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Summary

We have constructed a general first-order theory describing those small
oscillations of a rotating elliptical earth that are affected by the presence
of a liquid outer core. The theory is applicable to free core oscillations
and earth tides. Care has been taken to include the effects of the wobble
or nutation due to the rotation of the outer core relative to the solid earth.
On the basis of the theory the free spheroidal modes of degree 2 and order 1
have been investigated. We have searched for and listed undertones
with periods less than 28 hr. No upper limit to the eigenperiods has been
detected. It is shown that stable, unstable and neutral polytropic cores are
capable of free oscillation. At a period close to the sidereal day the
spheroidal mode is accompanied by rigid rotation of the liquid outer core
with respect to the solid earth. This is the well-known diurnal wobble of
the Earth. It appears probable that the diurnal wobble is one of a class of
similar wobbles that involve large toroidal motions in the outer core.
Finally, the amplitudes of the 18-6-yr principal nutations has been com-
puted. Excellent agreement is found with observed values.

1. Introduction

The theoretical study of oscillations of a non-rotating spherical earth presents no
major problems. The spheroidal and toroidal displacement fields are separable and the
dynamical equations of equilibrium can be solved exactly. With the introduction of
ellipticity and rotation however, the problem is no longer simple. A complete analyti-
cal solution is impossible because of the coupling between the various constituents of
the displacement field in the liquid outer core and to a lesser extent in the solid earth.

Historically, the dynamic effects of the liquid core have been recognized through
the Chandler wobble and astronomical nutations of the Earth. The discrepancy
between the observed and calculated nutation amplitudes, in particular, can only be
explained by consideration of the fluidity of the outer core. Nutations are associated
with diurnal earth tides, which have periods falling close to one of the free core modes.
In the present report, we show that this core mode is essentially a T,' toroidal oscil-
lation of the outer core relative to the solid earth. The possibility of this free mode for
an incompressible fluid enclosed in a rigid elliptical shell was first considered by
Poincaré (1910). Jeffreys (1948) pointed out its geophysical significance. When
Poincaré’s theory is applied to the Earth, it is found that the period of the Chandler
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wobble is shortened and the amplitude of the 18-66-yr principal nutation decreased, as
compared to the corresponding values for a rigid earth model. Subsequent extensions
of Poincaré’s theory, allowing for the elasticity of the mantle and core, were given by
Jeffreys (1949, 1950), Jeffreys & Vicente (1957a, b) and Molodensky (1961). Jeffreys &
Vicente used a variational method that leads to some ambiguity in the degree of
approximation and some puzzling results. For example, for P, tide with nfw = 1/183,
the function {/{, was given by 0-9707 (Table 1, Jeffreys & Vicente 1957b). This gives
rise to a correction for the nutation amplitude of the wrong sign. A result which is
difficult to understand, however, is the ratio of Love numbers, k/A. Jeffreys & Vicente
obtained a value of 0-412 for diurnal tides and 0-493 for semi-diurnal tides.
Molodensky (1961), Shen (1975), and the present work, on the other hand, show that
k/h is equal to about 0-495 for both diurnal and semi-diurnal tides. The present theory
on diurnal carth tides and nutations is nearly identical with Molodensky’s and agrees
well with the observations on nutations. For a topical review of problems of the rota-
tion of the Earth the reader is referred to the paper by Rochester (1973).

Free oscillation modes with periods longer than the fundamental elastic mode of
the Earth have been ascribed to the liquid core (Alterman, Jarosch & Pekeris 1959).
These modes are now called undertones by Smylie (1974). Smylie considered the
effects of rotation on a spherical earth. But he limited himself to the effects of self
coupling due to Coriolis force. Crossley (1975) extends Smylie’s work to cover
cross-couplings. But the effects of centrifugal force and ellipticity are neglected.
Smith (1974) gives a more complete treatment but without numerical results.

One approach to the problem of earth dynamics is to consider rotation and
ellipticity as perturbations to a spherical, non-rotating earth. The eigenfrequency and
eigenfunction are expanded in power series of the ratio of the angular speed of rotation
to the unperturbed eigenfrequency, or, the ellipticity. For the elastic oscillations of the
Earth, the first-order perturbation methods yield adequate results (Dahlen 1968; Luh
1974; Review by Alterman, Eyal & Merzer 1974). This is because the power series
converge rapidly. For long-period core oscillations the situation is different. The
eigenfrequency may differ significantly from the unperturbed value so that the conver-
gence of the power series become doubtful (Dahlen 1968). In this case very high order
perturbation schemes must be used.

Initially we sought to extend Molodensky’s theory to general harmonic oscillations
of the Earth. However, this theory was formulated specifically for diurnal earth tides
and required an Adams & Williamson (1923) core and was unsuitable for a general
treatment. In the present report we construct a general theory which takes into account
the dynamic effects of the liquid core. The set of ordinary differential equations that
govern the motion within the elliptical rotating earth and the motions in space is
derived. The logical organization of the theory is illustrated in Fig. 1. It is emphasized
here that Euler’s equation for angular momentum is necessary for those oscillation
modes that involve motion of the axis of rotation within the Earth.

Uniform rotation occurs when the axis of maximum or minimum moment of
inertia concides with the axis of angular momentum and the rotation axis. Internal
redistribution of angular momentum or mass gives rise to excursions of the principal
axis and rotation axis from the angular momentum vector. Motion of rotation axis in
space accompanies motion within the Earth. For brevity we depart somewhat from
the conventional definitions of wobble and nutation. The free motion is called
wobble and a forced motion is called nutation. Thus wobble implies the free motion
of the rotation axis within the Earth as well as the accompanying motion in space.
Similarly nutation implies the forced motion of the rotation axis in space and the sim-
ultaneous motion of the rotation axis within the Earth. In this report we are
primarily concerned with wobbles related to free oscillation, and, nutations caused by
the tidal potential.

The real difficulty in dealing with the oscillations of an elliptical rotating earth lies

220z 1snBny 91 uo 1senB Aq G/0€85/.9%/2/9t/al0melB/wo0 dno olwepese)/: Ay WOy papeojumoq



469

An elliptical rotating earth with liquid outer core

Downloaded from https://academic.oup.com/gji/article/46/2/467/583075 by guest on 16 August 2022

‘K1001) o3 jo uoneziuedio redtdo] ‘1 Ol

uo

13e30N pPaoxod
0
a1qqoM @913

———

—

-

wnjuswow eynbue ay3z
203 uorjenbs s,zx9Tng

—\Muumw ay3 30 :oﬂumEouwo\Tllll

ﬁmvzvﬂumq ut :oﬂuMAumwg

ﬂro«uaAAﬂumo.voquﬁ_

Hmoﬂumﬁaﬂumo owumg

suoritpuod Axepunoq

9T3uUBW - 9IOD IIINO pue

8100 133N0 - 310D IdUUT
‘aoezans 99233 8yl 3 SUOTITPUOD

&100 x331ng prabrl
ay3 I03 uoI3INTos

i

suotjenbs dTweuApoipAH

0 = A3TpTHTY

sTsATeuy
otuourey TeoTIDYdS

ﬁUU.NO.m e CNOU%NH

8305 13UUT
pue aT3uew
ay3 203 suoT3INTOS

.

suotienba o13serd
0 # ATpTbYY

wa3lsds @3eutproo) burzezocd
8Yy3 Ul uoTjPWIOIaQ

3y3 buturaaon suotyenby
wa3sis o3eutpioco) butjejoy
9yl UT UOTILID[BDDY

wa3zsks o3vuUIPIOO) HurzRIA

203997 UOTIVAOE

{eT3uUd30gd TERUOTIRITARID

ssarls ‘urexis

*039 ‘A3ToaTdrITire

‘g3uw3suod or3sere ‘A3rsuep

IRy a3 Jo

g9T3x9doag T[eOTURYIIN




470 Po-Yu Shen and L. Mansinha

in the numerical solution of the infinite set of coupled ordinary differential equations.
Truncation of the coupling sequence is inevitable for a numerical solution. The
problem is essentially the same as the one encountered in perturbation methods.
Convergence of the truncation scheme has not been established. In the present work,
to make numerical solutions possible, the hydrodynamic equations are simplified to the
extent that the effects of rotation and ellipticity in the solid earth can be neglected.
However, it is emphasized that such an approximation must be considered incomplete.

