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OSCILLATION OF SOLUTIONS OF FORCED NEUTRAL 

DIFFERENTIAL EQUATIONS OF n-th ORDER 

N. PARHI and P.K. MOHANTY, Berhampur 

(Received June 8, 1993) 

1. 

A great deal of work has been done in recent years in oscillation theory of neutral 
differential equations. Most of this work is concerned with linear homogeneous equa-
tions (For example, see [3, 4, 12, 13] and the references there in). Some authors have 
studied oscillatory behaviour of solutions and the problem of existence of a nonoscil-
latory solution of nonlinear homogeneous equations of neutral type. (See [1, 2, 6, 7, 
14, 15, 18, 20]). The oscillation theory of forced ordinary and delay-differential equa-
tions has developed, to some extent, satisfactorily during last few years. However, 
it seems that very little work has been done on forced neutral differential equations 
(see [16,19]). 

In this paper we are concerned with oscillatory behaviour of solutions of a class of 
forced neutral differential equations of nth order (n ^ 1) of the form 

(NH) [x(t) + p(t)x(r(t)))^ + q(t)h(x(g(t))) = f(t) 

and the associated homogeneous equation 

(H) [x(t) + p(t)x(r(t)))^ + q(t)h(x(g(t))) = 0, 

where the following assumptions hold: 

i) p and q e C([cr, oo), R), 

ii) h e C([R,(R)such that uh(u) > Oforu ^ 0, 

hi) / (E C([O,oo),R)and there exists F <E C(n)([cr, oo), R) such thatK(n)(l) = /(*). 

iv) aandr £ C([O, oo), IR) such that lim g(t) = oo and lim r(t) = oo. 
t—>oo t—>oo 

The financial support for this work came from Berhampur University, Grant No. 13518/P 
and R/BU/90. 
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By a solution of (NH)/(H) we mean a real-valued continuous function x on [Tx, oo) 
for some Tx ^ a such that {x(t) + p(t)x(r(t))} is n-times continuously differentiable 
and (NH)/(H) is satisfied for t £ [Fx,oo). Such a solution is said to be oscilla-
tory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory. Following 
assumptions are made for the use in the sequel: 

(Ai) -K-P2 * S p ( r K 0 , 
(A2) 0^p(t)^Pl < 1 , 
(A3) p(t)p(r(t)) ^ 0 and - 1 < -p2 ^ p(t) ^ p\ < V where p\ and p2 are positive 

constants, 
(A4) q(t) > 0 and f™ (g(t)Y~x q(t) dt = 00, 
(A5) q(t) ^ 0 and f™ q(t) dt = 00, 
(Ae) /i(ix) is bounded away from zero if u is bounded away from zero, that is, \u\ > 5 

implies that h(u)\ > n, where n > 0 and 5 > 0, 
(A7) h'(u) ^ 0 and h(u) is superlinear, that is, h(u) satisfies 

f°° du , r°° du 
/ 1 7 ^ < °° a n d / TT^ < °° Jc ft(w) J-c ft(w) 

for every c > cr, 
(A8) g(t)^t<mdg'(t) > 0, 
(A9) r(t) <: t, 

(Ain) a(t) ^ 0 and f™ tn~lq(t) dt = -00. 

In the second section we consider oscillatory behaviour of solutions of (NH) with 
q(t) ^ 0 and the third section deals with the same problem for (NH) with q(t) ^ 0. 

2. 

In this section we study oscillatory behaviour of solutions of (H) and (NH) with 
q(t) > 0. 

Theorem 2.1 . Suppose that the conditions (A2), (A4), (A7), (As) and (A9) hold. 

Ifn is even, then every solution of (H) is oscillatory. Ifn is odd, then every solution 

of (H) is oscillatory or tends to zero as t —> 00. 

P r o o f . Let x(t) be a nonoscillatory solution of (H) such that x(t) > 0 for 
t ^ to > m a x { 0 , 0 , ^ } . Hence there exists a t\ > to such that x(r(t)) > 0 and 
zfaM) > ° f o r t^ti. Setting, for t ^ tu 

(2.1) z(t) = x(t)+p(t)x(r(t))>0, 
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we obtain from (H) that 

(2.2) z^(t) = -q(t)h(x(g(t)))^0. 

From a lemma due to Kiguradze (see [9, 11]) it follows that there exists an integer 
t, 0 ^ t ^ n — 1, which is odd if n is even and even if n is odd, such that, for t^t\, 

(2.3) z^(t)>0 for k = 0,l,...,t,(-l)i+kz<<k)(t)>0 

for k = t + 1 , . . . , n and 

(2.4) z&(t) ^ k\(t - h)-kz^-k\t), k = l,2,...,t. 

For t^2t\, we get from (2.4) that 

z^(t) ^ k\2kt-kz^-k>>(t),k = l,2,...,t. 

There exists a t2 > 2t\ such that g(t) > 2t\ for t^ t2. Consequently, for t ^ t2, 

(2.5) zl%(t)) < {e-iy.2e-l{g{t))-i+1z'{g{t)). 

If n is even, then from (2.3) it follows that z'(t) > 0 for t ^ t2. There exists a t3 > t2 

such that r(t) > t2 for t ^ £3. Thus from (2.1) we obtain, using r(t) ^ t, 

0<(l-Pl)z(t)^z(t)-p(t)z(r(t)) 

^ x(t) - p(t)p(r(t))x(r(r(t))) 

< x(t), 

for t ^ ts. Consequently, for t ^ t± > t%, we have 

0<(1-Pi)z(g(t))<x(g(t)). 

