molodensky's equations, equation (43.5) has not been used. This means that Molodensky's theory is based on a displacement for the outer core of the form

$$
\begin{equation*}
\mathbf{u}=\mathbf{T}_{1}{ }^{1}+\mathbf{S}_{2}{ }^{1} \tag{73}
\end{equation*}
$$

as compared to our present form of

$$
\begin{equation*}
\mathbf{u}=\mathrm{T}_{1}{ }^{1}+\mathbf{S}_{2}{ }^{1}+\mathrm{T}_{3}{ }^{1} \tag{74}
\end{equation*}
$$

5. Numerical calculation and results

The numerical computations were performed on earth models with different polytropic cores (Pekeris \& Accad 1972). The interest in using these earth models stems from the fact that the function

$$
\beta(r)=-\frac{\lambda \rho_{0}^{\prime}}{\rho_{0}^{2} W_{0}^{\prime}}+1
$$

determines the stability of the outer core. The restoring force, when a particle is displaced radially, is proportional to $\beta(r)$. The core is in neutral equilibrium when

Table 1
Earth models for different β

$\begin{gathered} r \\ (\mathrm{~km}) \end{gathered}$	$\underset{\left(\mathrm{km} \mathrm{~s}^{-1}\right)}{C_{p}}$	$\underset{\left(\mathrm{km} \mathrm{~s}^{-1}\right)}{C_{\mathrm{s}}}$	$\begin{gathered} M_{3} \\ \rho_{0} \\ \left(\mathrm{~g} \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} \beta=-0 \cdot 2 \\ \left(\rho_{0}-3\right) \end{gathered}$	$\begin{gathered} \beta=0 \cdot 0 \\ \left(\rho_{0}\right. \\ \left(\mathrm{g} \mathrm{~cm}^{-3}\right) \end{gathered}$	$\begin{gathered} \beta=+0 \cdot 2 \\ \left(\mathrm{\rho}_{0}\right. \\ \left(\mathrm{g}{ }^{-3}\right) \end{gathered}$
6371	$6 \cdot 30$	$3 \cdot 55$	$2 \cdot 840$			
6338	$6 \cdot 30$	$3 \cdot 55$	$2 \cdot 840$			
6338	$8 \cdot 16$	$4 \cdot 65$	3.386			
6311	$8 \cdot 15$	$4 \cdot 60$	3.474			
6271	8.00	$4 \cdot 40$	$3 \cdot 488$			
6221	$7 \cdot 85$	$4 \cdot 35$	$3 \cdot 462$			
6171	$8 \cdot 05$	$4 \cdot 40$	$3 \cdot 413$			
6071	8.50	$4 \cdot 60$	3. 374			
5958	$9 \cdot 06$	$5 \cdot 00$	$3 \cdot 569$			
5871	$9 \cdot 60$	$5 \cdot 30$	$3 \cdot 812$			
5771	10.10	$5 \cdot 60$	$4 \cdot 047$			
5671	$10 \cdot 50$	$5 \cdot 90$	$4 \cdot 215$			
5571	$10 \cdot 90$	$6 \cdot 15$	$4 \cdot 373$			
5471	11.30	$6 \cdot 30$	$4 \cdot 502$			
5371	11.40	$6 \cdot 35$	$4 \cdot 613$			
5171	11.80	$6 \cdot 50$	$4 \cdot 852$			
4971	$12 \cdot 05$	$6 \cdot 60$	4.955			
4771	$12 \cdot 30$	6.75	$5 \cdot 040$			
4571	$12 \cdot 55$	6.85	$5 \cdot 066$			
4371	$12 \cdot 80$	6.95	$5 \cdot 072$			
4171	13.00	$7 \cdot 00$	$5 \cdot 085$			
3971	$13 \cdot 20$	$7 \cdot 10$	$5 \cdot 090$			
3771	$13 \cdot 45$	$7 \cdot 20$	$5 \cdot 092$			
3571	$13 \cdot 70$	7.25	$5 \cdot 086$			
3491	$13 \cdot 70$	$7 \cdot 20$	$5 \cdot 239$			
3473	$13 \cdot 65$	$7 \cdot 20$	$5 \cdot 279$			
