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1. Introduction

There are many sample function properties of a stationary Gaussian process
which satisfy 0-1 law. For example, continuity or unboundedness of sample
functions, upper class or lower class and the law of iterated logarithm. In this
paper we shall investigate another type of sample property which satisfies 0-1
law.

Let {X(t)'y 0</<1} be a real stationary Gaussian process with the mean
E[X(t)]=0 which has continuous sample functions with probability one, and
let Q(x)y 0<#< + °°> be a continuous increasing function near the origin with
ζ)(0)=0. We shall investigate the oscillation of sample functions of X(t) de-
scribed as follows

(1) lim "ΣQ(\X(tn-X(t?lι)\)9l |S»ll->o i=ι

where Sn = {0 = tf° < t?> < ••• < Cc«)=l} is a partition of [0, 1] and \\Sn\\ =
Max tΓ~tflι\.

,' = !,...,mC»)

In Theorem 1 we shall prove that if Q(x) is suitably chosen, the oscillation
(1) satisfies Kolmogorov's 0-1 law for a certain class of stationary Gaussian
processes. This class is specified by the conditions on v(x)=(E[(X(x)—Jf(0))2])1/2

using a regular increasing function. In Theorem 2 we shall prove that the
oscillation (1) has non-zero finite constant with probability one under the
stronger conditions of v(x) than those of Theorem 1 and with a nice choice of the
seguence of partitions.

In the case that {X(t)'y 0<£<1} is the Wiener process, the oscillation (1)
for Q(x)=x2 equals 1 with probability one when {Sn} is the 2n equi-partitions
(P. Levy [1]). G. Baxter [2] showed that for the comparatively narrow class of
not necessarily stationary Gaussian processes characterized by the conditions on
r(s, t)=E[X(s)X(t)], the oscillation (1) for Q(x)=x2 is constant with probability
one. E.G. Gladyshev [3] has extended the result of G. Baxter in the direction
of the oscillation for O(x)—a(ri)x2, where a(n) is a normalized constant which
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depends on partitions. Yu.K. Belyaev [8] has treated this problem in a different

manner from ours.

In Section 2 we shall state the theorems and in Section 3 we shall prove them.

Finally we shall give some examples in Section 4.

2. Theorems

To state the theorems, we shall introduce regular increasing function

investigated by J. Karamata [6].

We shall call a real function P(x) defined on (0, u) a regular increasing

function if P(x) satisfies the following two conditions:

(A-l) P(x) is a strictly increasing positive continuous function.

(A-2) There exists a positive number a such that

r P(sx)lim —^—'- = x
no P(s)

holds for every x>0.

Set

P~\x) if 0<x<P(u)=u0

0 if u0 < x .

Then we have the following theorems.

Theorem 1. Assume that v(x) is continuous on [0, 1]. If there exists a regular

increasing function P(x) such that

( 2) lim -?— = 0 and
^ } no P(S)

( 3 ) lim ^ίίϊ = 1 ,V ' no P(S)

then the oscillation

»(»)
( 4 ) lim 2 Q( I X(tΓ}—X(tf\} )

converges with probability zero or one and if it converges with probability one, the

limit is independent of paths.

REMARK 1. The condition (2) is fulfilled automatically when 0<fl<l, and

from the stationarity of the process the condition (3) can be satisfied only if a< 1.

REMARK 2. By the criterion due to X. Fernique [4], the condition (3)

implies that X(t) has continuous sample functions with probability one.

Theorem 2. Suppose that there exists a regular increasing function P(x)
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such that the condition (3) of Theorem 1 is satisfied for 0<a<l, and that v(x) has

twice continuous derivatives on (0, 1) which satisfy the following conditions:

/ r \ ι V'(SX) a-\ ι r V"(SX\ a-2( 5 ) lim — ̂  — '- = x , and hm — ̂ —f- = x .
no v'(s) s * o v"(s)

In addition suppose that the partition {Sn} satisfies the following conditions:

(6) ||SJ| = max|*r-*rΛ|<£02-*M, and
t

α, /3 satisfy the relation 2α>/3>α>0, αwJ c0>0.

( 7 )
n-+<x> f =ι

holds with probability one.

3. Proofs of theorems

First we shall list the properties of regular increasing functions in Lemma 1 .

Lemma 1. Let Q(x) be the function defined in §2. Then we have

(i) Q(x) is a regular increasing function on (0, w0].
(ii) It holds that

Hm 21̂  = tfi* f0r any x> 0,
•*' βW

uniformly in x on any compact set contained in the half line (0, oo).

(iii) Q(x) can be expressed in the form

0(x)=
0

where q(x) is a function satisfying the following condition (S).