There is incomplete knowledge concerning the density stratification of the liquid
outer core. The radial variation of density may be gravitationally unstable, neutral or
stable (Pekeris & Accad 1972). In a non-rotating earth oscillation is only possible with
a stable stratification. We have computed the spectra of free spheroidal core oscillation
of degree 2 and order 1 and the tidal Love numbers for diurnal earth tides. The results
show that all three types of polytropic cores are capable of free oscillation. The periods
however, depend on the nature of density stratification of the liquid core. Observation
of the periods should prove to be of diagnostic value in choosing between various core
models.

The free spheroidal oscillations of degree 2 and order 1 are associated with wobbles,
and diurnal tides are associated with nutations. Due to the existence of a nearly
diurnal free oscillation the diurnal tides and nutations exhibit resonance effects.

There has been a recent upsurge of interest in the diurnal wobble of the earth.
(Rochester, Jensen & Smylie 1974). Predictions of the diurnal wobble are based on
rather simple calculations on rotating fluids in oblate containers (Poincaré 1910;
Toomre 1974). We show that the diurnal wobble is the consequence of toroidal
motion of the entire outer core associated with a tesseral spheroidal oscillation of the
Earth. We also confirm Toomre’s speculation on the possibility of a set of other
wobbles of the Earth due to toroidal motion in the core.

Finally, we have computed the amplitudes of nutations for different core modes
and compared with observed values. The results for neutral cores agree with those
of Molodensky.

2, Equations of motion

To describe the dynamic behaviour of the Earth, consider a cartesian reference
frame (x,, x,, x;) ‘rotating with the Earth’ in space at an angular velocity
Q = (Q,, Q,, Q,). There are several methods of attaching the cartesian frame to the
Earth (Munk & Macdonald 1960). Because of the simple form of Euler’s equations we
choose to attach the rotating frame to the principal axes of the Earth. The polar axis of
figure of the Earth is chosen as the z axis.

If the Earth is subject only to diurnal rotation, the vector Q can be written as

Q= (0,0, w). (1)

This is valid for all free or forced oscillations of the Earth with polar axial symmetry.
However, the axis of rotation is disturbed by a class of tesseral spheroidal oscillations.
In this report we are particularly concerned with spheroidal oscillations of the Earth
of degree 2 and order 1. The rotation vector then becomes

Q = (we cos at, we sin o, w). 2

Here o is the angular frequency of a spheroidal oscillation of degree 2, order 1, and e is
the amplitude of the related wobble or a constant proportional to the amplitude of
the related nutation if the oscillation is forced.

The theoretical treatment of the problems of deformation of the Earth presents
some difficulties due to the existence of the liquid core. However, for small oscillations,
the Lagrangian and Eulerian formulations are equivalent. Then the deformation of
the Earth can be described by the displacement vector u = (uy, u,, ¥;) of each material
particle.
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The equation of motion in tensor notation is

d? u; ow
— =pFi+p—+—T;, i=12,3, 3
Pz =PLTP ox;  ox; ) )
where p is the mass density, F = (Fy, F,, F,) the external force density. W the
potential of self gravitation, and T;; the stress tensor.
The acceleration d?u/d:? is in an inertial reference frame. For motion in a rotating
co-ordinate system, the acceleration in the inertial frame is given by
d’n  o%u du oQ
= +2Q%x — + —— X1+ (Q.1)Q—-(2.Q)r, 4
= 5 T Tt @ne- @) @
where 8/0t is the time deviative in the rotating frame. In equation (4) second-order
quantitives in u have been ignored. In spherical co-ordinates, (4) becomes

d? 0* 0 2
-a—:;—’ = Ttu’L —2w sin@%’ - —3—woer P, (cos 8) cos (at—¢)
__.a_(wc+ a+wWT),
or w
d*uy  0%u, du, 8 P! (cos0)
o7 =T —2wc050—6—t + & WoEr —— cos (6t —¢) )
4 P4t (cos0) 14 o+w
- — —_ —-)— — = | W+ ——W,
15wasr oo cos (o1 —~¢) ri)@( 4 p T),
d*uy,  0'uy ou, duy 1 0 ot+w
—¢ - inf —= —_— ——— — | W+ — .
2 W+2wsm9 r +2w cos @ PR rsin06¢( ot — WT)

The various terms used in (5) are defined as follows:
P,™ (cos ) is the associated Legendre function of degree n and order m.
For m > 0, P,"(u) is defined as

(l _1‘2)m/2 dn+m
2nt  du*t"

P(u) = @=1y, (-1 <u<l)

For —ve m it is defined as P,™ (cos0).
W, is the centrifugal potential, given by

W, = tw? r*sin?6. (6)

W is the tesseral potential arising from the variation of latitude caused by motion
of the rotation axis and is given by

Wr = W,(r) P,' (cos ) cos (ot~ ¢), M
where
W(r) = —tew?r? 8)
In order to determine W and Tj;, we make the following assumptions:
(i) The Earth is initially in hydrostatic equilibrium.

(i) In the initial state, the equipotential surfaces coincide with the surface of equal
density, compressibility and rigidity etc.
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(iii) The dynamic stress—strain relation is that for a perfectly elastic and isotropic
earth.

We define the following terms: e(r) is the ellipticity of a surface of equal density;
g(r) is the gravitational acceleration; p,(r) is the initial mass density; W,, is the initial
gravitational potential due to p,(r); W, is the total potential; W,.(r) is a function of
r only. The following relations hold (Jeffreys 1959, p. 145):

VW, = —4nGp,, ©)

Wo = W+ W, (10)

80) = — Wy % — W), an
Wy = W,(F)+b(r) sin 6, (12)
br) = e() g, (13)
VP = po VW, (14)

The prime over W, in equation (11) indicates the derivative of W, along the external
normal to the equipotential surface. This convention will be followed hereafter.
Assumption (ii) enables us to write

6_p9 - po' OWy
ax, Wol ax.' ’
oA A oW,
5, ~ Wy o, (13
op  p oW,
ox;, Wy ox,’ )
where A and u are Lame’s constants.
Furthermore, we can also write (Dahlen 1968)
ps .2
Po = Pur)+ 2 b(r) sin*6,
Wo
A/ . 2
A=A+ W b(r) sin* 6, i (16)
0
I’y -
# = p(r)+ —— b(r)sin* @,
Wo

where p,, A, and p, are the values of p,, 4, and u respectively for an equivalent spherical
earth.
With assumption (iii) the additional stress 7,, due to the deformation is given by