3473	$8 \cdot 04$		10.087	9.795	10.020	$10 \cdot 246$
3123	8.44		$10 \cdot 637$	10.449	$10 \cdot 573$	$10 \cdot 693$
2776	$8 \cdot 90$		11.082	11.023	11.051	11.073
2429	$9 \cdot 31$		11.478	11.517	11.457	11.392
2082	$9 \cdot 63$		11.809	11.939	11.799	11.657
1735	9.88		$12 \cdot 079$	12.293	$12 \cdot 084$	$11 \cdot 876$
1388	10.08		$12 \cdot 290$	$12 \cdot 581$	$12 \cdot 314$	$12 \cdot 052$
1318.6	$10 \cdot 11$		12.321	$12 \cdot 630$	$12 \cdot 354$	$12 \cdot 082$
$1297 \cdot 8$	$10 \cdot 11$		$12 \cdot 330$	$12 \cdot 645$	$12 \cdot 365$	$12 \cdot 091$
$1283 \cdot 9$	$10 \cdot 17$		$12 \cdot 337$	$12 \cdot 654$	$12 \cdot 373$	$12 \cdot 097$
$1249 \cdot 2$	$10 \cdot 48$		$12 \cdot 352$	$12 \cdot 677$	$12 \cdot 390$	$12 \cdot 110$
$1249 \cdot 2$	$10 \cdot 48$	$3 \cdot 16$	$12 \cdot 352$	12.677	$12 \cdot 390$	$12 \cdot 110$
1214.5	10.76	$3 \cdot 16$	$12 \cdot 368$	$12 \cdot 697$	12.407	12.123
1179.8	10.93	$3 \cdot 16$	$12 \cdot 382$	$12 \cdot 717$	$12 \cdot 422$	$12 \cdot 135$
$1145 \cdot 1$	11.04	$3 \cdot 16$	$12 \cdot 400$	12.735	$12 \cdot 437$	12.146
$1110 \cdot 4$	11.09	$3 \cdot 16$	$12 \cdot 412$	$12 \cdot 753$	$12 \cdot 451$	$12 \cdot 156$
$1075 \cdot 7$	$11 \cdot 12$	$3 \cdot 16$	$12 \cdot 429$	$12 \cdot 770$	12.464	$12 \cdot 166$
$1041 \cdot 0$	$11 \cdot 13$	$3 \cdot 16$	$12 \cdot 443$	12.786	$12 \cdot 477$	$12 \cdot 176$
$867 \cdot 5$	$11 \cdot 15$	$3 \cdot 16$	$12 \cdot 501$	$12 \cdot 860$	$12 \cdot 536$	$12 \cdot 221$
$694 \cdot 0$	$11 \cdot 17$	$3 \cdot 16$	12.551	$12 \cdot 921$	12.584	$12 \cdot 257$
$520 \cdot 5$	$11 \cdot 17$	$3 \cdot 16$	12. 590	$12 \cdot 968$	$12 \cdot 621$	12.285
$347 \cdot 0$	$11 \cdot 16$	$3 \cdot 16$	12.614	13.003	$12 \cdot 648$	$12 \cdot 306$
$173 \cdot 5$	11.15	$3 \cdot 16$	$12 \cdot 629$	13.023	$12 \cdot 665$	$12 \cdot 318$
$0 \cdot 0$	$11 \cdot 15$	$3 \cdot 16$	$12 \cdot 635$	13.030	$12 \cdot 670$	12.322

The parameter β is defined in equation (29). The model is M_{3} of Pekeris \& Accad (1972) modified to allow for a solid inner core. For $\beta=+0 \cdot 2$ the density in the core has been slightly altered to correspond to the total mass of the Earth.

Fig. 2. Mechanical properties of the earth mode M_{3} (Pekeris 1966).
$\beta=0$ (Adams \& Williamson 1923); for $\beta<0$, the core is stable and for $\beta>0$ the core is unstable.

Three models with $\beta=0.2,0.0$ and -0.2 (equation (29) are listed in Table 1 and plotted in Figs 2, 3(a) and (b). The models are derived from earth model M3 (Pekeris 1966) by Pekeris \& Accad (1972). We follow Smylie (1974) with the introduction of a solid inner core. However, the radius of the inner core is set at 1249.2 km instead of 1214.5 km (Smylie 1974). This may affect slightly the periods of undertones.