(S) lim 2ί̂ ) = 1 for any
*o q(s)

(iv) For any 8> 0, it holds that

lim s*q(s) = 0 .
no

(v) For any £>0, ώ Ao/Λ ίAβί

lim s~*q(s) = +00 .
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(vi) For any £>0, there exists c(£)— ^>0 such that

q(sx) ^ ε*>"•*
holds for any x>\ and any s>0 with 0<sx<uQ.
The proof of Lemma 1 is omitted. (Many properties of regular increasing
functions are found in [7].)

Let {X(t); 0<£<l}bea stationary Gaussian process with continuous paths.
consider the spectral decomposition of X(t)

X(t) = \ eiUdM(\).

Set

Zn(t) =

Then we have

Lemma 2. (K. Itό-M. Nisio [5]). The sum

N

converges to X(f) uniformly in t with probability one.
For the proof of Theorem 1 we proceed as follows. By virtue of Lemma

2 and Remark 2 of Theorem 1, X(f) can be expanded as a series of independent
random variables Zn(i) which converges uniformly in t with probability one;

( 8 ) X(t) = Σ ZH(t) uniformly in t.

We can therefore choose such a basic probability space (Ω, J3, P) that for every

ω^Ω the series Σ Zn(t, ω) converges uniformly in t.

Let <BN be the smallest σ-algebra generated by (Z^t) ί= Λf, N+l, •••}. An
event which is measurable with respect to J2L— Π 33™ is called a tail event.

Set

xN(t) = f

and

An

(X(t) = X(t(r)-X(tTlι) , Δ?ί = ίΓ'-ί^i .
wC/ϋ

Then we shall prove that the event A={ω; lim Σ £)( | Δ? ί̂(ί) | ) converges) is
., l l -Sfβl | ->0 ί=l

a tail event.

Set ΩJ={ω; |Δ?y^(t)|<82ϋ(Δίί) for all ft>w, and /= 1, 2,
Then we have
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( 9 ) ΩJcΩΓ'c-.

Since the path YN(ty ω) is differentiable and lim xjv (x) = 0 from the
conditions (2) and (3), we have

(10) Ω = U Ω J ,

for any δ>0 and any N.

Fix positive integer N arbitrarily. There exists positive S0 ( < — j such

that for any positive δ<S0 and any s<u we have

(11) 2(δ+S2)P(ή<u0.

From the condition (3) of Theorem 1 follows the assertion: For any £ and

any S with 0<£<1 and 0<δ<δ0 respectively, there exist s0 with 0<O0<^

such that for any s<s0 we have

(12) v(s)<(l+£)p(s).

ί \\ 3By Lemma 1 (ii), for any x such that minίδ+δ 2, —)<x<— and for any

j we have

(13)

There exists nQ such that for any n>n0 we have

(14) P(||Sgi)<ί0.

For any fixed ω^Ω, there exists nλ and for any n>nλ we have

i

Set u2—max(/z0, wx). Then the above ω satisfies

(16) ΩgBω for any n>n2.

For such an ω, satisfying (15) and (16), set

(17) Kn = {i \Δn

(XN(t)\<δv(A"(t)}, n>nz.

Then it follows that

= Σ((

<Σ"
itΞKn
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Σ
ί<Ξ/CM

Σ ̂i<=κn

(δ+δ2)l/a(l+ε)l/a+ε
and

= Σ

Analogously we have

Σ ρdΔ^wl)^ Σ Q(
i(£Kn i$Kn

Hence it follows that

ϊίm Σ Q( \ ΔSX&) I ) = Km" Σ Q( I Δ? JΓ

lira Σ | Δ ? ^ I = Urn

Since the equation (18) is true for any N and since the ΔZM are independent we
can concluded that the event A={ω\ the oscillation (4) converges} is a tail event.
By virtue of Kolmogorov's 0-1 law, the probability of the event A is 0 or 1.

(q. e. d.)

In order to prove Theorem 2, we shall prove the following lemma.

Lemma 3. If v(x) satisfies the conditions of Theorem 2, then for any
£>0, there exists c2(£) = c2>0 and for any s, hlt h2 such that s/4>hιy A2>0 it
holds

, l _ « _ ( 8 / 2 ) L l - « - S 2

|r(ί+Al-Aa)+r(ί)-r(ί-Aϊ)-r(ί+AI)l < ̂  - ~τ

where r(t)=E[X(t)X(0)].

Proof. By the assumption of Theorem 2, we have

(19) ^̂  = X*"-*f(x) ,
dx

where f(x) satisfies the property (S).
From an easy calculation, it follows that

(20)
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Without loss of generality, we can assume h1<h2. Then we have

(21) \r(s+h-h2)-r(s-h2)-(r(s+h1)-r(s))\

*))}

where O^θ^h,), θ^h^h,, and O^
(19), (20), (21) and Lemma 1 that

<fV(0
df

:,4-A2. Hence it follows from

A) I

^}v(h2)

(q.e.d.)