Multiplying (2.2) through by (g^))"-1 /h(x(g(t))) and integrating the resulting iden-
tity by parts from t± to t, we obtain 

rt{g{s))n~1q{s)ds 
Jtл 

- L u  Kx{g{s))) 

Ґ  (g(5))"-Ь<")(5) 

^ j U a -
  ds 

Pl)zfø00)) 

šßi + (n-i) f ™y„ * V 7 ,  ,
ч ч

v
"' d

5 

Л
4 

r t
  (ff(5))"-

2
g'(5)^<"-

1
)(5) 

/
t 4
  h{{l  -  Pl)z{g{s))) 

+ Í ( í J W J ^ ^ ^ - ^ W - r f - r - - T-7-T-TT^ d s ' 
f4

 Wd5V l i (( l-Pi)2(5(s))) j 
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w h e r e /., - ^(U))" ' - ( n x )(t4) . 0 A wnere pr - h((1_pi)z(g(u))) > u. AS 

d / 1 \ ( l - p i j / i ^ a - p x ^ ^ ) ) ) ^ ^ ) ^ ' ^ ) 
ds \h((l-Pl)z(g(s)))J V((l-Pl)z(g(s))) 

we have, for t ̂  t4, 

r(,(.»"-*)_ < * + ( - 1 , r _ - ^ _ ^ f e _ _ _ . 
J.4 A4 ^ ( ( l -Pl )^(g (^)) ) 

Proceeding as above, we obtain with the help of (2.5) 

f (9(s))n-1q(s 
Ju 

. 0 , 

» d s 

-t 
<5_ / . . + (n- l ) (n-2) . . ._ / 

__i J_ 

' (í?Ы)'-У (Ф
(£)

(í.(s)) ^ 

i = 1 -t_ M(l-PiMí7(*))) 

'  '
ř
 g'(s)z'(g(s))

 d s 

. ^ f t  + í"-
1
)'

2
'"

1
 / 

•_i  Л
4 

,
t 4

  M ( І - P I M „ ( * ) ) ) 

'  ( n - l ) ^ "
1
  /•(i-Pi)^(g(t))  du 

Ы  _))
  Л

(«) 

£ . ( n - 1 ) ^ - 1
  ť

(1
-

pi 

ІГ
 +

  (1-Л)  VP.) 

y  ^.+  _ _ _ ! _ _  Г  _ _ 
Sí  г

  ( 1 - P l ) j(l-í_)z(9(t4))M«)' í = l 

where 
fí _ , ^y-i^-i)1^^))"-^"-0^.)) 
P l l ; ( n - . ) ! h((l - Pl)z(g(t4))) 

i = 2 , . . . , n — i. This in turn implies that 

/•CO 

/ (g(s))n-lq(s)ds<<x,, 
Jt4 

a contradiction. 
Suppose that n is odd. So i is even. If i > 0, then we proceed as above to arrive 

at a contradiction. If i = 0, then (-l)kz^(t) :_ 0 for fc = 1, 2 , . . . ,n. Multiplying 
(2.2) through by ln_1 and integrating the resulting identity from r2 to t, we obtain 

/ 5n-1G(5)b(_(a(5)))dS = - f sn-1z^(s)ds^^2ai, 
J - «1 _ i__i 
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where a{ = ( - l ) ^ 1 ^ ^ ^ " ^ ^ - 0 ^ ) > 0,i = 1 , . . . ,n. As g(t) ^ t and lim z(t) 

exists, we have 
/•CO 

{g{s))n-1q{s)h{x{g{s)))ds < oo, 
Jto 

which, in view of (A4), implies that lim inf x(t) = 0. Thus 
t-*oo 

lim x(t) ^ lim z(t) = lim z(t) 
t->oo t->oo t ^ o o 

^ lim[z(0 + Piz(r(*))] 
i->oo 

^ lim x(t) + p i lim z(r(£)) 
i->co *-+<» 

^ Pi lim x(t) 
t—too 

yields that 0 ̂  (1 - pi) lim x(t) ^ 0 and hence lim x(t) = 0. 
t—YOO t—yoo 

If x(c) < 0 for t^ to, then we set y(t) = —x(t) and hence (H) takes the form 

(2.6) [y{t) + p{t)y(r{t))](n) + <?(*)lt* (*($(*))) = 0 

where h*(u) = —h(—u). Proceeding as above one may obtain a contradiction when 
n is even. In case n is odd, one obtains a contradiction when 

t > 0 and lim y(t) = 0 when £ = 0. 
t—>oo 

Hence the theorem is proved. • 

Remark 1. In [10] (See Theorem 2), Kusano and Onose have obtained conclu-
sion of Theorem 2.1 for equations (H) with p(t) = 0. Thus our theorem may be 
viewed as a generalization to neutral delay equations. 

The following theorem asserts that the presence of a forcing term which is small 
in some sense does not affect substantially the oscillatory character of the associated 
unforced equations. 

Theorem 2.2. Let the conditions (A3), (A4), (A7), (A8) and (A9) hold. Suppose 
that lim F(t) = 0. Then every solution of (NH) is oscillatory or tends to zero as 

t—>oo 

t —> 00 if (i) n is even or (ii) n is odd and p\ + P2 < 1. 

P r o o f . Suppose that x(t) is a nonoscillatory solution of (NH) such that x(t) > 0 
for t ^ t0 > max{cr,0,TX}. Hence there exists a t\ > to such that x(r(t)) > 0 and 
x(g(t)) > 0 for t^ ti. Setting, for t ^ tu 

(2.7) z(t)=x(t)+p(t)x(r(t))-F(t) 

All 



we obtain from (NH) that 

(2-8) z(n)(t) = -q(t)h(x(g(t)))^0. 