Ju; Ou
=AAS e N )
Ty =4 "+u(6x, + Bx,) , )
where
A =diva (18)

is the dilatation, and &, the Kronecker delta.
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Due to deformation, there is a variation in volume density. The equation of
continuity gives

p—po = div (pu). 19
Using (15), we get

p=po = —poh—2lz. 20)
o

The work done by the deformation is  and is given by
oW, 1 oW, 1 oW,
" TV 5 TY e og

The variation in volume density gives rise to a change in gravitational potential,
W,, which satisfies

@n

n=u

VW, = —4nG(p—p,) = 41G (poA+ % rz) . 22)
[s]

The total potential of self-gravitation is then given by
W =W,+W,.
Since W, = W,—W,, we get
W =W, +W,—-W. (23)

The stress Tj; consists of the initial hydrostatic stress Tp,;; and the additional stress
7,;- Since the initial hydrostatic pressure at a point r in the deformed state is the
hydrostatic pressure at the point originally at (r—u), we find

Toij = — P(r—u)d;;
= —(P(x)—u.VP)j,,.
Using (14) and (21) in the above equation, we get
Toij = —(P=pond;. (24)
Combining (24) and (17), we find that

du; du
= (— +AAYS;; — + LY. 25
Tu ( P+Po’7 - ) i}+p(axj +axi) ( )

Using (5), (23) and (25) in (3), we obtain, with the help of (15), the equation of
motion for an elliptical rotating earth:

2 ]
Tt ersind 2% 273 woer P, (cos 6) cos (o1 — )
o2 ot
0 + iA oW,
= For (it Wi+ —-) — B AL
or 19) Po or
1 Du . 0A
+ ——; {Vp.(Vu,+ o ) +u (V u,+ E)

.
+ﬂC*+&—gL (26)
r \or r
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?u, uy, 8 P,Y(cos®)
572 —2wc0s0—a-t +——5—wo£r—w s (ot—¢)
4 P*(cos )
—Ewasr—srw— cos (ot —¢)
19 o+ AA A awo
= Fot + g7 (Wt 52 Werns 2) - 2
1 Uy Du 0A
—{Vu. — —
+p0{ u (rV( )+ 60) +/1(V Ug+ 69)
20 u Ouy ,
il I ol . Ot 7
+ % 30 (nu,) T IsinZ 0 ("o+20050 6¢)} > 27)
62
F
P ct+o AA A oW,
= — 2% 22 AL
F"+rsinea¢( Tt ) —P0) 5 50

I I Du L oA
— v, [rsinov _! Du 2, , L 294
t 2 {V" (’Sm (rsm()) MY a¢) “‘(V ot rsin@t?d))

Cu y ou, Oug  uy )
—— 2cotf— — 2 8
+r 51n96¢(C0t0u9+u’)+ (2 % + 3% ~sné) |’ (28)
where
Apo’
"= 41,
b po’> Wy
Du ou, 0 (u, 2 0 [uy
= — (2 (2 9
o ré’r(r)+¢r0r(r)’ 29)
Du 0 (711,, 0 ( uy
= o 0o 0 (i)
and
! Du_ 1 0u 1 Cuy . 1 duy

rsinf o¢ _frsino.% + rsind é¢ +¢rsin0_('$'

Equations (26), (27) and (28) are equivalent to the equations of motion derived
by Molodensky (1961).

3. Expansion in spherical harmonics

The displacement vector u = (u,, uy, u,) for a harmonic oscillation of the Earth
of angular frequency o can be expanded in spheroidal and toroidal fields. The displace-
ment fields are generally given in complex form which includes spatial and temporal
phase information. However, for the purpose at hand phase is irrelevant and the real
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form may be used. Then the components of a spheroidal field S,"(r, 0, ¢) of degree
n and order m are given by

(S,"), = U(r) P," (cos 0) cos (ot —mg),
0
S."e = V., (r) == P," (cos 0) cos (at—m¢),
(S = V;"(¢) 35 Pu" (cos0) cos (at—mg) 0
1
m — Vm m M —
Sy =mV,(r) ey P,™ (cos 0) sin (gt —m¢),
and the components of a toroidal field of degree » and order m by
T, =0,
(T, = —m T™(r) ﬁ@ P,” (cos 0) cos (gt —mq¢), an

(T, = — T,™(r) % P, (cos 0) sin (at —m¢).

The factor (ot —m¢) determines the sense of motion as prograde or retrograde.
For m > 0 a positive ¢ gives a prograde motion and a negative ¢ gives a retrograde
motion. In the present work, we follow the convention adopted by Molodensky (1961)
and consider ¢ as negative.

The main effect of ellipticity and rotation of the Earth is to bring about a coupling
between spheroidal and toroidal fields of the same order. Thus an eigenfunction will
have a displacement of the form

u=S"+T, +Sn:2+This+...,
or
u=T,"+S5, +Th.2+Sn.a+...,

(Dahlen 1968; Smith 1974; Crossley 1975; Shen 1975). In the outer core, due to the
vanishing of rigidity, the coupling between spheroidal and toroidal fields is strong.
Crossley (1975), in treating the S, core oscillations for a stable core, considered the
effects of coupling from S,% and T,? up to S,. The results indicate that due to the
rotation of the Earth, there exist infinite number of critical periods by which the
free periods are divided into allowed and forbidden zones. The first allowed zone is
found to be bounded above by a decreasing period which eventually reaches 12
sidereal hours. In view of Crossley’s analysis, it is obvious that large errors will
be introduced when a severe truncation of the coupling chain is made. However,
until a better approach to the problem is found, numerical solutions are possible
only for simple approximations. As a preliminary work, here we consider a displace-
ment for the liquid outer core of the form

u=T¢ ,+S,"+T,. (32)

Here T™_, does not exist if n is equal to or smaller than m. We note that (32) is of
the same form considered by Smith (1974) and Crossley (1975). With (32) as displace-
ment for the outer core, the effects of rotation and ellipticity can be neglected in the
solid Earth. This simplification is permitted by the boundary conditions (see equations
(42)) and its validity has been demonstrated numerically by Crossley (1975). Thus
corresponding to (32), the displacement in the solid earth assumes the simple form
of S,”.

The equations of motion for the liquid outer core may be expanded in
spherical harmonics using (32) as the displacement. The resulting finite set of ordinary
differential equations over radius is of the fourth order. However, the exact expansion
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is possible and requires about the same amount of work. We therefore work out the
infinite set of ordinary differential equations which may prove useful in future when
numerical methods can be improved upon.

The general displacement for an elliptical, rotating Earth under harmonic oscil-
lation of angular frequency ¢ are given by

u=3%,8"+>,T" (32a)

where the displacement fields S,® and T,” are given by (30) and (31) respectively.
The summations in (32a) are over

n=|m|, m+2, Im|+4, ...

and I = |m|+1, |m|+3, |m|+5, ...,
or over
n=|m|+1, |mj+3, |m+5, ..,

and ! = |m|, [m|+2, |m|+4, ....

A summation over m is not necessary at present since displacement fields with different
m are separable. For the same reason, from now on, we can drop the superscript m
without any danger of confusion.

The equations of equilibrium can be reduced to an infinite set of ordinary differen-
tial equations. Our notation differs from the conventional y notations introduced by
Alterman et al. (1959). However, the y notation is convenient only for treatment of a
spherical Earth. In the present study we choose to follow a different but more descrip-
tive notation.