For $\beta=+0.2$ the density in the core has been slightly increased as the density given by Pekeris \& Accad leads to a deficiency in the total mass of the Earth.

Fig. 3(a). Density distribution of the uniform polytropic cores given in Table 1.
(b) Ellipticity in the outer core.

A neutral or unstable core is incapable of free oscillation. This and some other characteristic dynamic responses of the uniform polytropic cores have been demonstrated by Pekeris \& Accad. Their conclusions are true for a spherical non-rotating earth. Our results show that in an elliptical rotating earth all three polytropic core models are capable of free oscillation.

Equations (41) and (43) were numerically integrated with spline interpolation and the Runge-Kutta scheme. The integration was initiated at the centre of the Earth and proceeded radially outwards. The step size was varied so that the ratio between the step size and the radius remains constant. It has been found that the integration is stable if this ratio is 0.004 or smaller.

The centre of the Earth is a singular point for equations (41). Therefore the numerical integration must be started at a finite distance (say r_{1}) from the centre. Thus initial solutions of (41) at r_{1} must be found. One method is to assume r_{1} is sufficiently small so that power series expansion of (41) can be applied. However, an equivalent approach is to assume that for $r \leqslant r_{1}$ the Earth is homogeneous. The exact solutions of (41) for $r \leqslant r_{1}$ are given by Love (1911). Since equation (41) constitutes a sixth order differential equation at r_{1} there exist three independent solutions. Integration by Runge-Kutta method carry the free constants to the top of the inner core where one is eliminated by the vanishing of the transverse stress. At the bottom of the outer core, the constant ε is introduced. The new set of three constants is then propagated to the top of the outer core by numerical integration of (43). At the bottom of the mantle another free constant is introduced to account for the discontinuity in transverse displacement. The four constants are finally determined at the free surface by the three boundary conditions and equation (54).

5.1 Free core oscillations and free wobbles

The periods of free spheroidal oscillations of degree 2 and order 1 have been computed. The ' elastic ' modes are ordinarily designated $S_{2}{ }^{1}$ with fundamental mode as ${ }_{0} S_{2}{ }^{1}$. We follow Dahlen (1974) and Crossley (1975) by designating the v th undertone as ${ }_{-\nu} S_{2}{ }^{1}$. For convenience ${ }_{-}{ }_{v} S_{2}{ }^{1}$ is generally written as $S_{2}{ }^{1}$ unless specifically called for. Two notations ($S_{2}{ }^{1} \mathrm{C}$ and $S_{2}{ }^{1} T_{1}$), described later, are introduced to describe different classes of $S_{2}{ }^{1}$. Table 2 lists periods of ${ }_{-\nu} S_{2}{ }^{1}$ and ${ }_{0} S_{2}{ }^{1}$ for different models. An upper bound for all possible periods has not yet been identified. Our computations have been arbitrarily limited to less than 28 hr .

Table 2
Periods, in hours, of free spheroidal core oscillations of degree 2 and order 1 .

	$\beta=-0.2$	$\beta=0.0$	$\beta=+0.2$
${ }_{0} S_{2}{ }^{1}$	0.8894	0.8906	0.8906
$S_{2}{ }^{1} C$	6.585	11.789	9.493
	8.992	14.508	10.664
	11.182	17.023	12.883
	12.477		13.664
	14.492		15.086
	17.417		15.727
	18.382		17.522
	19.462		20.211
	20.132		22.400
	25.332		27.931
	27.802		
$S_{2}{ }^{1} T_{1}$	23.883	23.883	23.883

The parameter β is defined in equation (29)

Fig. 4. The toroidal displacement T_{1} in the outer core for free spheroidal oscillation for $n=2, m=1$ and $\beta=-0 \cdot 2$. Relative normalisation is indicated by the amplitude of the free wobble, ε, for Figs 4-7.