Thus z(t) < 0 or > 0 for t ^ t2 > h. If z(t) < 0 for t^t2, then from (2.7) it follows 
that 

x(t)<F(t)+p2x(r(t)). 

Hence 

lim x(t) ^ lim F(t) + p2 lim x(r(t)) ^ p2 lim x(t) 
t—too t—¥oo t—too t—too 

implies that lim x(t) = 0, desired conclusion. Next suppose that z(t) > 0 for t ^ t2. 
t-+oo 

In the following we show that x(t) is bounded. For n = 1, we get z'(t) ^ 0 for 
t ^ t2 from (2.8). Thus z(t) is bounded. If z(t) ^ L for t ^ t2, where L > 0 is a 
constant, then proceeding as above we obtain 

0 ^ ( 1 -p2) lim x(t) ^ L 
t—>oo 

and hence x(t) is bounded. We claim that x(t) is bounded for n ^ 2. If not, x(l) is 
unbounded. Then z(t) is unbounded because bounded z(t) yields bounded x(t) as 
above. This together with (2.8) implies that z'(t) > 0 for t ^ t3 > t2. Consequently, 
lim z(t) = oo. It is possible to find £4 > t$ such that for t ^ £4, we have 

t—>-oo 

( l - p ! ) z W ^ z ( r ) - p ( r ) z ( r ( 0 ) 

^ i( t)-p(t)p(r(t))j :(r(r(t))) - F(t) + p(*)F(r(r)) 

<x(t) + \F(t)\ + \F(r(t))\ 

< x(t) +e, 

where e > 0. Setting y(t) = (1 -p i ) z ( r ) - e, we see that y(t) < x(t) for t ^ £4, 

lim y(t) = oo and (2.8) may be written as 
t—»oo 

(2.9) y(n)W + gi(t)%(aW)) = o, 

where 

Ql(t) = (l-p1)q(t)h(x(g(t)))/h((l-p1)z(g(t)) - e). 

There exists t5 > t4 such that for t ^ £5, Gi(£) ^ (1 - Pl)q(t) and hence from (A4) it 

follows that 
/•OO 

/  ( s ( s ) Г -
1

9
i ( в ) d

в
  = oo. 
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Consequently, from Theorem 2.1 (with p(t) = 0) we obtain that every solution of 
(2.9) is oscillatory if n is even and is oscillatory or tends to zero as t —> oo if n is 
odd. This is a contradiction in view of the observation that lim y(t) = oo. 

£—>-oo 

Thus x(t) is bounded and hence z(t) is bounded. From (2.8) it follows that 

(2.10) (-l)n+kzw(t) < 0 for k = 1,2,... , n - 1. 

for large t. 
Let n be even. Hence (2.10) yields z'(t) > 0 for t ^ t3 > t2. As z(t) > 0 

for t ^ £3, then lim z(t) = a > 0 exists. Choosing o < e < (1 — pi)a, setting 
t—>oo 

w(£) = (1 — pi)z(l) — e and proceeding as above, we obtain w(t) < x(t) and 

(2.11) w^(t)+q2(t)h(w(g(t)))=0 

for £ ̂  l4 > £3, where 

<&(*) = (1 - PiM*)M*(g(0))/M(i - Pi)*(0 - e). 

From the given hypotheses it is clear that q2(t) ^ (1 — p\)q(t) for £ ̂  £5 > £4 and 
hence 

/•00 

/  ШГ-^Wds--. 

This  in turn  implies, by Theorem  2.1, that w(t)  is oscillatory, a contradiction  to  the 

fact  that  lim u(t) = (1 — p\)a — £ > 0. 
t—>oo 

Suppose that n is odd and p\ + p2 < 1- Multiplying (2.8) through by r n _ 1 and 
integrating the resulting identity from £3 to t we obtain, by using (2.10), 

rt nt n 

/ sn-lq(s)h(x(g(s)))ds = - s^z^^s) ds < ]TcYi, 
J-3 Jt3 i = 1 

where 

(2.12) tti = (-l) i + 1 ^—J^tr'z^-'Kh) > 0,i = 1,...,n. 
(n — 2): 

This in turn implies that 

/•00 

/ tø(s)Y-  (s)Лí>tøí>)))ds< 
Jы 

0 0 . 
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Consequently, in view of (A4) we have lim x(t) = 0. Clearly, (2.7) yields 
£-»oo 

lim z(t) ^ lim [x(t) - p2x(r(t)) - F(t)] 
t—>oo t—too 

> lim" [x(t) - p2x(r(t))] + lim (-F(t)) 

^ lim x(t) + lim [-p2x(r(t))] 

^ lim x(t) — p2 lim x(r(t)) 
£—>oo t—>oo 

^ (1 -P2) Hm x(t). 
t-+oo 

On the other hand, 

lim z(t) ^ Hm [x(t) + pix(r(0) - F(t)] 
t—too t—*oo 

<: }im[x(t)+pix(r(t))]+ iim"(-F(l)) 
t^oo £ ^ ° ° 

^ Hm x(t) + p i lim x(r(^)) 

^ pi Hm x(t). 
t-+oo 

From (2.10) we get z'(t) < 0 for t^ t4 > l3 and hence lim z(£) exists. Thus 
t—>oo 

(1 — P2) lim x(t) ^ pi lim x(t), 
£—>oo t—>oo 

that is, 

0 ^ ( 1 - p i - p 2 ) En" x(t) <:0 
£—>oo 

and hence lim x(t) = 0. 

