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1. Introduction

There are many sample function properties of a stationary Gaussian process
which satisfy 0-1 law. For example, continuity or unboundedness of sample
functions, upper class or lower class and the law of iterated logarithm. In this
paper we shall investigate another type of sample property which satisfies 0-1
law.

Let {X(¢); 0<t<1} be a real stationary Gaussian process with the mean
E[X(t)]=0 which has continuous sample functions with probability one, and
let O(x), 0<x<<-+ oo, be a continuous increasing function near the origin with
0(0)=0. We shall investigate the oscillation of sample functions of X(t) de-
scribed as follows;

(1) tim 53 0(1 X(17)— X(£2)),

[Syll>0 =1

where S, ={0=1{" <#{® <. <tom=1} is a partition of [0, 1] and [|S,||=
Max |t —t{,].

§5=1, ., M)

In Theorem 1 we shall prove that if Q(x) is suitably chosen, the oscillation
(1) satisfies Kolmogorov’s 0--1 law for a certain class of stationary Gaussian
processes. This class is specified by the conditions on v(x)=(E[(X(x)— X(0))*])"”*
using a regular increasing function. In Theorem 2 we shall prove that the
oscillation (1) has non-zero finite constant with probability one under the
stronger conditions of v(x) than those of Theorem 1 and with a nice choice of the
seguence of partitions.

In the case that {X(¢); 0<¢<1} is the Wiener process, the oscillation (1)
for Q(x)=«" equals 1 with probability one when {S,} is the 2" equi-partitions
(P. Lévy [1]). G. Baxter [2] showed that for the comparatively narrow class of
not necessarily stationary Gaussian processes characterized by the conditions on
r(s, t)=E[X(s)X(?)], the oscillation (1) for O(x)=x? is constant with probability
one. E.G. Gladyshev [3] has extended the result of G. Baxter in the direction
of the oscillation for Q(x)==a(n)x’, where a(n) is a normalized constant which
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depends on partitions. Yu.K. Belyaev [8] has treated this problem in a different
manner from ours.

In Section 2 we shall state the theorems and in Section 3 we shall prove them.
Finally we shall give some examples in Section 4.

2. Theorems

To state the theorems, we shall introduce regular increasing function
investigated by J. Karamata [6].

We shall call a real function P(x) defined on (0, u) a regular increasing
function if P(x) satisfies the following two conditions:
(A-1) P(x) is a strictly increasing positive continuous function.
(A-2) There exists a positive number a such that

P(sx) .
im =X
svo P(s)

holds for every x>0.

Set
P(x) if 0<x<P(u)=u,
0 if u<x.

O(x) =

Then we have the following theorems.

Theorem 1. Assume that v(x) is continuous on [0, 1].  If there exists a regular
increasing function P(x) such that

(2) lim > =0  and
svo P(s)
(3) lim 20) — 1,
0 P(s)
then the oscillation
(4) lim ME”)Q(lX(tim)~X(t§'31)|)
HSull>0 i=1

converges with probability zero or one and if it converges with probability one, the
limit is independent of paths.

Remark 1. The condition (2) is fulfilled automatically when 0<<a<(1, and
from the stationarity of the process the condition (3) can be satisfied only if a<1.

REMARK 2. By the criterion due to X. Fernique [4], the condition (3)
implies that X(z) has continuous sample functions with probability one.

Theorem 2. Suppose that there exists a regular increasing function P(x)
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such that the condition (3) of Theorem 1 is satisfied for 0<a<<1, and that v(x) has
twice continuous derivatives on (0, 1) which satisfy the following conditions:

(5) lim 20%) et apd lim 0¥) — ya-r
() " ()

In addition suppose that the partition {S,} satisfies the following conditions:
(6) 1Sl = max | ;" —£21| <¢,27%",  and
min |7 — 17| 2,27,

where a, 3 satisfy the relation 2a> 3> a>0, and ¢,> 0.
Then

1 —(Xx2)2
e (x/)dx’

(7) lim 2’9( | X —X(t))]) = S: ]

- T

holds with probability one.

3. Proofs of theorems

First we shall list the properties of regular increasing functions in Lemma 1.

Lemma 1. Let Q(x) be the function defined in §2. Then we have
(1) O(x) s a regular increasing function on (0, u,].
(ii) 1t holds that

im Q0% _ e

0 0()
uniformly in x on any compact set contained in the half line (0, o).
(ii1) Q(x) can be expressed in the form

for any x>0,

x/%q(x) , 0<x<u,
0 , U, <X,

Ox) =
where g(x) ts a function satisfying the following condition (S).