All three earth models are capable of free core oscillations in the case of a rotating, elliptical earth. Pekeris \& Accad (1972) showed that in a spherical non-rotating earth, only stable cores are capable of free oscillations. Smylie (1974) and Crossley (1975) considered the effects of rotation alone on $S_{2}{ }^{2}$ modes, and only for stable cores. Further, Smylie (1974), considered the effects of self-coupling and set 36 hr as the upper bound for free periods of $S_{2}{ }^{2}$. Crossley (1975), set 12 hr as the upper bound for free periods of $\mathrm{S}_{2}{ }^{2}$. Crossley further inferred that core oscillations with periods greater than 12 hr are inertial oscillations. However, our results have shown no such critical barrier to the free period. We have found only one distinct inertial oscillation with a period of 23.883 hr . It is difficult to compare our results with those of Smylie \& Crossley, since we are considering $S_{2}{ }^{1}$ oscillations while they are considering $S_{2}{ }^{2}$ oscillations. But it is possible that the disagreement is due to the effects of ellipticity.

The period of ${ }_{0} S_{2}{ }^{1}$ depends only slightly on β, the parameter determining core stability. But the spectrum of $S_{2}{ }^{1}$ is strongly governed by the value of β. We designate a subclass of $S_{2}{ }^{1}$ modes with strong dependence on β as $S_{2}{ }^{1} C$.

The only core mode that is independent of β is the one with a period of 23.883 hr , 3 mins short of a sidereal day. This is designated $S_{2}{ }^{1} T_{1}$ because of the existence of large T_{1} toroidal motions in the liquid core.

The different characteristics of ${ }_{0} S_{2}{ }^{1}, S_{2}{ }^{1} C$ and $S_{2}{ }^{1} T_{1}$ prompts us to examine the dynamic behaviour of the Earth under these oscillations. In Figs 4, 5, 6 and 7, we plot the functions T_{1}, η_{2}, Z_{2} and H_{2} respectively for ${ }_{0} S_{2}{ }^{1}$, three $S_{2}{ }^{1} C$ and $S_{2}{ }^{1} T_{1}$.

Fig. 5. The normal displacement η_{2} for free spheroidal oscillations for $n=2$, $m=1$ and $\beta=-0 \cdot 2$.

Fig. 6. The normal stress Z_{2} for free spheroidal oscillations for $n=2, m=1$ and $\beta=-0 \cdot 2$.

Fig. 7. The change in gravitational potential H_{2} for free spheroidal oscillation for $n=2, m=1$ and $\beta=-0 \cdot 2$.

The earth model used is the one with stable core $\beta=-0 \cdot 2$. The functions are normalized with respect to the amplitude of the associated wobble. The normalization is relative and not absolute. For example, in Fig. 4, the normalization means that T_{1} for curve 1 is magnified by $1000 / 0 \cdot 0002$ relative to T_{1} for curve 5 .

For ${ }_{0} S_{2}{ }^{1}$, the fundamental elastic mode, the function T_{1} is non-zero but very small compared to η_{2}. This means that the motions in the outer core is predominantly spheroidal. Since T_{1} is linear in radius, the outer core rotates as a rigid body relative to the mantle and inner core. But the amplitude of this relative rotation is small. The dependence of η_{2}, Z_{2} and H_{2} on radius shows that for this mode, the entire earth is deformed.

In the case of $S_{2}{ }^{1} C$, the spheroidal core modes, the functions T_{1} and η_{2} are of the same order of magnitude in the outer core. A rough interpretation of this is that gravitational and inertial forces play about equal roles. The radial dependence of T_{1} shows that the outer core does not rotate rigidly with respect to the mantle and inner core. This type of free oscillations has displacements and stresses mainly confined to the outer core. Only the change in gravitational potential has significant distribution in the mantle.