If :r(£) < 0 for t ^ to, then we set y(t) = — x(t) in (NH) to obtain 

b(t) +P(t)y(r(t))}^ +q(t)h* (y(g(t))) = f*(t), 

where h*(u) = —h(—u) and f*(t) = —f(t). Proceeding as above we obtain necessary 
conclusions. 

Hence the theorem is proved. • 

Corollary 2.3. (a) Suppose that the conditions of Theorem 2.2 are satisfied. 

Then all unbounded solutions of (NH) are oscillatory if (i) n is even or (ii) n is odd 

and pi + p 2 < 1. 
(b) Let the conditions of Theorem 2.2 be satisfied. Then all nonoscillatory solu­

tions of (NH) tend to zero as t -» 00 if (i) n is even or (ii) n is odd and pi + P2 < V 

R e m a r k 2. (i) We may note that the condition pi + p2 < 1 is satisfied if (Ai) 
or (A2) is assumed. 
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(ii) If r(t) = t — r, r > 0 and p(t) is r-periodic, then p(t)p(r(t)) ^ 0 holds. 

Theorem 2.4. Suppose that the assumptions (A2), (A4), (A7), (As) and (Ag) 
hold. Let F(t) be oscillatory such that lim F(t) = 0. Then every solution of (NH) 

t—>-oo 

is oscillatory if n is even and is oscillatory or tends to zero as t —> 00 ifn is odd. 

P r o o f . Proceeding as in Theorem 2.2 we obtain z(t) < 0 or > 0 for t ^ t2 > t\. 

But z(t) < 0 for t ^ t2 yields 0 < x(t) < F(t), t ^ t2, a contradiction because F(t) 

is assumed to be oscillatory. The rest of the proof is similar to that of Theorem 2.2. 
In the following theorem we obtain results similar to those in Theorem 2.2, when 

the assumption (A4) is replaced by the stronger assumption (A5) and without the 
superlinearity condition on h. For n = 1, (A4) = (A5). • 

Theorem 2.5. Let the conditions (A3), (A5). (A6) and (A9) be satisfied and 

lim F(t) = 0. Then the conclusions of Theorem 2.2 hold. 
*->oo 

P r o o f . We proceed as in Theorem 2.2 to arrive at z(t) < 0 or > 0 for t ^ t2 > ti. 

Clearly z(t) < 0 for t ^ t2 implies that lim x(t) = 0. Next let z(t) > 0 for t ^ t2. 
t—>oo 

If n = V then from (2.8) we obtain z(t) is bounded, say, z(t) ^ L for t ^ t2, where 
L > 0 is a constant. Hence from (2.7) we get 

<K (1 -P2) lim x(t) ^ L 
t-+oo 

Consequently, (x(t) is bounded. For n ^ 2, we claim that x(t) is bounded. If not, 
then z(t) is unbounded and hence from (2.8) it follows that z'(t) > 0 for large t. 

Thus lim z(t) = 00. Proceeding as in Theorem 2.2 we obtain 
t—>oo 

(2.13) (l-Pl)z(t)-e<x(t) 

for large t, where e > 0 is arbitrary. There exists a £3 > 12 such that x(g(f)) > 8 > 0 
for t ^ t3 and hence h(x(g(t))) > n for t^ t3. Clearly z^n~l\t) >0ioxt>U> t3. 

Otherwise, z(t) < 0 for large t. Integrating (2.8) from £4 to t, we obtain 

n f q(s)ds^ f q(s)h(x(g(s)))ds<z^-1\t4), 
Jt4 Jt4 

that is, 
/•OO 

q(t) dt < 00, 
/ 
Jtл 
ft

4 

a contradiction. Hence our claim holds. Thus  z(t) is bounded and (2.10) holds. 

421 



If n is even, then z'(t) > 0 for large t. Hence lim z(t) = a > 0 exists. For 
t—KX) 

0 < b < a, there exists U > U such that z(t) > a - b for t > /5, Choosing 
O < e < (1 - p i ) ( a - b), we obtain from (2.13) that x(g(t)) > (1 -p±)(a-b) -e > 0 
for £ ^ t$ > t$. Integrating (2.8) from t§ to t and using (A6) we contradict (A5). 
Hence z(t) > 0 for large t is not possible when n is even. Suppose that n is odd and 
Pi +P2 < 1- Proceeding as in Theorem 2.2 we obtain 

tr1 [ q(s)h(x(g(s)))ds^ f sn-lq(s)h(x(g(s))) ds < f > , 
J-4 J«4 i=1 

where a; is given by (2.12) with £3 replaced by t4. This in turn implies that 
lim x(t) = 0. One may proceed as in Theorem 2.2 to obtain lim x(t) = 0 and 

t->oo t-too 
hence lim x(t) = 0. 

t->oo 
The case x(t) < 0 for large t may be treated as in Theorem 2.2. 
This completes the proof of the theorem. • 
Remark 3 . We may note that Theorem 2.5 holds for advanced neutral equations 

and generalizes the results in [1, 3, 4, 12, 13]. 

Theorem 2.6. Let the conditions (A2). (A5), (A6) and (A9) he satisfied. Let 

F(t) be oscillatory such that lim F(t) = 0. Then the conclusions of Theorem 2.4 
t—)-oo 

hold. 
The proof is similar to that of Theorem 2.5 and hence is omitted. 
We may note that if f(t) = 0 and p(t) satisfies (A2), then z(t) cannot be < 0 for 

large l, where z(t) is given by (2.7). Hence we have the following result for (H). 

Theorem 2.7. Suppose that (A2), (A5). (A6) and (A9) hold. Then every solution 

of (H) is oscillatory if n is even and every solution of (H) is oscillatory or tends to 

zero as t —> 00 if n is odd. 