(S) im 2 — 1 foramy x>0,
" g(6)

(iv) For any €>0, it holds that
lim s%¢g(s) = 0.
540

(v) For any €>0, it holds that

lim s7%¢(s) = +oo.
5340
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(vi) For any £€>0, there exists ¢(€)=c,> 0 such that

qu‘)/_\: ¢, x°

q(s)

holds for any x>1 and any s>0 with 0 <sx<u,.
The proof of Lemma 1 is omitted. (Many properties of regular increasing
functions are found in [7].)

Let {X(¢); 0<#<1} be a stationary Gaussian process with continuous paths.
consider the spectral decomposition of X(?);

X(t) = S:e"“dM(x) :
Set
Zo(t) = S MAM(M) .

n—-1<IA<n

Then we have

Lemma 2. (K. Ito-M. Nisio [5]). The sum
N
2 Za(t)

converges to X(t) uniformly in t with probability one.

For the proof of Theorem 1 we proceed as follows. By virtue of Lemma
2 and Remark 2 of Theorem 1, X(#) can be expanded as a series of independent
random variables Z,(¢) which converges uniformly in ¢ with probability one;

(8) X(t) = i] Z,(t) uniformly in z.

We can therefore choose such a basic probability space (Q, B, P) that for every
» € the series f} Z (t, ) converges uniformly in ¢.
A=

Let B, be the smallest o-algebra generated by {Z,(t); i=N, N+1,---}. An
event which is measurable with respect to B.= N B is called a tail event.
Set i

X\ =570, Yi)=220),

-1
i=1
and
ATX(2) = X(tM)—X(t1), Att =t —t", .

Then we shall prove that the event A={w; lim ':(V_":,) O(|A7X(¢)|) converges} is
a tail event. 1Swli70 =

Set Q5= {w; |AF Y (t)| < 8% (Alt) for all k>n, and i=1, 2, -+, m(k)}.
Then we have '
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(9) QpcOyic

Since the path Y (¢, o) is differentiable and hm x[v(x)=0 from the
conditions (2) and (3), we have

(10) Q=Ua,

for any §>0 and any N.

> such

Fix positive integer N arbitrarily. There exists positive §, ( %

that for any positive § <5, and any s<u we have
(11) 2(8+8)P(s)<u,.

From the condition (3) of Theorem 1 follows the assertion: For any &€ and
any & with 0 <€<1 and 0<8 <3, respectively, there exist s, with 0<s0<1l22

such that for any s <s, we have
(12) o(s) <(1+€)p(s) -
By Lemma 1 (ii), for any x such that min <8+82 >£ —32— and for any

s<s, we have

13 Q(sx)_ /e
(1) o

There exists 7, such that for any n>#, we have

<E€.

(14) P(lIS,IN<s .

For any fixed o €Q, there exists #, and for any #n>n, we have
(15) lmiax At X y(o) | <s, .

Set n,=max (n,, n,). Then the above o satisfies

(16) (O} E=T) for any n>n,.

For such an o, satisfying (15) and (16), set
17) K, = {i; |AT X ()| <5 v(AT2)}, n>n,.

Then it follows that

SO (AXO]) = 33 O AL Xn(O+ATYA(0)])
< 33 0((6+8)0(A1)
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< 3 0((3+ &)(14-E)P(AY()))
< 37 AIH(3+8)(1+6) "+
< (8+8)7 (148 + €

and

Zonarxmn = 33 0(1amxu) 1+55 )

< 2 (I ATX (1) (1+9))
< 3101 ATX W) ){(1+8)"+8}

Analogously we have

31 O(IATX(0)1)= 3 Q1 AT X (0 ){(1—8)7" &}

iEKy,

Hence it follows that

Iim 3 0(1a1X,(1)) = T 5¥ (11X (1))

HSull>0 i=1 Spll>0 i=1
(18) . m(n) . m(n)

lim >3 O(|ATX(f)]) = lim >} O(|AT X (2)[)

HUSpll>0 i=1 118 5l1>0 i=1

Since the equation (18) is true for any N and since the AZ, are independent we
can concluded that the event A= {w; the oscillation (4) converges} is a tail event.
By virtue of Kolmogorov’s 0-1 law, the probability of the event A is 0 or 1.
(q. e d)
In order to prove Theorem 2, we shall prove the following lemma.

