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We report an experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active
beat-note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We ana-
lytically derive a stability condition and some frequency response characteristics for the solid-state ring-laser
gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experi-
mental data are presented and compared with the theory on the basis of realistic laser parameters, showing very
good agreement. Our results illustrate the duality between the very rich nonlinear dynamics of the diode-
pumped solid-state ring laser �including chaotic behavior� and the possibility to obtain a very stable beat note,
resulting in a potentially new kind of rotation sensor.
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I. INTRODUCTION

Interest in ring lasers developed almost simultaneously
with the invention of the laser itself �1–5�. Intensive work on
this device has been motivated both by fundamental aspects
�especially in the field of nonlinear dynamics, phase transi-
tions, instabilities, and chaos �6–15�� and by practical appli-
cations �among which are the ring-laser gyroscope �16–18�
and the single-frequency unidirectional ring laser �19–21��.
The recent achievement of active beat-note stabilization in a
diode-pumped Nd-YAG ring laser �22� revived interest in
homogeneously broadened �e.g., solid-state� ring lasers, al-
though this kind of device had already been extensively stud-
ied �see, for example, �23–26��. In particular, the experiment
described in �22� provides both a simple tool for the study of
mode coupling in a resonant macroscopic quantum device
such as a toroidal superfluid �27� and a potentially new kind
of ring-laser gyroscope involving only standard optical com-
ponents and no gaseous medium.

It is well known in the field of homogeneously broadened
ring lasers �see references above� that the dynamics of these
devices is mainly ruled by two sources of coupling between
the counterpropagating fields, one being due to the back-
scattering of light by the cold cavity elements and the other
being due to the spatially nonuniform saturation of the gain
�or “population inversion grating”�. It is also well known that
the latter coupling tends to destabilize bidirectional emission
�28�, thus preventing beat-note existence and rotation sens-
ing. Although it is not possible, for a solid-state ring laser, to
suppress this coupling in the same way as in the case of a gas
ring-laser gyroscope �because of the absence of Doppler gain
broadening�, it has been demonstrated in �22�, following the
pioneer work of �29�, that it was, however, possible to cir-
cumvent it by using an additional stabilizing coupling.

The aim of this paper is to show how fine control of these
mode coupling effects can turn the diode-pumped solid-state
ring laser, which has intrinsically a very rich and nonlinear
dynamics, into a stable ring-laser gyroscope.

The semiclassical model we use for the description of our
device, including active beat-note stabilization, is quickly de-
scribed in Sec. II. We then present, in Sec. III, an experimen-
tal overview of the oscillation regimes of the diode-pumped
Nd-YAG ring laser. We show in particular that our data are in
good agreement both with previous experimental observa-
tions using lamp-pumped solid-state ring lasers and with the-
oretical predictions from the literature. In Sec. IV, we study
both theoretically and experimentally the possibility of sta-
bilizing the beat note. Section V deals with the frequency
response of the solid-state ring-laser gyroscope obtained
when the stability condition derived in Sec. IV is fulfilled.
We finally conclude the article in Sec. VI.

II. SEMICLASSICAL MODEL

The dynamics of the rotating solid-state ring laser, includ-
ing the additional stabilizing coupling, can be satisfactorily
described using the typical semiclassical approach �30�.

For the laser electric field inside the ring cavity, obeying
Maxwell equations, we make the plane wave, uniform field,
and slowly varying envelope approximations. In particular,
all the transverse effects and also the longitudinal �i.e., axial�
effects due to the spatial distribution of the laser components
will be neglected. We furthermore assume one single identi-
cal longitudinal mode in each direction �this approximation
is not valid when the laser is at rest, as will be discussed in
next section� and the same �linear� polarization state e, re-
sulting in the following expression for the electric field E:

E�x,t� = Re�Ẽ1�t�ei��ct−kx� + Ẽ2�t�ei��ct+kx��e ,

where k=2� /� is the mean spatial frequency associated with
the longitudinal coordinate x and �c is the mean angular
frequency of the emitted modes.