We now come to the proof of Theorem 2. First we show that

(22) lim £ [Σ 0( I Δ? JΓ(ί) | )] = Γ | Λ? | 1/β -/L β'
«->- 1=1 J-oo V 2π

From the condition (3) of Theorem 1, for any 0<£<1, there exists
and for any s<s0 we have

For anyO<δ<l there exists ̂ X) and for any s<^sί and any #e[δ, δ-1(!+£)],
we have from Lemma 1 (ii)

(24)

There exists MO such that for any n>n0, we have

(25) 2P(||5J|)<min(ίo, *,), P(\\Sn\\)(l+€)<Su0 .

We can therefore estimate the expectation E[Q(\Δ"X(t)\)] as follows:

+

ι*ι<«

(
Jδ '
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Hence we have from (23), (24), (25) and Lemma 1 (vi),

I1<Q(S(l+ε)P(An

it)) ί * e-
J\x\<s\/2π

?f { i * i 1/α(i +εγ<a+ε} - =

Hence it follows that

lim
«->-

Analogously we have

Thus the equation (22) is proved.
Next we shall estimate

<
J

v 2τr

Fix ό>0 such that

&<(2«-/3)(2-2a)>

then we can choose μ > 0 such that

/0/-λ(26)

By virtue of (12), for b>0 fixed above, there exist C3(b)=c3 and w0 such that
for any n>nQ we have

(27) ρ(|^|^Δ?0)<^A?ί(kicl/f l)+fc+l)

For fixed ω such that (26) is satisfied, set

Bn = ( Σ + Σ ){E[Q(\X!X(t)\)Q(\£?}X(t)\)]
I /cw^ _ /(w^ I < 2 - ̂ n I /("^ — ί(.»)ι I > 2 - P*

-E[Q( Δ?
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By Schwartz's inequality and (27), we have

(28) *il>5

I /(n) __/(«> |<2-'AW

i - 1 J - 1

<^ o-cμ+Λ-β)«
-̂  C4^ >

where c4 is a constant independent of n.

X

where Δ?Jr=JB[Δ?
Making use of the relation

(29) (Bx, x) = ^(x, x) + ±-(Cx, Cx),

where

B = 1 fv\vl, -rv,v2\
v\vl—r2\ —rvlv2, v\vl)

we have

*ι x* î ^L-iiΛ—•'-' exp
" ^ /_.2/ A 7lα\ _.2/ A W.A A ϊl -.2 ^

Therefore, it follows from (27) that

— 1 > dx1 dx2,

Γ - Δ?/(*!+«i)-2Δ?Jn> (A'^(A^A

L 2(w2(Δ?ί)^2(Δ^)-Δ?jr2)

-1



10 N. KONO

Σ ΔftΔff j — X

max - ,

-*n v(Δ"t)v(Δ"t)

where c5 is a constant independent on /, j, n.

On the other hand by Lemma 3, it follows that

) / ( w ) Π W I /(w> #^) I \— Γ j _ ι | )— r( \ tj-i— ΐj \)

v(Δn

ίt)v(Δn

jt)

Hence we have

(30)

Set Ωr=

where d=Γ \x\1/a -4=e~x^dx .
J-~ x/2τr

Then by Chebyshev's inequality and from (28) and (30) we have

P(Ω,^)<n\c42-^+"-β>n-\-c2c52-n^2^

Since μ satisfies (26), it follows that

Thus Theorem 2 can be proved immediately by Borel-Cantelli lemma, (q.e.d.)

REMARK. It is obvious that Q(x) can be a extended arbitrarily to x>u0 so
far as Q(x) satisfies the inequality Q(x)<cxb

4. Examples

EXAMPLE 1. Let [X(ί): 0<t<l} be a stationary Gaussian process with
E[X(t)]=0 having the spectral density /(λ) such that

r c\-a if x>ι
/(λ) = { θ if

where , and c= (\ \~ad\\ .
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Then v\x) = 2\~sm2X^f(\)d=c1\x\a-1 .
Jo 2

Put P(x)=c^a-^\ then it follows that

r p(x) 1lim — ̂  = 1 .
*ψo V(χ)

Thus Q(x) is defined as follows

Q(x) = Ci-w-^ofK*-^ .

From an easy calculation, it follows that v(x) is twice differentiable at
#ΦO, and satisfies the conditions of Theorem 2. Therefore for the sequence of
partitions which satisfies the conditions of Theorem 2, we have

=
o \/2π

with probability one.

EXAMPLE 2. Let {#(£); 0<ί<l} be a stationary Markov Gaussian process
with E[x(t)]=0 and E[X(if]=\. Then there exists some constant k>0 and

Thus we have for P(x)=^

Km ΪΪW = 1 .

Hence Q(x) is defined as follows

Q(x) = k~lx2.

Therefore for the sequence of partitions which satisfies the conditions of Theorem
2, we have

l im'

with probability one.
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