For $S_{2}{ }^{1} T_{1}$, the inertial oscillation mode, the most significant feature is in the outer core, with $T_{1} \gg \eta_{2}$. From a comparison of curve 5 on Fig. 4 with that on Fig. 5, it can be seen that $T_{1} \sim 2.5 \times 10^{4} \eta_{2}$. Since T_{1} is a linear function of radius, the dominant motion of the outer core is a rigid rotation relative to the mantle and inner core. The relative rotation depends primarily on the moment of inertia of the outer core and not the density stratification. This explains why the period is so insensitive to the stability of the outer core. One interesting feature of $S_{2}{ }^{1} T_{1}$ is that apart from the large rigid rotation of the outer core relative to the mantle and inner core, the response of the Earth resembles that of $S_{2}{ }^{1}$. However, the significant distribution of η_{2} in the mantle is due to the existence of ellipticity at the core-mantle boundary. Without the ellipticity the large T_{1} will not be able to contribute to η_{2} in the mantle. Therefore it is incorrect to treat inertial oscillations of the Earth without considering the effects of ellipticity.

The fact that T_{1} for $S_{2}{ }^{1} T_{1}$, is large can be seen from equations (43.4), (43.5) and (43.6). Since for $S_{2}{ }^{1} T_{1}, \omega \sigma+\sigma^{2} \sim 0$, we expect T_{1} to be of the order of

Table 3

The radial coefficients of the displacement and change of gravity at the surface for some $S_{2}{ }^{1}$ free oscillations

	Period (hr)	Radial displacements (cm)	Transverse displacements (cm)	Change in gravity (mgal)
${ }_{0} S_{2}{ }^{1}$	0.8893	2710	60	-0.528
$S_{2}{ }^{1} \mathrm{C}$	6.584	-600	61	-1.048
$S_{2}{ }^{1} \mathrm{C}$	8.994	-372	43	-0.763
$S_{2}{ }^{1} \mathrm{C}$	11.182	-228	24	-0.419
$S_{2}{ }^{1} T_{1}$	23.883	1881	9	-0.134

The amplitude of the related wobbles is assumed to be 1 are sec
$\left(\omega \sigma /\left(\omega \sigma+\sigma^{2}\right)\right) U_{2}$. Such consideration of the existence of $S_{2}{ }^{1} T_{1}$ at an angular frequency $|\sigma| \sim \omega$ raises the possibility of a $S_{2}{ }^{1} T_{3}$ at an angular frequency of $|\sigma| \sim \omega / 6$. And if we use the exact equations (34)-(40) for the outer core, we would expect to have $S_{2}{ }^{1} T_{5}, S_{2}{ }^{1} T_{7}$ and so on. However, this conjecture must await numerical confirmation.

The wobble that is associated with $S_{2}{ }^{1} T_{1}$ is generally referred to as the ' nearly diurnal wobble ' and has recently been discussed by Toomre (1974) and Rochester et al. (1974). Toomre (1974) has mentioned that the existence of the liquid outer core should lead to more wobbles of the Earth than just the nearly diurnal wobble. The present work confirms Toomre's conclusions. Any $S_{2}{ }^{1}$ oscillation is associated with a wobble. Table 2 gives the spectrum of wobbles induced by the existence of the liquid outer core. However, the $S_{2}{ }^{1} C$ wobbles are different in character as compared to the $S_{2}{ }^{1} T_{1}$ wobble. We note here that due to our sign convention for the angular frequency σ the wobbles associated with $S_{2}{ }^{1}$ are retrograde. Prograde wobbles are associated with S_{2}^{-1} but the discussions will be deferred to another report.

The periods of $S_{2}{ }^{1} C$ free oscillations depend strongly on the stability of the outer core. If $S_{2}{ }^{1} \mathrm{C}$ can be observed on the surface the density stratification of the outer core can be resolved. The excitation of these core oscillations by earthquakes is possible since displacement fields exist in the mantle. But the input of energy into these modes from earthquakes is unknown. And observation will be difficult because the energy is concentrated in the outer core as evident from Figs 4, 5, 6 and 7. We provide the kinematic response of the ${ }_{0} S_{2}{ }^{1}, S_{2}{ }^{1} T_{1}$ and three $S_{2}{ }^{1} C$ at the free surface in Table 3. The radial and transverse displacements, and the change in gravity at the surface of the Earth are given by arbitrarily assuming the amplitude of the wobble to be $1^{\prime \prime} 00$.

5.2 Diurnal earth tides and nutations

The principal components of diurnal tides and associated nutations are given in Table 4 (Melchior 1966). The theoretical amplitudes of the nutations are those for a hypothetical rigid earth. The discrepancies between these and the observed values are genuine and can only be removed by considering the relative rotation of the liquid core (Melchior 1971).