Following examples illustrate above theorems. 

Example 1. Consider 

[x(t) + (1 + 2sin*)e-2K:r(£ - 27t)]'" + e-a/3tx1/3(t - a) 

(2.14) = 2e-*(2sin£ + 2cost - 1) + te~t/3 

t ^ max{2Ti,O}, where a > 0. Clearly, - 1 < -e~2K ^ p(t) ^ 3e-271 < V where 
p(t) = (1 + 2sint)e-2K and F(t) = 2e~'(l + sint) - 27{t + 9)e~^3 -> 0 as t -> 00. 
From theorem 2.5, it follows that every solution of (2.14) is oscillatory or tends to 
zero as t -> 00. In particular, x(t) = e~l is a solution of (2.14) which —> 0 as 
t —> 00. As the condition (A7) fails to hold here, Theorem 2.2 cannot be applied to 
this example. 

422 



Example 2. Consider 

(2.15) [x(t) - (1 + 2cost)e~2Kx(t - 2n)]" + e2t~3llx3(t - K) 

= e~t(Acos2t + 3sm2t-sm3t), t ^ 2K. 

Clearly, - 1 < -3e~2K ^ p(t) ^ e~2K < 1, where p(t) = -e~ 2 K ( l + 2cost) and 

F(t) = - e - t [ sin 2t + - cos t - — (3 cos 3i - 4 sin 3t)l. 

Either from Theorem 2.2 or from Theorem 2.5 it follows that every solution of (2.15) 
is oscillatory or tends to zero as t —•> oo. In particular, we see that x(t) = e~l s'mt is 
an oscillatory solution of (2.15) which tends to zero as t —> oo. 

Example 3. Consider 

(2.16) [x(t) + l + 2
6

Sintx(t - 2K)] ' " + (t- o)-*'2x5(t - a) 

6 cost s'mt 2 cost 
+ 7: ^TK + t4 3(t-2n) (t-2n)2 (t - 2K)3 

( l + 2 s i n t ) 1 
(t-2n)4 + ( * - < T ) 1 3 / 2 ' 

t > a > 0. Clearly, all the conditions of Theorem 2.2 are satisfied with p(t) = 1+2
4

sint 

satisfying - 1 < - I < p(t) < | < 1 and F(t) = i + -±2^- i . - - I - . - -J- —fa, -» 0 as 
l -» 00. Thus every solution of (2A6) is socillatory or —> 0 as t -+ oo. In particular, 
X(L) = j is such a solution of (2.16). We may note that (A5) fails to hold here and 
hence Theorem 2.5 cannot be applied to this example. 

Example 4. Consider 

(2.17) \x(t) + -x(t - TI)1 +x(t-2n) 

(\ 2\ 2 cost 

Here F(t) = — \sint. From Theorem 2.6 it follows that every solution of (2.17) is 
oscillatory. We may see that x(t) = s'mt is an oscillatory solution of the equation. 

In the following an attempt has been made to obtain a result similar to above 
theorems when r(t) = t — r, r > 0 and F(t) is T-periodic 

Theorem 2.8. Suppose that the conditions (A2), (A4), (A7) and (A8) are sat­

isfied . Let r(t) — t - T and F(t) be T-periodic. Then every solution of (NH) is 
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oscillatory ifn is even and is either oscillatory or Jim \x(t)\ = 0 and 
t->oo 

0 < hm \x(t)\ ^ hjih 
t-*oo 1 — pi 

ifn is odd, where bi and b2 are lower and upper bounds of F(t) respectively. 

P r o o f . Let x(t) be a nonoscillatory solution of (NH) such that x(t) > 0 for 

t > to. Hence there exists a t\ > to + T such that x(g(t)) > 0 for t^ t\. Setting, for 

t ^ t u 

(2.18) z(t) = x(t) + p(t)x(t - T) - F(t) 

we obtain 

(2.19) z(t) + F(t) > 0 

and 

(2.20) z^(t) = -q(t)h(x(g(t)))^0. 

Thus z(t) < 0 or > 0 for t ^ t2 ^ tx. 

Clearly, z(t) < 0 for t ^ t2 implies that x(t) < F(t) — p(t)x(t — r) < b2, that is, 
x(t) is bounded. Let z(t) > 0 for t ^ t2. If n = 1, then z'(t) ^0fort^t2 and hence 
z(t) is bounded. Thus x(t) is bounded. Let n ^ 2. We claim that x(t) is bounded. 
If not, x(t) is unbounded. Hence z(t) is unbounded. Consequently, z'(£) > 0 for 
t^ h> t2. Thus lim z(t) = oo. From (2.18) we obtain, for t ^ l3, 

t—>oo 

*(*) - p(*)*(* - r) ^ z(£) - F ( 0 + p(t)F(t - T) 

^ x(t) - bi + b, 

where b = max{|bi|, \b2\}, that is 

(1 - pi)z(t) ^ z(t) - p(t)z(t - T) ^ x(t) - b! + b. 

Setting y(t) = (1 - pi)z(t) + bi - b, for t ^ f3, we have y(t) ^ x(r), lim y(t) = oo 
£— ôo 

and y(t) is a solution of the equation 

(2.21) y{n](t)+qi(t)h(y(g(t)))=0 
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for t^t\>tz, where 

u\ (l-Pi)q(t)h(x(g(t))) 

h((l-pi)z(g(t)) +bi-b) 

Consequently, 
/•OO 

/ (g(t))n-l
qi(t)dt = <x>. 