Lemma 3. If v(x) satisfies the conditions of Theorem 2, then for any
>0, there exists c,(€)=c,>0 and for any s, h,, h, such that s[4>h,, h,>0 it

holds
pr-e-cmpr-a-c/2
Ir(s+hl—h2)+r(s)_r(s_hz)_r(s+h1) l <6 sz_zaig v(hl)v(hz) ’

where r(t)=E [X(£) X(0)].
Proof. By the assumption of Theorem 2, we have

(19 TU) — sore i),

where f(x) satisfies the property (.5).
From an easy calculation, it follows that

(20) r(s+h,—h)+r(s)—r(s—h,)—r(s+h))
- %(@2(s+h1)+ 0 (s—hy)— D (s+-hy — hy)—(s)) -
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Without loss of generality, we can assume A, <h,. Then we have

(21) |7(s+h,—h,)—r(s—hy)— (r(s+h,)—7(s)) |

- Z {%(s_thral(hl))—ij(s+92(h1))}f

<hh, ’{%(swa(hl, hz))}‘ ,

where 0<0,(h,), 0,(h,)<h,, and 0<0,(h,, h,)<2h,+h,. Hence it follows from
(19), (20), (21) and Lemma 1 that

| r(s+h,—h,)+7(s)—r(s—h,)—r(s+h,) |
& () Wby o)
dt t=s+05Chy, hy o(h,) v(hs)

1-a-—-(8/2) l,1-a—(g/2)
hl /' hz /

gi-zate o(h)v(h,) . (q.e.d.)

<g

We now come to the proof of Theorem 2. First we show that

(22) lim £ [(2) O(|AX(1)])] = S”;lxll,a ﬁ,

e~ Fdy

From the condition (3) of Theorem 1, for any 0 <& <1, there exists s,>0
and for any s <s, we have
(23) P(s)(1—8) <o(9) < P(s) (1+)

For any 0<<8<C1 there exists s,>0 and for any s<Cs, and any x <[5, 6 '(14-€)],

we have from Lemma 1 (ii)

O(xs) e

O(s) I

There exists 7, such that for any n>n,, we have

(24) <e€.

(25) 2P(||Sall) <min (s5, ,), P(1|Sall) (14-€) < Su, .

We can therefore estimate the expectation E[Q(|A7X(#)|)] as follows:

n 1 —(%2/2 — uo
SlxISMIQ(IxIv(Ait))\/—?;e /)dx’ <u1—"v(A?t)>

- (qu * LSMSS_)Q( |x|P(A?t)(1+g))\/_1_ﬁe—<xz/2)dx

Ol x| v(A??) ﬁr ey

Ss*‘<|xlsul

= L+1+1,.
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Hence we have from (23), (24), (25) and Lemma 1 (vi),

1, <O(6(1+8)P(A%t)) S|x|<s\/—12_;e—(x2/2)dx

<A';t{81/“(1—|—8)]/a+8}
1 2
4 1/a 1/2 —(x2/2)
IZSS 3-1Aﬁt{|x| (1—|—E) +8}\/__e dx

8<8lxi<

¢,0(v(AT))(1 _|_8)(1/a)+8/x(1/a)+s/\/_1_§7 e~ gy

SS—I<Ix|Sul T

1

IA

/7 / ]. —(x2
n Qayte/ ,a/ay+e *2/2)
gs-‘«,fl QU1+ PAT)(1-+ 81 a0 e

T

IA

a v 1 e
<S A?t'c‘z 1) | o | UDHE 2 o= Dy |
—Js i<zl 1( + ) I | \/2

T

Hence it follows that

1 e~y

lim $YE[O( ATXO ] <[ 1L

Analogously we have

}11:2 ’E)E[Q('A?X(t)[)]zgfw!xll/a\/__l_ﬂ

e~ Fdy

Thus the equation (22) is proved.
Next we shall estimate

B, = E[(¥ 00181 X(2) )33 E(Q( ATX() )]

Fix 5>0 such that
b<(2a—ﬁ)(2—2a),

then we can choose x>0 such that

2—2a—b

26
(26) 2—2a+b

a>u>LB—a.

By virtue of (12), for 5>0 fixed above, there exist c,(b)=c, and n, such that
for any n>n, we have

(27) O(|x|v(AT)<c,A%t(|x]VDHe4-1)
For fixed o such that (26) is satisfied, set

B, = ( 2] + > HETQ(1 A X() DO ATX(#)1)]

() — () - pn n) _gm) —pn
|#gm, —#m | <2 |t —w | >2

—E[O(|AT X)) DIE[Q(1AT X() )]} = B> + B2 .
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By Schwartz’s inequality and (27), we have

(28) Br< > VE[Q(] ATX (1) F1E(Q(1 AT X(2)] )]

lt(n) —m | <28
j-1t=

+E[Q(IATX() DIE[O(1ATX(2) )]

<c, > ATtAGE
|t —gm | <2k
i 7=

~ (et —Bon
<c2 LR

where ¢, is a constant independent of #.