The laser cavity is described, in the framework of Max-
well theory, by a polarization P due to the active medium, a
dielectric constant �, and a fictitious conductivity �, those
parameters being related to the total cavity loss per time unit
� through the relation �=� /� and to the frequency �c*sylvain.schwartz@thalesgroup.com
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through the relation �c=k /��0�, where �0 is the magnetic
permeability of the vacuum. In accordance with the uniform
field approximation, the quantities � and � are supposed to
be independent of the longitudinal coordinate x. However,
their posible modulation at the spatial frequency 2k, although
being usually very small, has to be taken into account for a
correct description of the coupling induced by the cold cavity
elements �31�. In order to avoid unnecessary complexity, we
will use the same notation for the local and mean values of
those parameters.

Starting from the typical Maxwell wave equation �using
the rationalized Mksa system of units �32��

�2E

�t2 +
�

�

�E

�t
+

k2

�0�
E = −

1

�

�2P

�t2 , �1�

we make a projection on the cavity emission modes; i.e., we
multiply Eq. �1� by exp�±ikx� and integrate with respect to x
along the cavity perimeter. Taking also into account the ro-
tation of the ring laser and the additional stabilizing cou-
pling, we obtain the following equations of evolution for the

slowly varying amplitudes Ẽ1 and Ẽ2:

dẼ1,2

dt
= −

�1,2

2
Ẽ1,2 +

im̃1,2

2
Ẽ2,1 + �− 1�1,2 i�

2
Ẽ1,2 +

�cP̃1,2

2i�
,

where �1 and �2 are the counterpropagating modes loss co-
efficients and where m̃1,2 are the cold cavity coupling coef-
ficients, defined as

m̃1,2 = −
�c

�L
�

0

L ���x� −
i��x�

�c
�e−2i�− 1�1,2kxdx , �2�

L being the cavity length. The rotation-induced angular fre-
quency nonreciprocity � is given by the Sagnac formula �

=8�A	̇ / ��Lop�, A being the area enclosed by the cavity, Lop

the cavity optical length, and 	̇ the rotation speed. We have
also introduced the spatial harmonics of the complex ampli-

tude of the gain medium polarization P̃1,2, defined by �33�

P̃1,2 =
1

L
�

0

L

e · Pe−i��ct+�− 1�1,2kx�dx .

It can be seen, on the mode equations, that the laser dynam-
ics is mainly ruled by three different sources of coupling
between the counterpropagating fields.

�i� The coupling induced by the cold cavity �i.e., in the
absence of gain�, represented by the coefficients m̃1,2; as can
be deduced from expression �2�, such a coupling can result,
for example, from localized losses or from a step of refrac-
tive index. It is well known in the field of gas ring-laser
gyroscopes that this coupling is responsible for a frequency
synchronization between the counterpropagating modes at
low rotation speeds, resulting in a zone of nonsensitivity usu-
ally called the “dead zone” �34�.

�ii� The coupling induced by the active medium, repre-

sented by the coefficients P̃1,2, whose expression as a func-
tion of the electric field will be derived further in this sec-
tion, in the framework of the dipolar coupling theory in
quantum mechanics.

�iii� The additional coupling introduced in order to stabi-
lize the beat note, which consists, for the counterpropagating
modes, of different loss coefficients �1,2, whose mean value
� is constant and whose difference is proportional to the
difference between the intensities of the counterpropagating
modes:

�1 − �2 = aK�	Ẽ1	2 − 	Ẽ2	2� , �3�

where a is the saturation parameter �such that a 	 Ẽ1,2	2 is
dimensionless; see further� and K is a constant chosen to be
positive, such that the mode with the higher intensity gets the
higher loss coefficient. This coupling, first suggested by �29�,
has been successfully implemented on a diode-pumped Nd-
YAG ring laser �22�.