Hence from Theorem 2.1 with p(t) = 0 it follows that every solution of (2.21) is 
oscillatory if n is even and is oscillatory or -» 0 as t -> oo if n is odd. This contradicts 
the fact that lim y(t) = oo and hence our claim that x(t) is bounded holds. Thus 

t—>oo 

z(t) is bounded and 

(2.22) (-l)n+kzW(t) < 0, k = 1,2,... ,n - 1 

for large t. 

If n is even, then from (2.22) it follows that z'(t) > 0 for large t. From (2.18) we 
obtain 

z(t) - p(t)z(t - r K *W - F{t) + p(t)F(t - r ) , 

that is, 

( l - p ( t ) ) ( z ( t ) + F ( t ) )< : r ( t ) . 

Using (2.19) we get 

(l-pi)(z(t) + F(t))^x(t). 

Hence 

(l-Pl)(z(t)+bi) <^x(t) 

for large £, say, t^t^. Since F(r) is continuous, and T-periodic, there exists a t' > £5 
such that F(t') = bi. Hence, for t ^ *', ^(0 + bi = z(t) + F(t') ^ z(t') + F(t') > 0. 
Setting v(t) = (1 - Pi)(z(*) + bi) for t ^ £', we have 0 < v(t) ^ x(t), v'(t) > 0 and 
v(t) is bounded. Hence lim v(t) > 0 exists and u(£) is a solution of 

t-+oo 

(2-23) v^(t)+q2(t)h(v(g(t)))=0 

for t ^ tQ > t', where 

( l -p i )g(QMs(g(Q)) 

t i ( ( l - p i ) ( z ( a ( 0 ) + bi)) 
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From Theorem 2.1 with p(t) = 0 it follows that every solution of (2.23) is oscillatory 
if n is even and is oscillatory or —•> 0 as t —r oo if n is odd, a contradiction to the 
fact that lim v(t) > 0. 

t-+oo V 

Next suppose that n is odd. Hence for large £, z'(t) ^ 0 if n = 1 and z'(£) < 0 

if n ^ 3. Thus lim z(t) exists. Multiplying (2.20) through by tn~l and integrating 
t—>oo 

the resulting identity from t7 to t, t7 > tQ, we get 

/ an-1
(7(a)h(a;(«;(S))) da 

• ! t7 

= - / sn-^<n)(s)ds 
j<7 t7 

£  a
ť
,  if  *(*) >  0 îoт  t^t

7 

J2  a
{
-(n-1)\  z(t),  if  2 ( t ) < 0  for  t^t

7
, 

i= i 

where  a;  >  0,  i  =  1,...  ,n, is  given  by  (2.12) with  i
3
  replaced by  t

7
.  Hence 

/»oo 

(2.24)  /  s
n
-

l
q(s)h(x(g(s)))  ds  < oo. 

Jt
7 

This  in  turn  implies  that 
rOO 

/  (g(5))
n _ 1

g(5)/i(x(G(5)))  ds  <  00. 

J£7 

Consequently, in view of (A4), lim x(t) = 0. Further, using (2.18), we get 
£ — • 0 0 

lim (x(t) - F(t)) ^ lim [x(t) + p(t)x(t - r) - F(*)] 

^ lim 2(f) 
i—Voo 

^ hm [x(t) + p(t):r(* - T) - F(t)} 
t—too 

^ hm x(t) + hm (p(*)z(* - T) - F(t)) 

^ Pi lim x(£ — T) — bi 

^ Pi lim x(l) — b 

and 

Thus 

lim (x(t) - F(t)) ^  Иm x(l)  -  b
: 

t—>oo í—юo 

lim  x(l)  ^ 
/J->OO  1  —  p

1 

The  case  x(f)  <  0 for  large  t  may  similarly  be  dealt  with. 

Hence  the Theorem  is  proved.  • 
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In the following theorem we replace the condition (A4) by the stronger condition 
(A5). However, it is possible to obtain results similar to those in Theorem 2.8 without 
the superlinearity condition (A7) on h. Moreover, the following theorem holds when 
g(t) > t. 

Theorem 2.9. Let the conditions (A2), (A5) and (AQ) hold. Let r(t) = t — r and 

F(t) be T-periodic. Then the conclusions of Theorem 2.8 hold. 

P r o o f . Proceeding as in Theorem 2.8, we obtain y(t) ^ x(t) and lim y(t) = 
t-+oo 

co. Consequently, lim x(t) = 00. Thus, for M > 0, there exists a T\ > 0 such 
t—>-oo 

that x(g(t)) > M for t ^ Tx. Hence h(x(g(t))) > Mx > 0 for t > Tx. Clearly, 
~(n-i)t£) > Q for i a r g e t because z^n~l\t) < 0 for large t implies that z(t) < 0 for 
large t, a contradiction. Integrating (2.20) from T2 to t, T2 > Ti, we obtain 

/•OO 

/ q(s)ds < co, 
JT2 

a contradiction. Hence x(i) is bounded. Consequently, z(t) is bounded and (2.22) 
holds. 

If n is even, we proceed as in Theorem 2.8 to obtain 0 < v(t) ^ x(t) and lim v(t) = 
t—• CO 

A, 0 < A < 00, where v(t) = (1 - px)(z(t) + br), t ^ t'. Hence x(g(t)) > n > 0 for 
t^T3> t'. Thus h(x(g(t))) > S > 0 for t^ T3. Now integrating (2.20) from T3 to 
l, we arrive at a contradiction as above. 