Table 5 gives the amplitudes of nutations calculated from the present theory and the theory of Molodensky (1961). The close agreement between the two theories indicates that for the $S_{2}{ }^{1} T_{1}$ nearly diurnal mode (73) is as good an approximation as (74). It appears that for this mode, higher order approximations for the displacement would still give the same results. The resonance effects at the frequency of $S_{2}{ }^{1} T_{1}$ lead to the correction $\left(\varepsilon-\varepsilon_{0}\right) / \varepsilon_{0}$. Comparison of the results with the observed values given in Table 5 shows that the agreement is very good. Perfect agreement cannot be

Table 4
Principal diurnal Earth tides and astronomical nutations

Reference: Melchior (1971)

* The theoretical amplitudes of nutations for a rigid earth are those given by Molodensky (1961)

Table 5
Theoretical amplitudes of nutation

Table 6
Diurnal tidal Love numbers

$\theta=+0.2$
Table 6
Dida Love numbers

	$\beta=-0.2$				Present theory		
Symbol	Doodson's	h	k		h	k	
Q_{1}	$135 \cdot 655$	0.6096	$0 \cdot 2994$	0.08422	0.6101	0.3002	
$0{ }_{1}$	145.555	0.6092	0. 2991	$0 \cdot 08421$	0.6093	$0 \cdot 2998$	
M_{1}	155.655	0.6062	0.2978	0.08436	0.6069	$0 \cdot 2986$	
${ }_{1}$	162.556	0.5928	0.2911	0.09479	- 5932	$0 \cdot 2917$	
P_{1}	$163 \cdot 555$	0.5861	0.2877	0.08501	0.5865	0.2884	
S_{1}	$164 \cdot 556$	0.5719	0.2806	0.08547	0.5723	$0 \cdot 2813$	
	165.545	0.5272	0.2583	0.08693	0.5278	0.2590	
K_{1}	165.555	0.5214	0.2554	0.08712	0.5221	0.2561	
	165.565	$0 \cdot 5148$	0.2521	0.08734	0.5155	$0 \cdot 2528$	
	165.575	$0 \cdot 5071$	0.2482	0.08759	0.5079	0.2490	
$\psi_{1}{ }^{*}$	166.554	0.9379	$0 \cdot 4633$	0.07350	0.9486	$0 \cdot 4696$	
ϕ_{1}	167.555	0.6696	0.3294	0.08228	0.6706	$0 \cdot 3304$	
	168.544	0.6434	0.3163	0.08313	0.6441	$0 \cdot 3172$	
J_{1}	$175 \cdot 455$	0.6173	0.3032	0.08399	0.6177	0.3040	
0_{1}	185.555	0.6144	$0 \cdot 3018$	0.08408	0.6148	$0 \cdot 3025$	
	195.455	0.6136	0.3014	0.08412	0.6139	$0 \cdot 3021$	

expected because we have not considered the effects of the core-mantle couplings, the viscosity of the Earth, and the effects of oceans.

The resonance effects of the diurnal tides due to the existence of $S_{2}{ }^{1} T_{1}$ are also reflected in the diurnal tidal Love numbers. In Table 6, diurnal tidal Love numbers are given for the three uniform polytropic cores. The asymptotic behaviour of the Love numbers at the frequency of $S_{2}{ }^{1} T_{1}$ is clearly observable. Observations (Melchior 1966, p. 383) have confirmed the general trend of frequency dependence of the Love numbers.

Acknowledgment

We thank the National Research Council of Canada for financial support of this project.