With the displacement given by (32a), the following expressions are general:

W, =3 H,(r) P,” (cos 6) cos (6t —m¢), (33.1)
n =2 n,(r) P," (cos 0) cos (ot —m¢), (33.2)
A =3 A, (r) P (cos ) cos (at —m¢), (33.3)

AA

_I;:) =3 X,(r) P," (cos 0) cos (at— md), (33.4)

F, =3 F,(r) P,” (cos)8 cos (at—m¢e), (33.5)
Fg =Y 4F,(r) % P,™ (cos 0) cos (gt —m¢), (33.6)
Fy=m3 ,F,(r) s1_111§ P, (cos B) sin (67 —m¢). (33.7)

The summations over n in (33) are the same as in (32a).
Using (32a) in (21), and equating the resulting equation to (33.2) we find

n=-1—-m)y(n—m
2n=3)(2n-1)

n—m 2—bT _n(n+1)—3m2 2b
2n—1) n-1 ( (2n—1)(2n+3))

2b
M) = — (b(r) Upa=(r-2 2 V)

am -

¥
r
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2(m*+n—14+m?) n+1+m\ 2b
+( @n—1) 2n+3) b'g> U"“”(’ 2143 )TT"“

(_ (n+1+m) (n+2+m)

2b
—V, . 34
@n+3) 2n+5) )(b Unsat(a+3) 2 "”) (34)
The dot over b in (34) indicates the derivative witth respect to the radius. This
convention will be followed hereafter.
Using (32) in (18), and equating the resulting equation to (33.3), we find

. 1
A, = Un+_f_Un— n(n+1)

V.. (35
Using (16) in AA/p,, we find

A A (A B\ O ( (i=1=m)n—m)
X"(')"EIA"+7,(Z“F§) Wo'( @)D

20 +n—1+m?) _ (ntl+m) (n+2+m) ) 36)
@n—-1)@2n+3) " (2n+3) 2n+5) nt2)t

Using (32) and (33) in (26), (27), and (28), we obtain

(n—=1) (n—m)
2n—-1

~¢? U,+2wa( T,_y—mYV,

_ (n+2) (n+14m)

y ,) —2/3 woerd,? 8,

2n+3
= g—,(Hﬁ w“W.%’ém‘MﬁXn) +Bg A+, F,
(n—1—-m) (rx—m)A 2 +n—1+m?)
( =3 =D T T @ntd "

_ (n+1+m) (n4+24m) (37

(2n+3) 2n+5)

Bues) B

n-3y(n-2-m)(n—-1-m)
(2n—-5) (2n-3)

200 T,_ 3+ (— "—1_"’) (2mcoa+(n—2)az) V,_,

2n-3

n+m
2n+1

( n(n—1)—3m?

2 —
- mZa)d-}-mo ) T;,_l+ (

) (2mwo—(n+1)6?) ¥,

(_ n+2) (n+m) (n+14+m)

2wo T,
Zn+1) 2n+3) ) @7 It
+ $ woer8,%6,,' — & woerd,t s,

= n=2)(n—1-m)
2n-3

) ‘1‘ (Hn—2+ w:;a m5n45ml+’7n—2+Xn—2+r0Fn-2)
;
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+ (n+1) (n+m)> (H + w+o

St ] m&,,zé,,,‘+r;,.+X,,+r,F,,)

—+

(2n—7) 2n—5) 2n-3)

-+

(n+m) \) ( 2 +n—14m?)  (n—1-m) (n—1+m))

21+ 3 - 2n—3

((n J—m)y(n—2- m)(n—-l—m))ZﬁbA
n—4

( 2n-1) 2n+1)

2

13 _( n—-1—-m )((n—m)(n+m)
2n-3) 2n-1) 2n+1

An—l

2(n*=3n+1+m?) ) 28b
2n—5 r

An+ 2y
r (3%)

_{_ (n+m) (n+1+m) (n+2+m)) 28b
( Q2n+1) 2n+3) 2n+5)

and

_ n=-2)(n—1—m) (n—m)
( 2n-3) 2n—-1)

)2(00 Vot (; ) (2mwo+(n—1)a%) T,_

n(n+1)—3m? N n+1+m ,
Ty Ay 290~ Vot | —=——— ) (2mawo— (n+2 T,
+((2n——1)(2n+3) “e ”"’) ~+( T )(mwa (n+2)0%) T,y

oV,

n

( (n+3) (n+1+m) (n+2+m)) )

+ (n—1—-m) (n—m)
(2n+3) 2n+5) r2 (

@n=3) 2n=1) )2“"’ Un-s

(- atamen) 2ot (e ) 2ot
=’_’r’.(yn+ Oty 528, ‘+t7,,+X,,+r¢F,,). (39)
Finally, using (33.2) and (33.4) in (22), we get
H,+ %H..*' "(”r-: D H, = +4nGp, A, + 47;50'?" (15 + X.). (40)

Equations (34)-(40) with n=m,m+2,m-+4, ..., or n =m+1,m+3, m+S5, ...
form the infinite set of ordinary differential equations that govern the small oscillations
in the outer core.

Equations (34)-(40) for a spherical earth (e.g. Smylie 1974; Crossley 1975) are
generally given in the y notations introduced by Alterman et al. (1959). The intro-
duction of the present notations stems from the desire to retain explicitly the stability
parameter § and to use the functions n, and X, in the equations. Notice that 1, and
X, correspond to —gU, and AA,/p respectively in the spherical earth, and —p (7, + X,)
is the nth degree harmonic change in hydrostatic pressure. For readers who are
familiar with the y notations, we give the following identification:

ln = Um yZ" = '1: Am ySn =V, }'4" =0, yS" =H,
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and y¢" = H,—4nGp,U,. In Appendix A, the simplified set of hydrodynamic
equations for S,' oscillations is given in y notations. For the mantle and inner core
equations which follow, y,"=Z,,y," = Y,, and y," = Q,.

In the mantle and inner core, each spheroidal oscillation is governed by a set of
sixth order ordinary differential equations. These equations are

. 24 1 1 n(n+1DA 1
=--2 "y Z —v,
U, A+2u r nt A+2u nt A2p "
. 4 344+2u 1
={ — 2 -
Z, ( PoC r”°g+”,1+2,; rz) "
4u o+w dW,

—_— 15,2 ~po.F
l+2ﬂ r Z ~—Po (Qn P d 6 ) Porl'n
n(n+1) 2n(n+u (3,1+2u)) n(n+1)
T g % Y,

+ ( Po A+2pu r’ nt r "
) 1 1 1
V= = — U+ — V4 —
n ; nt ; nt i Y., @1
Y - ( 1 _ 2;1(3}.+2,u)) .
"=\ Pod (A+2p)r? "A42u
- &)(Hn+ w;au/ténz(sml) —pOOFn+ {_Poaz
— (@2 +2n—1) A+ 2(n* +n—1)p) — } -y,
A+2 P2
H" = 47[Gp0U +Qn,
0= —anGp, "Ny 20D 2 o,

where U, is the radial displacement, Z, the change in normal stress, V, the transverse
displacement, ¥, the change in transverse stress, H, the change in gravitational
potential, and Q, the change in radial gravitational flux density.

The set of equations (41) can be solved numerically for the inner core and mantle
respectively. The inner core solution must satisfy the regularity conditions at the origin
while the mantle solution is subject to the conditions at the free surface which require
that stress across the boundary vanishes and that the change in gravitational potential
is harmonic. These are

Zn(re) = Yn(’e) =0
and
Hn(re)+re Qn(re)/(n+ I) =0

where r, is the radius of the Earth.