If n is odd, then one proceeds as in Theorem 2.8 to obtain (2.24) which in turn 
yields 

/»OC 

q(t)h(x(g(t))) dt < 00. ľ 
Jt

7 Hence  lim  x(t)  = 0.  The rest  of  the proof  is  similar  to  that  of  Theorem  2.8. 
t—too 

Thus  the  theorem  is  proved.  • 

Example  5.  Consider 

(2.25)  [x(r) +  ]-x(t  -  2TC)] "  + x
3
(t  -  K) 

3 3 

=  — -  cos t —  cos  t,  t  > 2n 

Clearly, F(t)  =  |  cos
3
  t + -g- cos t  is  27i-periodic  From  Theorem  2.9 it  follows  that  all 

solutions  of  (2.25)  are oscillatory  In particular,  x(t)  = cost  is  a  oscillatory  solution 

of  the  equation. 
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3. 

This section deals with oscillatory behaviour of solutions of (NH) with q(t) ^ 0. 

Theorem 3.1. Suppose that the conditions (A3), (A6). (Ag) and (A10) hold. Let 

lim F(t) = 0. Then every bounded solution of (NH) is oscillatory or tends to zero 
t—>-oo 

as t -> 00 if (i) n is odd or (ii) n is even and Pi + P2 < 1. 

P r o o f . Let x(r) be a bounded nonoscillatory solution of (NH) such that x(t) > 0 
for t ^ t0 > max{cr,Tx). The case x(t) < 0 for t ^ lo may similarly be dealt with. 
Thus there exists a t\ > t0 such that x(r(t)) > 0 and x(g(t)) > 0 for t ^ ^ . Setting 

(3.1) - («)= a ; (*)+p(0a ; ( r (*) ) - - ; , (0 

for i ^ ^1, we obtain z(t) is bounded and 

(3.2) -<»>(*) = -9(t)/i(x(5(i))) ^ 0 

for £ ^ ^1. Hence z(t) < 0 or > 0 for t ^ t2 > li. However, z(£) < 0 for £ ^ l2 implies 
that 

x(t) < -p(t)x(r(t)) +F(t) <p2x(r(t)) + F(t). 

Thus lim x(t) ^ p2 lim x(r(t)) ^ p2 lim x(t) implies that lim x(t) = 0. Let 
t—>oo £—>-oo t—>oo t—•oo 

z(£) > 0 for t ^ £2. Let n ^ 2. As z(n - 1 )( l) > 0 for large t implies that lim z(t) = 00, 
t—>oo 

a contradiction, we have z^n~l\t) < 0 for large t. From Kiguradze's lemma (see 
[9,11]) it follows that there exists an integer t, 0 ^ £ ^ n — 2, which is odd or even 
according to n is odd or even respectively, such that, for t ^ £3 > £2, 

z(/c)(l) > 0 for A; = 0,1, . . . , J? , 

(-l)i+kzW(t)>0 fork = £ + l , . . . , n - l . 

Let ?i be odd such that n > 2. Then £ = 1; otherwise, lim z(£) = 00, a con-
i—i»oo 

tradiction. Thus from (3.3) we get z'(t) > 0 for t ^ t3 and hence lim 2(f) exists. 
t—>oo 

Multiplying (3.2) through by ln_1 and integrating the resulting identity from £3 to 
l, we get 

[ sn-1q(s)h(x(g(s)))ds= - í sn-1z(n}(s)ds 
jí3 jf3 

> ~lai-(n-l)\z(t)>'~]ai-(n-l)\'Y, 

i=\ i=l 
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where 

(n-i)\ 
(3.4) 0 i = ( ~ l ) í + l ( "  ^, jГ^

(
""°fe)  < 0 

and 

7  =  lim z(t) > 0. 
£—>oo 

Hence 
/•OO 

/  S
П

-  (5)/l(x(O(5)))  ds  > - 0 0 . 
Jíя ' * 3 

This  in turn  implies,  in view of (Aio),  that  lim x(t) = 0.  On the other  hand,  from 
t—>oo 

(3.1)  we get 

(1-
Pl
)z(t)<z(t)-

P
(t)z(r(t)) 

<x(t)-F(t)+p(t)F(r(t)). 

For 0 < £ < (1 — pi)7, there exists £4 > £3 such that 

(l-Pl)z(t)<x(t) + \F(t)\ + \F(r(t))\ 

< x(t) +e. 

Thus lim x(t) ^ (1 — ^1)7 — e > 0, a contradiction. If n = 1, then (3.2) yields 
£->oo 

z'(t) ^ 0 for t ^ t\. One proceeds as above to obtain necessary contradiction. 
Suppose that n is even. Hence £ is even. If I ^ 2, then lim z(£) = 00, a Contra-

il—>oo 
diction. Thus £ = 0. Consequently, (3.3) yields 

(-!)**<*>(*) > 0 , k = l , 2 , . . . , n - l . 

+n — 1 

ing identity from £3 to £, we obtain 

Hence lim z(t) exists. Multiplying (3.2) through by tn x and integrating the result-
t—>oo 

/  8
n
-

1
q(s)h(xШ))ds>Y

i
a

i 

where  o^ is given  by  (3.4).  Hence  using  (Aio) we get  lim x(t) = 0.  Further,  (3.1) 
t—>oo 

yields 

lim  z(*) ̂   lim fx(«) -p
2
-c(r(0)  - F(t)] 

£—•00 t—>oo
 L

 V / J 

^ lmi [x(c) -p 2x(r(^))] + lim { - F(t)} 
t-*°° £—>oo 

^ lim x(t) — P2 h i " x(r ( r ) ) 
£—>oo £—»oo 

^ (1 - P2) lim x(£) 
£—•00 
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and 

lim z(t) ^ lim [x(t) +pix(r(t)) - F(t)] 
t—too t-^oo 

^ lim [x(t)+pix(r(t))] + hm { - F(t)} 
t-*oo t-too 

^ hm x(t) + pi lim x(r(t)) 

^ pi lim x(t). 
£—»-oo 

As lim z(t) exists, we have 
t—»oo 

(1 — p2) lim x(t) ^ pi lim x(t) 
t—too t—»oo 

that is, 
(1 - pi - p2) lim x(t) ^ 0. 