References

Adams, L. H. \& Williamson, E., 1923. The composition of the earth's interior, Smithsonian Inst. Rept., 241.
Alterman, Z. S., Eyal, Y. \& Merzer, A. M., 1974. On free oscillation of the Earth, Geophys. Surveys, 1, 409-428.
Alterman, Z., Jarosch, H. \& Pekeris, C. L., 1959. Oscillations of the earth. Proc. R. Soc. A., 252, 80-95.
Crossley, D. J., 1975. Core undertones with rotation, Geophys. J. R. astr. Soc., 42, 477-488.
Dahlen, F. A., 1968. The normal modes of a rotating elliptical Earth, Geophys. J. R. astr. Soc., 16, 329-367.
Dahlen, F. A., 1969. The normal modes of a rotating elliptical earth-II: Near resonance multiplet coupling, Geophys. J. R. astr. Soc., 18, 397-436.
Dahlen, F. A., 1974. On the static deformation of an earth model with a fluid core, Geophys. J. R. astr. Soc., 36, 461-485.
Jeffreys, Sir H., 1948. The earth core and the lunar nutation, Mon. Not. R. astr. Soc., 108, 206-209.
Jeffreys, Sir H., 1949. Dynamic effects of a liquid core, Mon. Not. R. astr. Soc., 109, 670-687.
Jeffreys, Sir H., 1950. Dynamic effects of a liquid core, Mon. Not. R. astr. Soc., 110, 460-466.
Jeffreys, Sir H., 1959. The Earth, 4th edition, Cambridge University Press.
Jeffreys, Sir H. \& Vicente, R. O., 1957a. The theory of nutation and the variation of latitude, Mon. Not. R. astr. Soc., 117, 142-161.
Jeffreys, Sir H \& Vicente, R. O., 1957b. The theory of nutation and the variation of latitude: Roche model core, Mon. Not. R. astr. Soc., 117, 162-173.
Love, A. E. H., 1911. Some problems of geodynamics, Cambridge University Press.
Luh, P. C., 1974. Normal modes of a rotating self-gravitating inhomogeneous earth, Geophys. J. R. astr. Soc., 38, 187-224.
Melchior, P., 1966. The Earth tides, Pergamon Press Ltd, Oxford.
Melchior, P., 1971. Precession-nutations and tidal potential, Celest. Mech., 4, 190-212.
Molodensky, M. S., 1961. The theory of nutations and diurnal earth tides, Ive Symp. Intern. Marées. Terres. Comm. Obs. R. Belg., No. 188, S. Geoph.: No. 58, 25-56.
Munk, W. H. \& Macdonald, G. J. F., 1960. The rotation of the Earth, Cambridge University Press.
Pekeris, C. L., 1966. The internal constitution of the Earth, Geophys. J. R. astr. Soc., 11, 85-132.
Pekeris, C. L. \& Accad, Y., 1972. Dynamics of the liquid core of the earth, Phil. Trans. R. Soc. Lond. A., 273, 237-260.

Pekeris, C. L., Alterman, Z. \& Jarosch, H., 1963. Studies in terrestrial spectroscopy, J. geophys. Res., 68, 2887-2908.

Poincaré, H., 1910. Sur la Précession des Corps Deformables, Bull. Astr., 27, 321-356.
Rochester, M. G., 1973. The Earth's rotation, EOS, 54, 769-780.
Rochester, M. G., Jensen, O. G. \& Smylie, D. E., 1974. A search for the Earth's' ' nearly diurnal free wobble ', Geophys. J. R. astr. Soc., 38, 349-363.
Shen, Po-Yu, 1975. Dynamics of the liquid core of the Earth, p. 125, PhD thesis, University of Western Ontario, London, Canada.
Smith, M. L., 1974. The scalar equations of infinitesimal elastic-gravitational motion for a rotating, slightly elliptical Earth, Geophys. J. R. astr. Soc., 37, 491-526.
Smylie, D. E., 1974. Dynamics of the outer core, Veröff. Zentralinst. Phys. Erde, Akad. Wiss. D. D. R., Berlin, 30, 91-104.
Smylie, D. E. \& Mansinha, L., 1971. The elasticity theory of dislocation in real earth models and changes in the rotation of the earth, Geophys. J. R. astr. Soc., 23, 329-354.
Toomre, A., 1974. On the ' nearly diurnal wobble ' of the Earth, Geophys. J. R. astr. Soc., 38, 335-348.