The solution for the outer core is related to the solutions for mantle and inner
core through conditions at the outer core boundaries. These conditions are the
continuity of: the normal displacement, the change in normal stress, the change in
transverse stress, the change in gravitational potential, and the change in normal
gravitational flux density. Let a be the radial distance to the outer core-mantle
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boundary. Then we have
']"(d—) = WO'(a) Un(a+))
'l(a_) An (a—) = Zn(a+))

0= Y(a+), (42)
I{n(a—) = Hu(a+)r
H, (a=)—4nGpo(a—) TO=) = 0 (a+).

Wo'

A similar set of conditions obtains at the inner core—outer core boundary. The
boundary conditions (42) involve errors of the order of the ellipticity of the boundary.
A complete formulation for the boundary conditions has been given by Smith (1974).
However, for our present purpose, such formulation is unnecessary because errors of at
least the order of ellipticity exist in the core solution.

4. Spheroidal oscillations of the Earth of degree 2 and order 1—free core oscillations and
diurnal earth tides

The importance of this class of spheroidal oscillations lies in the fact that the axis
of rotation of the earth is disturbed. We derive first the simplified set of differential
equations using the approximation (32). Substituting n = 2 and m = 1 we have

26 (1 1 4 4
m=-2(3 Tt ght 5T + (5-¢) Us, @3.1)
. 2 6
A, =U,+ - U,- —’_‘Vz, (43.2)
2 4 A (4 s\ b(r)
X=_‘A+__—’(—’-——’)—,A, (43.3)
2 Ps 2 7 Ps As Ps WO g
9 b
(wo+06*) T\— —wo V, = icua U,- —3— ﬂ— A, —waer, 43.9)
5 5 S r
8 1 5 4 1 Bb
TSmo‘Vz— (—6—wo+a)T3—l—5waU2+l—5—r—Az, (43.5)
rBz=’12+X2+H2, (43.6)
d
4 0B = —* U= (5= 7 b) &,
32 2
+wo (-2— T,—-2V,— — TJ) + — waer, 3.7
3 7 3
2 4nGp,/ 6 4rnGp,
H2+—H2+( el ——2)H2= +4nGp, BA,+ ——2 B, (43.8)
r W, r
where
2 | . 2
B, = ~3—wa+?a T1+(—wa—a V,

8 16 8
+ (-— wa-—~o'2) T3—7wa U,. (44)
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In (43), the function H, has been modified to include the term (w+ o)W/, and
the external force density F has been set to zero.

The equations (43) are arranged to facilitate numerical computations. For example,
(43.4), (43.5), and (43.6) can be solved algebraically for T;, ¥, and T in terms of
U,, A,;, H,, and e. Thus the set of equations (43) can be conveniently rearranged as a
fourth-order ordinary differential equation in U,, A,, and H,. The constant ¢ is related
to the motion of the axis of rotation of the Earth and must be determined from
Euler’s equation for the angular momentum.

The coefficients (wo +6?) for T, and (wo + 60?2) for T, in (43.4) and (43.5) are
important. When (wo+d?) ~ 0, T, approaches infinity. The result is an inertial
oscillation of the Earth with a period of 23-883 hr. Similarly inertial oscillation takes
place when (wg+662%) ~ 0 and T approaches infinity.

Equations (43.4), (43.5) and (43.6) show that except for inertial oscillations of the
outer core, the functions Ty, U,, V; and T; are of the same order of magnitude when ¢
is comparable to . This suggests that the neglected fields S,' and T,' may also be of
the same order of magnitude. Therefore for such core oscillations, the approximation
(32) is incomplete as has been emphasized earlier. On the other hand, for the inertial
oscillation with a period of 23-883 hr, T,' is the dominating displacement field in the
outer core. The ellipticity couples a small S,! to T,!. But S,*, Ts', and so on can
be expected to be negligible. Thus in this case, (32) is a good approximation. However,
this conclusion must await numerical confirmation.

In vector notation, Euler’s equation is (Munk & Macdonald 1960)

2—1:4+an=1,, (45)

where M is the angular momentum,

oM . . - . .
I the time derivative of M in the rotating frame,

L is the external torque,
Q = (we cos a1, we sin of, w). (46)
The components of M, to first order in ¢, in the cartesian system, are
M, = o, ecosat—I..)+AM,,
M, = oI, esinat—1,)+ AM,, 47
M, =ol,+AM..

Here I,; are components of the inertia tensor and AM is the change in angular
momentum due to motion relative to the rotating frame. The rather simple form of
(47) is due to proper choice of the rotating earth fixed system.

We have

AM = f Por X -g—:ldt. : (48)

earth
Using (32) in (48) we obtain
AM, = o{ cos at, (49)

AM, = o sin at,
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correct to first order in the ellipticity of the Earth with

8
c:T" [ or® T, dr. (50)

outer core

In the present problem, toroidal fields T,' is neglected in the mantle and inner core
so that the integration in (50) is over the outer core only.
The products of inertia I, and I, are due to the redistributions of volume density

po’

pP—pPo= —poA— Vo,ﬂv
and the surface density py/W,’ at every surface of discontinuity.
L= [ (p=po)xzdes S [ LT xzds,
; ) W (51)
on
Le= [ (o=poyzdi+ ¥ [ S0 yzds
s 0
Using (22) it can be shown that
I, = fcosot,
d . (52)
I,, = fsinot,
where
1
=35 d* (2H(d)~d Q,(d)) 8, (53)

where d is the radius of the Earth, and H, and Q, are defined in (41).
Using (49), (51) and (47) in (45) and letting the external torque L = 0 we get,
for free oscillation,

s—a—l;)—é(w(As—f)+aC)=0, (54)

where C = I, is the polar moment of inertia, and A4 = I, = I, the equatorial moment
of inertia.

The equations (54), (41) and (43) with the help of conditions at the origin, the
surface, and the outer core boundaries completely determine the solution.

The equations developed above can be conveniently applied to the problem of
diurnal earth tides and nutations by the inclusion of the forcing terms. The diurnal
tidal potentials are of the form

W,Y(r, 0, ¢) = A, r* P,! (cosB)cos (o1 —¢) (55)

where A,, is the amplitude.
Inclusion of the tidal potential is effected by replacing the function H, in (43) with
the function H, + 4,,r%.
The torque exerted on the equatorial bulge by the tidal force is given by
L= [ porx VW, dx. (56)

In Cartesian co-ordinates

L, = —%sinoat, ‘
L,= % cosal, 57
L -0, |

where & = A, (C—A).
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The inclusion of the torque (56) is effected by replacing the right-hand side of
(54) by — (ZL/w*C).