ERE:)
Br= o3 o(mle@in)Q(sle@s) e 2
|t<n> _tm) | >2-#7
><{ v(A7t) v(A%?) exp[ AYyr(xd+-f) — 2A"jr'v(A"t)v(A"t)x19_c_2]
2 (AT (ATE)— AL

V(AT V(A E) — ATy
- —1 }dx, dx,,

where AT r=E[A}X(t)A}X(1)].
Making use of the relation

(29) (Bx, x) = z(x, v)+—(Cx» Cx),
where
g__1 ﬁ(v?wi, —Wﬂ’z>
vivi—7 \ —ro,, viv}
'v%v%—rz U0y, 7

we have

_(_xxz+x%){ o(AT)v(A%) exp[ A% (i x3)—2A7 jrv(A”;’t)v(A’,‘t)xlxz]

¢ VO (AT) (A — AT 2(A(AT)T(ATE)— Al
_1}

= =@ { ‘U(A"t)”(Ant) e—(cx, CE®/4_ o= (%, 2[4 }

IA?ﬂ’I PRIV | 2 2
< 18agrl x3+x3) .
o(AT)o(AY) (I-itocs)

Therefore, it follows from (27) that
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n
BP<ce, X aAmnap AUl
otz e oA AT)

- _(xf+xf)
,S (le(1/“)%b_|_1)(,le(1/“)-&»b+1)(1+x§+x§)e 4 dx,dxz
[AG7]

<¢,  m —
|00, — 15w, | 2274 0 ATt o(AfE)

where ¢, is a constant independent on ¢, j, 7.
On the other hand by Lemma 3, it follows that

[AYr| (|8 =t )+ r([ 82— 2520 ) —r(| £ — 2520 | ) —r(| 8522 — 25" |)
o(A%t)o(A%t) (AT v(A})
< (AT (AT
= Cy .

[ERrEE

Hence we have

(30) B;,Z)gczcsz-n{auua-b)*#(2-2@,,,), )
mCn)

Set Qe — {co; 3 01 ATX (1)) —d | >L} ,
= n

where d = Sfmlxllla\71§;€_x2/2dx,

Then by Chebyshev’s inequality and from (28) and (30) we have
PQP)<n*(c, 2= 2P p g, e 27 M E DT RE2ETD)
Since p satisfies (26), it follows that
g PQP)< + oo .
Thus Theorem 2 can be proved immediately by Borel-Cantelli lemma. (q.e.d.)

ReMARK. It is obvious that Q(x) can be a extended arbitrarily to x>u, so
far as Q(x) satisfies the inequality Q(x)<cx? (b>>0).

4. Examples
ExampLE 1. Let {X(#): 0<t<1} be a stationary Gaussian process with
E[X(t)]=0 having the spectral density f(\) such that
o _{c)x"’ if a>1
M=10 if 0<a<l,

where 1<a<3, and CZ(SwX‘“dX>_1.

1
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Then (%) = ZSwsinzx% O = ¢,|x]*" .
0

Put P(x)=cx“~"7 then it follows that

lim P®) — 1,
=40 o(x)

Thus QO(x) is defined as follows;
Q(x) — cl—zl(a—l)le(a—l) .

From an easy calculation, it follows that o(x) is twice differentiable at
x=£0, and satisfies the conditions of Theorem 2. Therefore for the sequence of
partitions which satisfies the conditions of Theorem 2, we have

m(n) oo
tim 3Y 1 X(1) X (1) [~ = 10| e Lo emray,

with probability one.

ExampLE 2. Let {x(#); 0<#<1} be a stationary Markov Gaussian process
with E[x(¢)]=0 and E[X(¢)’]=1. Then there exists some constant k>0 and

E[(X()— X(©F] = 1—e71-1.
Thus we have for P(x)=+/kx

lim 2&%) — 1 |

xyo P(x)
Hence O(x) is defined as follows;
O(x) = k7' .

Therefore for the sequence of partitions which satisfies the conditions of Theorem
2, we have

mCn)
lim >3 | X(#°)—X(t"h)|* = &,
with probability one.
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