£—>-oo 

Hence lim x(t) — 0. 
t—>oo 

This completes the proof of the theorem. D 

Theorem 3.2. Suppose that q(t) ^ 0, (A3) and (A9) hold and F(t) is bounded. 

Then every unbounded solution of (NH) is either oscillatory or tends to ±o© as 

t - > CO. 

P r o o f . Let x(t) be an unbounded nonoscillatory solution of (NH) such that 
x(t) > 0 for t ^ to > max {O,Tx}. Hence there exists a li > to such that x(r(t)) > 0 
and x(g(t)) > 0 for t ^ *i. Setting z(r) as in (3.1), we get z^(t) ^ 0 for t ^ l:. 
Thus 2(£) < 0 or > 0 for large l. Clearly, z(t) < 0 for t ^ t2 > tx implies that 
x(t) < M +p2x(r(t)), where \F(t)\ ^ M. Consequently, 

( l - p 2 ) hm x(t) ^ M , 
t—>oo 

a contradiction to the fact that :r(l) is unbounded. Thus z(t) > 0 for large t. Clearly, 
z(t) is unbounded, because z(t) is bounded implies that x(t) ^ L + p2x(r(t)), where 
L is the upper bound of z(t) + F(t). This in turn implies that (1 — p2) lim x(t) ^ L, 

t->co 

a contradiction. Thus z'(t) > 0 for large t if n ^ 2. If n = 1, then by (3.2) -'(l) ^ 0 
for large t. Hence lim z(t) — oo. From (3.1) we obtain t—>oo 

( I - P O ^ Í X - Í O - P Í Í ^ H O ) 

< z ( í ) + p ( í ) F ( r ( í ) ) - E ( í ) 

sj  z(ť) + 2M. 
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This in turn implies that lim x(t) = oo. 
t—)-oo 

The case x(t) < 0 for large t may similarly be dealt with. 
Hence the theorem is proved. 

• 

Corollary 3.3. Suppose that all the conditions of Theorem 3.1 are satisfied. If 

x(t) is a nonoscillatory solution of (NH), then either lim x(t) = 0 or lim \x(t)\ = oo 
t—)>oo t—>oo 

provided that (i) n is odd or (ii) n is even and pi + P2 < 1 • 
It follows from Theorems 3A and 3.2. 
Example 6. Consider 

(3.5) [x(t) + e~2K(2smt + l)x(t - 2K) ]" - x(t - n) 

= e _ t(4 sin t - 4 cos 2t - 3 sin 2t) + e~l+K cos t, 

t > 2K. Clearly, - 1 < -e~271 ^ p(t) ^ 3e~2n < 1, where p(t) = e~2K(2smt + 1) and 

F(t) = e~* J2 cos t + sin 2t - - e71 sin t\ -> 0 as £ -> oo. 

From Theorem 3.1 it follows that every bounded solution of (3.5) is oscillatory or 
tends to zero as t -* oo. In particular, x(t) = e~l cost is an oscillatory solution of 
(3.5) which tends to zero as t -» oo. 

Theorem 3.4. Let the conditions (A2), (Ae) and (A10) Aold. Let r(t) = t — r 
and F(t) be T-periodic. Then every bounded solution of (NH) is oscillatory if n is 

odd and is either oscillatory or lim \x(t)\ = 0 and 
£ — • 0 0 

0 < HE |ar(t)| < ^ J L ^-
t—»»oo 1 — pi 

if n is even, where b\ and b2 are lower and upper bounds of F(t) respectively. 

P r o o f . Suppose that x(t) is bounded nonoscillatory solution of (NH) such that 
x(t) > 0 for t > t0. Hence there exists a £1 > t0 + r such that x(g(t)) > 0 for t ^ t\. 
Setting z(t) as in (2.18) we obtain z(t) is bounded, z(t) + F(t) > 0,z^(t) ^ 0 for 
t ^ t\ and 

(-l)n+fcz(fc>(*) > 0, fc = 1, 2 , . . . , n - 1 

for large t. 

Let ?2 be odd. Thus z'(t) > 0 for t ^ l2 > ^i- Then proceeding as in Theorem 2.8 
(when n is even) we obtain lim v(t) = A, 0 < A < oo, where v(t) = (l-pi)(z(t) + bi) 

t-^-oo 
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such that 0 < v(t) ̂  x(t). Hence, for 0 < e < A, x(g(t)) > A - e for t ^ t3 > t2. 

Consequently, in view of (A6), we have h(x(g(t))) > rj > 0. Hence integrating 

r - y n ) W = -(l-Pl)q(t)e-lh(x(g(t))) 

from £3 to t yields 

77 / sn-1q(s)ds> f q(s)sn-1h(x(g(s)))ds 
Jt3 Jt3 

1 fl 

>-- / sn-1v^(s)ds 
1 - Pi Jt3 

> 7 , 

where — oo < 7 < 0. Hence 
/•OO 

/ sn~1q(s)ds > -00, 
Jt3 

a contradiction. 

If n is even, then one proceeds as in Theorem 2.8 (when n is odd) to obtain 

required results. 

The case when x(t) < 0 for large t may be treated similarly. 

This completes the proof of the theorem. • 
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