At this point, it is interesting to show that the theory of diurnal earth tides and
nutations by Molodensky (1961) can be derived from our equations. Molodensky
assumed that the Adams & Williamson condition (Adams & Williamson 1923) is
satisfied in the liquid core so that

Br) = ._,ﬂ;.,_ +1=0. (58)

Next, we observe that for diurnal earth tides (w+0)/w < 1. From the equations
(43.4), (43.5) and (43.6) it can be seen that V,, U, and T, are of the order
(w+06) T\/w. Thus, equation (44) may be approximated by

2 ] b
B = (Faot a') T, (59)

Using ¢59) in (43.7), and neglecting small terms, we get

2 | 2 2
(—3—wa+-3—a )—(rT,)— onl+—3—(oasr

The last equation means

T, = —ar, (60)
where « is the resonant parameter in Molodensky's theory. 1f we write
K(r) = Hy(r)—rB,(r), (61)
then (43.8) becomes
) 2 4nGp, 6
1<+—K+( "‘,”--,-)K:n. (62)
r W, r

This is equation (30) in Molodensky's paper. Now, the function b(r) given by (13)
satisfies (62) so that we can write

2b(r)y = K (r). (63)

Next, we rewrite (43.4) as

9, = —3U2+5(s— a;:wa) r. (64)
Substituting (64) in (43.2), we find
1 10
Az————-(r U )———(e— “:“’a). (65)

To relate U, to n,, we neglect terms of the order ¢+ w/w in (43.1), and get

2 b
n = - 37 T, —gU,.

Upon using (60) and (63), the above equation becomes

1 1
= . 66
U, W ('lz+ 3 aK,) (66)
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Now, using (61) and (58) in (43.6) and neglecting small terms, we get

_ps (1
A, =
N ( K+’72) 7

Combining (65), (66) and (67), we find

d (prfn, 1 pr*Ki\ 1 p/r*
d—r( Wo 30 Wy )J’? - KoKy
10 ot+w
= — . 68
37 p,( p u) (68)
But from (62),
4p, 1 d 6d(K—ocKI)
K—xK,) = L L (22220,
r ( «Ky) " AnGdr (r dr r2 ©9)

Substituting (69) in (68) and integrating over the outer core, we finally get

6
" r° d —-ozKl J‘
K _ = . 0
gt Wo' psr* Ky~ 3G dr ( pe )} S5vi pyrtdr.  (70)

3
W, Ps

This is equation (39) in Molodensky’s paper, except that here the constant v is given by

v=2(— “’+°a+e), (71)
)
while in Molodensky’s theory it is given by
v=2(‘°+"u— -“ie). (712)
o o

However, this difference can be eliminated by replacing the parameter a and the
function K, with (w/g)a and (g/w) K, respectively.

We note that in deriving Molodensky’s equations, equation (43.5) has not been
used. This means that Molodensky’s theory is based on a displacement for the outer
core of the form

u="T'+8S,}, (73)
as compared to our present form of

u="T,'+8,' +T,.. (74)

5. Numerical calculation and results

The numerical computations were performed on earth models with different
polytropic cores (Pekeris & Accad 1972). The mterest in using these earth models
stems from the fact that the function

Apo’

e 41
P02 Wo

pir) = -

determines the stability of the outer core. The restoring force, when a particle is
displaced radially, is proportional to B(r). The core is in neutral equilibrium when
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Table 1
Earth models for different g

M, B= =02 B=00 Jf=+02

r Cp C, Po Po Po Po
(km) (kms~')  (kms~') (gem~?) (gem™3) (gem~?)  (gem”?)
6371 6-30 3-55 2-840
6338 630 3-55 2-840
6338 8-16 4-65 3-386
6311 815 4-60 3-474
6271 8-00 4-40 3-488
6221 7-85 4-35 3-462
6171 805 4-40 3-413
6071 850 460 3-374
5958 9-06 5-00 3-569
5871 9-60 5-30 3.812
5771 10-10 5:60 4-047
5671 1050 5-90 4-215
5571 10-90 615 4+373
5471 11-30 6-30 4-502
5371 11-40 635 4-613
5171 11-80 6-50 4-852
4971 12-05 660 4-955
4771 12-30 6-75 5-040
4571 12-55 6-85 5-066
4371 12-80 695 5-072
4171 13-00 7-00 5-085
3971 13-20 7-10 5-090
31N 13-45 7-20 5-092
3571 13-70 7-25 5-086
3491 13-70 7-20 5:239
3473 13:65 7-20 5-279
3473 8-04 10-087 9-795 10-020 10246
3123 8-44 10-637 10-449 16573 10-693
2776 8-90 11-082 11-023 11-051 11-073
2429 9-31 11-478 11-517 11-457 11-392
2082 9-63 11-809 11-939 11-799 11-657
1735 9-88 12-079 12-293 12-084 11-876
1388 10-08 12-290 12-581 12-314 12-052
1318-6 10-11 12-321 12-630 12-354 12082
1297-8 10-11 12-330 12-645 12365 12-091
1283-9 10-17 12-337 12-654 12-373 12:097
1249-2 10-48 12-352 12-677 12-390 12-110
1249-2 10-48 3-16 12-352 12-6717 12-390 12-110
1214-5 10-76 3-16 12-368 12:697 12-407 12-123
11798 10-93 3-16 12-382 12:717 12:422 12-135
1145-1 11-04 3-16 12-400 12-735 12-437 12-146
1110-4 11-09 3-16 12-412 12-753 12-451 12-156
1075-7 11-12 3-16 12-429 12-770 12-464 12-166
1041-0 11-13 3-16 12-443 12786 12-477 12-176
867-5 11-15 3-16 12-501 12-860 12536 12-221
694-0 11-17 3-16 12-551 12-921 12-584 12-257
520-5 11-17 3-16 12590 12-968 12-621 12-285
347-0 11-16 3-16 12-614 13-003 12-648 12-306
1735 11-15 3-16 12-629 13-023 12-665 12-318

0-0 11-15 3-16 12-635 13-030 12670 12-322

The parameter 8 is defined in equation (29). The model is M3 of Pekeris & Accad (1972) modi-
fied to allow for a solid inner core. For 8 = 4 0:2 the density in the core has been slightly altered
to correspond to the total mass of the Earth.
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- 16

p Cp
124 cp 12

Cs

Density (g/cm3)
™
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¥
@
Velocity (km/sec)
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Fic. 2. Mechanical properties of the earth mode M; (Pekeris 1966).

B = 0 (Adams & Williamson 1923); for § < 0, the core is stable and for § > O the core
is unstable.

Three models with § = 0-2, 0-0 and —0-2 (equation (29) are listed in Table 1 and
plotted in Figs 2, 3(a) and (b). The models are derived from earth model M3 (Pekeris
1966) by Pekeris & Accad (1972). We follow Smylie (1974) with the introduction of a
solid inner core. However, the radius of the inner core is set at 1249-2 km instead of
1214-5km (Smylie 1974). This may affect slightly the periods of undertones.

For f = +0-2 the density in the core has been slightly increased as the density
given by Pekeris & Accad leads to a deficiency in the total mass of the Earth.

13 2.55+
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E °
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|
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FiG. 3(a). Density distribution of the uniform polytropic cores given in Table 1.
(b) Ellipticity in the outer core.
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A neutral or unstable core is incapable of free oscillation. This and some other
characteristic dynamic responses of the uniform polytropic cores have been demon-
strated by Pekeris & Accad. Their conclusions are true for a spherical non-rotating
earth, Our results show that in an elliptical rotating earth all three polytropic core
models are capable of free oscillation.

Equations (41) and (43) were numerically integrated with spline interpolation and
the Runge-Kutta scheme. The integration was initiated at the centre of the Earth and
proceeded radially outwards. The step size was varied so that the ratio between the
step size and the radius remains constant. It has been found that the integration is
stable if this ratio is 0-004 or smaller.