Appendix A

The equations (43) in y notations
Let

$$
\begin{array}{ll}
y_{1}^{2}=U_{2}, & y_{2}^{2}=\lambda \Delta_{2}, \\
y_{3}^{2}=V_{2}, & y_{4}^{2}=0, \\
y_{5}^{2}=H_{2}, & y_{6}^{2}=\dot{H}_{2}-4 \pi G \rho U_{2}, \tag{Al}\\
y_{7}^{1}=T_{1}, & y_{7}^{3}=T_{3},
\end{array}
$$

then equations (43.2) and (43.4)-(43.8) becomes

$$
\begin{gather*}
\dot{y}_{1}^{2}=-\frac{2}{r} y_{1}^{2}+\frac{1}{\lambda} y_{2}^{2}+\frac{6}{r} y_{3}^{2}, \tag{A2}\\
\dot{y}_{2}^{2}= \\
\left(-\rho \sigma^{2}-\frac{4 \rho g}{r}\right) y_{1}^{2}+\frac{6 \rho g}{r} y_{3}^{2}-\rho y_{6}^{2} \\
\\
+2 \rho \omega \sigma\left(-y_{3}^{2}+\frac{1}{3} y_{7}^{1}-\frac{16}{7} y_{7}^{3}-\frac{1}{3} \varepsilon r\right) \tag{A3}\\
 \tag{A4}\\
+\frac{4}{7} \frac{\beta \rho b}{\lambda} y_{2}^{2}+\frac{d}{d r}\left(-\frac{4}{7} b y_{1}^{2}+\frac{4}{7} \frac{b}{g \lambda} \frac{d}{d r}\left(\frac{\lambda}{\rho}\right) y_{2}^{2}\right. \\
 \tag{A5}\\
\left.+\frac{2 b}{r}\left(\frac{1}{7} y_{3}^{2}+\frac{1}{3} y_{7}^{1}+\frac{4}{7} y_{7}^{3}\right)\right) . \\
\dot{y}_{6}^{2}=-\frac{24 \pi G \rho}{r} y_{3}^{2}+\frac{6}{r^{2}} y_{5}^{2}-\frac{2}{r} y_{6}^{2} \\
+\frac{4 \pi G}{g} \dot{\rho}\left(-\frac{4}{7} \dot{b} y_{1}^{2}-\frac{4}{7} \frac{b}{\lambda} y_{2}^{2}+\frac{2 b}{r}\left(\frac{1}{7} y_{3}^{2}{ }^{2}+\frac{1}{3} y_{7}^{1}+\frac{4}{7} y_{7}^{3}\right)\right) .
\end{gather*}
$$

$$
\begin{align*}
& \left(\frac{2}{7}-\omega \sigma-\sigma^{2}+\frac{2}{7} \frac{b}{r^{2}}\right) y_{3}{ }^{2}+\left(\frac{2}{3} \omega \sigma+\frac{1}{3} \sigma^{2}+\frac{2}{3} \frac{b}{r^{2}}\right) y_{7}{ }^{1} \\
& +\left(\frac{8}{7} \omega \sigma-\frac{16}{7} \sigma^{2}+\frac{8}{7} \frac{b}{r^{2}}\right) y_{7}{ }^{3}=\left(\frac{8}{7} \omega \sigma+\frac{4}{7} \frac{b}{r}-\frac{g}{r}\right) y_{1}{ }^{2} \\
& +\left(-\frac{4}{7} \frac{b}{r g \lambda} \frac{d}{d r}\left(\frac{\lambda}{\rho}\right)+\frac{1}{\rho r}\right) y_{2}{ }^{2}+\frac{1}{r} y_{5}^{2} \tag{A6}
\end{align*}
$$

$11 \omega \sigma y_{3}{ }^{2}+\left(\omega \sigma+\sigma^{2}\right) y_{7}{ }^{1}-4\left(\omega \sigma+6 \sigma^{2}\right) y_{7}{ }^{3}=7 \omega \sigma y_{1}{ }^{2}+\frac{\beta b}{r \lambda} y_{2}{ }^{2}-\omega \sigma \varepsilon r$,

$$
-16 \omega \sigma y_{3}^{2}+5\left(\omega \sigma+6 \sigma^{2}\right) y_{7}^{3}=-8 \omega \sigma y_{1}^{2}-2 \frac{\beta b}{r \lambda} y_{2}^{2}
$$