The centre of the Earth is a singular point for equations (41). Therefore the
numerical integration must be started at a finite distance (say r,) from the centre. Thus
initial solutions of (41) at r, must be found. One method is to assume r, is sufficiently
small so that power series expansion of (41) can be applied. However, an equivalent
approach is to assume that for » < r, the Earth is homogeneous. The exact solutions of
(41) for r < r, are given by Love (1911). Since equation (41) constitutes a sixth order
differential equation at r, there exist three independent solutions. Integration by
Runge-Kutta method carry the free constants to the top of the inner core where one is
eliminated by the vanishing of the transverse stress. At the bottom of the outer core,
the constant ¢ is introduced. The new set of three constants is then propagated to the
top of the outer core by numerical integration of (43). At the bottom of the mantle
another free constant is introduced to account for the discontinuity in transverse
displacement. The four constants are finally determined at the free surface by the
three boundary conditions and equation (54).

5.1 Free core oscillations and free wobbles

The periods of free spheroidal oscillations of degree 2 and order 1 have been
computed. The ¢ elastic * modes are ordinarily designated S, with fundamental mode
as (S,*. We follow Dahlen (1974) and Crossley (1975) by designating the vth under-
tone as _,S,!. For convenience _,S," is generally written as S,' unless specifically
called for. Two notations (S,'C and S,* Ty), described later, are introduced to
describe different classes of S,!. Table 2 lists periods of ..,S," and ,S,! for different
models. An upper bound for all possible periods has not yet been identified. Our
computations have been arbitrarily limited to less than 28 hr,

Table 2
Periods, in hours, of free spheroidal core oscillations of degree 2 and order 1.

B=~02 g =00 B=+02

oS2* 0-8894 0-8906 0-8906
5)'C 6-585 11-789 9-493
8992 14-508 10- 664
11-182 17-023 12-883
12:477 13- 664
14-492 15-086
17-417 15727
18-382 17-522
19-462 20-211
20132 22:400
25-332 27-931
27-802
ST, 23883 23-883 23-883

The parameter 8 is defined in equation (29)
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Curve T (hour) e x10M
1 0.88928 1000.
2 6.58385 1
3 8.99421 0.333
4 118246 a.5
5 23.88337 0.002
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T T
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FIG. 4. The toroidal displacement 7', in the outer core for free spheroidal oscillation
for n=2, m=1 and B = —0-2, Relative normalisation is indicated by the

amplitude of the free wobble, ¢, for Figs 4-7.

All three earth models are capable of free core oscillations in the case of a rotating,
elliptical earth. Pekeris & Accad (1972) showed that in a spherical non-rotating earth,
only stable cores are capable of free oscillations. Smylie (1974) and Crossley (1975)
considered the effects of rotation alone on S,? modes, and only for stable cores.
Further, Smylie (1974), considered the effects of self-coupling and set 36 hr as the
upper bound for free periods of S,2. Crossley (1975), set 12 hr as the upper bound for
free periods of S,2. Crossley further inferred that core oscillations with periods
greater than 12 hr are inertial oscillations. However, our resuits have shown no such
critical barrier to the free period. We have found only one distinct inertial oscillation
with a period of 23-883 hr, It is difficult to compare our results with those of Smylie &
Crossley, since we are considering S,* oscillations while they are considering S,
oscillations. But it is possible that the disagreement is due to the effects of ellipticity.

The period of ,S,' depends only slightly on 8, the parameter determining core
stability. But the spectrum of S,! is strongly governed by the value of B. We designate
a subclass of S,' modes with strong dependence on B as S,'C.

The only core mode that is independent of f is the one with a period of 23-883 hr,
3 mins short of a sidereal day. This is designated S,' T, because of the existence of
large T toroidal motions in the liquid core.

The different characteristics of ,S,', S,' C and S,! T, prompts us to examine
the dynamic behaviour of the Earth under these oscillations. In Figs 4, 5, 6 and 7,
we plot the functions Ty, #,, Z, and H, respectively for 4S,!, three S,* Cand S,* T;.
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Fig. 5. The normal displacement 75, for free spheroidal oscillations for n = 2,
m=1land 8 = —-0-2.
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Fi1G. 6. The normal stress Z, for free spheroidal oscillations for n =2, m =1
and 8 = —-0-2.
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Fic. 7. The change in gravitational potential H, for free spheroidal oscillation
forn=2m=1and g = =02,
The earth model used is the one with stable core §# = —0-2. The functions are norma-

lized with respect to the amplitude of the associated wobble. The normalization is
relative and not absolute. For example, in Fig. 4, the normalization means that T, for
curve 1 is magnified by 1000/0-0002 relative to T for curve 5.

For ,S,!, the fundamental elastic mode, the function T is non-zero but very small
compared to 1,. This means that the motions in the outer core is predominantly
spheroidal. Since T is linear in radius, the outer core rotates as a rigid body relative
to the mantle and inner core. But the amplitude of this relative rotation is small. The
dependence of 1,, Z, and H, on radius shows that for this mode, the entire earth is
deformed.

In the case of S,* C, the spheroidal core modes, the functions T, and #, are of the
same order of magnitude in the outer core. A rough interpretation of this is that
gravitational and inertial forces play about equal roles. The radial dependence of T;
shows that the outer core does not rotate rigidly with respect to the mantle and inner
core. This type of free oscillations has displacements and stresses mainly confined to
the outer core. Only the change in gravitational potential has significant distribution
in the mantle.

For S,! T, the inertial oscillation mode, the most significant feature is in the outer
core, with T} > #,. From a comparison of curve 5 on Fig. 4 with that on Fig. 5, it can
be seen that T; ~ 2:5x 10*n,. Since T is a linear function of radius, the dominant
motion of the outer core is a rigid rotation relative to the mantle and inner core. The
relative rotation depends primarily on the moment of inertia of the outer core and not
the density stratification, This explains why the period is so insensitive to the stability
of the outer core. One interesting feature of S,* T is that apart from the large rigid
rotation of the outer core relative to the mantle and inner core, the response of the
Earth resembles that of ,S,!. However, the significant distribution of %, in the mantle
is due to the existence of ellipticity at the core—mantle boundary. Without the ellipti-
city the large T, will not be able to contribute to 7, in the mantle. Therefore it is
incorrect to treat inertial oscillations of the Earth without considering the effects of
ellipticity.

The fact that T, for S,* T, is large can be seen from equations (43.4), (43.5) and
(43.6). Since for S,' T}, wo+0* ~0, we expect T, to be of the order of
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Table 3

The radial coefficients of the displacement and change of gravity at the surface for
some S, free oscillations

Radial Transverse Change in

Period displacements displacements gravity

(hr) (cm) (cm) (mgal)

0S,! 0-8893 2710 60 —0-528

S,1C 6-584 - 600 61 —1-048

S$;'C 8-994 -372 43 —~0-763

S,1C 11-182 —228 24 —0-419

S,' T 23-883 1881 9 -0-134

The amplitude of the related wobbles is assumed to be 1 arc sec

(wo/(ws+6%))U,. Such consideration of the existence of S,' T, at an angular
frequency |o| ~ w raises the possibility of a S,' T, at an angular frequency of
lo| ~ w/6. And if we use the exact equations (34)-(40) for the outer core, we would
expect to have S,' Ts, S,' T; and so on. However, this conjecture must await
numerical confirmation.

The wobble that is associated with S,* T; is generally referred to as the ¢ nearly
diurnal wobble ’ and has recently been discussed by Toomre (1974) and Rochester ef al.
(1974). Toomre (1974) has mentioned that the existence of the liquid outer core should
lead to more wobbles of the Earth than just the nearly diurnal wobble. The present
work confirms Toomre’s conclusions. Any S,* oscillation is associated with a wobble.
Table 2 gives the spectrum of wobbles induced by the existence of the liquid outer core.
However, the S, C wobbles are different in character as compared to the S,! T,
wobble. We note here that due to our sign convention for the angular frequency ¢ the
wobbles associated with S,! are retrograde. Prograde wobbles are associated with
S, ! but the discussions will be deferred to another report.

The periods of S,! C free oscillations depend strongly on the stability of the outer
core. If S,* C can be observed on the surface the density stratification of the outer core
can be resolved. The excitation of these core oscillations by earthquakes is possible
since displacement fields exist in the mantle. But the input of energy into these modes
from earthquakes is unknown. And observation will be difficult because the energy is
concentrated in the outer core as evident from Figs 4, 5, 6 and 7. We provide the
kinematic response of the ,S;*, S,* T, and three S, C at the free surface in Table 3.
The radial and transverse displacements, and the change in gravity at the surface of the
Earth are given by arbitrarily assuming the amplitude of the wobble to be 1/ 00.

5.2 Diurnal earth tides and nutations

The principal components of diurnal tides and associated nutations are given in
Table 4 (Melchior 1966). The theoretical amplitudes of the nutations are those for a
hypothetical rigid earth. The discrepancies between these and the observed values are
genuine and can only be removed by considering the relative rotation of the liquid
core (Melchior 1971).

Table 5 gives the amplitudes of nutations calculated from the present theory and
the theory of Molodensky (1961). The close agreement between the two theories
indicates that for the S, T} nearly diurnal mode (73) is as good an approximation as
(74). Tt appears that for this mode, higher order approximations for the displacement
would still give the same results. The resonance effects at the frequency of S,' T lead
to the correction (e —¢,)/e,. Comparison of the results with the observed values given
in Table 5 shows that the agreement is very good. Perfect agreement cannot be
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Table 4
Principal diurnal Earth tides and astronomical nutations

Diurnal tides

Frequency
Doodson’s  in degrees
Symbol Argument per hour
(o 135-655 133986609
195-455 16- 6834763
0, 145-555 13-9430356
00, 185-555 16-1391017
M, 155-655 14-4966940
Ji 175-455 15- 5854433
4 162-556 14-9178647
168-554 15-1642724
Py 163-555 14-9589314
167-555 15-1232059
St 164-556 15-0000020
¥y 166- 554 15-0821353
165-575 15-0454814
165-545 15-0388622
165-565 15-0432751
K 165555 15-0410686

Reference: Melchior (1971)

North-South

component of

acceleration at
the Equator

(gals)
+5-9428
—0-2561

+31-0391
—1-3366
—2-4410
—2-4410
+0-8474
—0-0362
+14-4815
—0-6226
—0-3484
—0-3484
—0-1268
+0-8647
+5-9148
+43- 6898

Period
in
sidereal days

9-157938

13-698192
Fortnightly
27629992

122-082681

183-121117
semi-annual
366-259758

3408493577
6816-987155
principal

Nutations

Observed (O)

Amplitude Theoretical (T)*

in longitude

07093 (O)
00876 (T)

07529 (O}
075104 (T)

67848 (O)
678672 (T)

in obliquity

0097 (O)
070944 (T)

07575 (O)
07'5558 (T)

97203 (O)
972232 (T)

* The theoretical amplitudes of nutations for a rigid earth are those given by Molodensky (1961)

Theoretical amplitudes of nutation

£—&y
€0

Earth Doodson’s  Present
Model Argument theory
145-555 +28-4
185-555 +73-0
B = +0-2 163-555 +36-0
167-555 +89-1

165-545 +3-29

165-565 —3-77
145-555 +28-4
185-555 +76-9
B =100 163-555 +35:9
167-555 +88-3

165-545 +3-29

165-565 —-3-78
145-555 +28-6
185-555 +76-2
8= —02 163-555 +35-8
167555 +87-4

165-545 +3-30

165-565 -3-79

Table 5

x 10*

Molodensky
theory

Period
in
sidereal
days

13-658192

183-121117
6816-987155
13-698192
183-121117

6816-987155

13-698192

183-121117

6816-987155

Nutations
Amplitude
Present theory (P)
Molodensky (M)

Longitude Obliquity
00899 (P) 070973 (P)
05274 (P) 0/5768 (P)
678330 (P) 971968 (P)
0/0899 (P) 070973 (P)
0770899 (M) 070974 (M)
0/5274 (P) 0/5768 (P)
075273 (M) 0775758 (M)
678328 (P) 9771966 (P)
678342 (M) 971977 (M)
0770899 (P) 070973 (P)
075274 (P) 0’5768 (P)
6’8327 (P) 971965 (P)
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expected because we have not considered the effects of the core-mantle couplings, the
viscosity of the Earth, and the effects of oceans.

The resonance effects of the diurnal tides due to the existence of S,' T, are also
reflected in the diurnal tidal Love numbers. In Table 6, diurnal tidal Love numbers
are given for the three uniform polytropic cores. The asymptotic behaviour of the
Love numbers at the frequency of S,* T; is clearly observable. Observations (Melchior
1966, p. 383) have confirmed the general trend of frequency dependence of the Love
numbers.
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Appendix A
The equations (43) in y notations
Let
ylz = U,, .VZ2 = ’IAZ’
=V v =0, (Al)
yst = H,, y6* = H,—4nGpU,,
J’71 =T, ¥ = T3,
then equations (43.2) and (43.4)-(43.8) becomes
2 1 6
22 < 2, ~ a2, Y 2
Y1 b SR i E A s L3 (A2)
. 4p, 6pg
¥t = (—Paz—‘ —rg‘) i+ —r—J’32"PJ’62
1 16 |
+2 pwa (—-y32+ -3—y71— —7—y73— 5
4Bpb , df 4, , 4bd L\ ,
T g bt s (5)
2b (1 1 4
+ (*7—3’31"*- ?Y71+ 7)’73)) . (A3)
ys* = 4nGpy*+ys, (A%

) 247Gp 6
J’ez = - ; “ye.2 72‘}’52_ 7)’62

4rG | 4. , 4b , 2(1 , 1 , 4
+——p( —7~b}1 ERVEE +—r~(“7—J’3 t 3y +‘7—}’7) . (A5

220z 1snBny 91 uo 1senB Aq G/0€85/.9%/2/9t/al0melB/wo0 dno olwepese)/: Ay WOy papeojumoq



496 Po-Yu Shen and L. Mansinha

2 2 b 2 1 2 b
(———wa—az+ ——2)y32+ (—- wo+ ——02+——)y-,‘

7 7r 3 3 3r
8 16 , 8b\ , (8 4 b g\ ,
+(7‘°‘"7" +7r—2)y7 -(7“’“‘7‘7 7‘)”
4 b d (2 1 2. 1,
+( 7a5(?)+;)h + =55 (A6)
2 2y 41 2y, 3 2, Bt
1 wey,*+(wo+06°)y; —4(wo+606%)y;° = Twoy, +r7-y2 —woer, (A7)
2 2 3 2 Bb 2
—~16woy2+5 (wo+60%)y,° = —8woy, —Zﬁyz . (A8)

In the above equations, the parameters p, A, and p are the p,, A, and y, respectively
defined in equation (16). The subscript s is dropped for convenience.
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