In order to calculate the polarization of the gain medium,
we describe the diode-pumped Nd-YAG crystal as system of
two-level atoms. In accordance with the uniform field ap-
proximation, we consider the gain medium and the optical
pumping power to be homogeneously distributed. The gain
medium is then fully described by a complex coherence term

ab and two real population terms 
aa and 
bb, a and b refer-
ring, respectively, to the lower and upper levels of the laser
transition, whose frequency will be designated as �ab. Due to
the very short relaxation time of the lower level of the
1.064-�m emission line of the Nd-YAG, we will, moreover,
assume 
aa=0. In this formalism, the macroscopic polariza-
tion is given by P=2dn0 Re�
ab� e where d is a real number
characterizing the dipolar coupling and n0 is the atomic den-
sity per volume unit. The temporal evolution of 
ab and 
bb is
ruled by the Bloch equations with adiabatic elimination of
the polarization term 
ab �this is made possible because the
coherence damping time T2 is much smaller than the popu-
lation inversion relaxation rate T1 and than the electric field
decay time inside the cavity 1/��. Introducing the population
inversion density function N=n0
ab, we obtain

n0
ab =
iNdT2

2��1 + i��
�Ẽ1�t�ei��ct−kx� + Ẽ2�t�ei��ct+kx�� ,

where �=T2��c−�ab� is the cavity detuning, which will be
neglected in our analysis since it is usually much smaller
than unity �typically �10−2�. Defining the spatial average
N0 and 2k harmonics N1,2 of the population inversion density
as

N0 =
1

L
�

0

L

N dx, N1,2 =
1

L
�

0

L

Ne2i�− 1�2,1kxdx

leads to the following expression:

P̃1,2 =
ia�

T1
�N0Ẽ1,2 + N1,2Ẽ2,1� ,

where a is the saturation parameter.1 The total mean gain is
proportional to N0, while N1=N2

* represents the effects of the
population inversion grating.

1The saturation parameter a is defined by a=T1T2d2�−2 / �1+�2�,
while the emission cross section � reads �=a�0Lc�� / �LopT1�.
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The complete self-consistent equations describing the
evolution of the counterpropagating modes eventually read

dẼ1,2

dt
= �− 1�1,2�aK

2
�	Ẽ1	2 − 	Ẽ2	2� +

i�

2
Ẽ1,2� −

�

2
Ẽ1,2

+
im̃1,2

2
Ẽ2,1 +

�L

2T
�Ẽ1,2N0 + Ẽ2,1N1,2� , �4�

where � is the emission cross section �see footnote 1�. Con-
cerning the evolution of the population inversion density
function N�x , t�, it is ruled by the following equation �ob-
tained from Bloch equations in the secular approximation�:

�N

�t
= W −

N

T1
−

aN

2T1
	Ẽ1e−ikx + Ẽ2eikx	2, �5�

where W is the pumping rate and where the second and third
terms stand, respectively, for the spontaneous and stimulated
emissions. Throughout this paper, we shall assume the fol-
lowing value for the population inversion lifetime: T1
=200 �s. Equations �4� and �5� will be the starting point for
the theoretical description of the dynamics of the solid-state
ring laser with active beat-note stabilization in the next sec-
tions.

III. OVERVIEW OF THE OSCILLATION REGIMES
OF THE DIODE-PUMPED Nd-YAG RING LASER

Because of its strongly nonlinear dynamics, the diode-
pumped Nd-YAG ring laser exhibits a broad variety of oscil-
lation regimes. We report in this section an experimental
overview of these regimes, and we discuss for each case the
agreement with previously published data �mainly theoretical
studies and experiments with lamp-pumped Nd-YAG ring
lasers�.

A. Estimation of the relevant laser parameters

The device we used for our experimental investigations is
similar to the one described in Ref. �22�. It is made of an
approximately 30-cm-long stable ring cavity containing a
2.5-cm-long Nd-YAG rod placed inside a solenoid. One of
the four cavity mirrors is polarizing and a skew-rhombus
geometry is used, with a very small nonplanarity angle �typi-
cally 10−2 rad�. The Nd-YAG rod is optically pumped by a
808-nm pigtailed laser diode, and laser emission occurs at
1.064 �m. In order to create the additional stabilizing cou-
pling, the current inside the solenoid �and consequently the
difference of losses between the counterpropagating modes�
is kept proportional to the difference between the intensities
of the counterpropagating modes by an electronic feedback
loop, ensuring condition �3�. The whole device is placed on a
turntable.

In order to make comparisons between theory and experi-
ment, it is useful to estimate the typical parameters of our
experimental configuration. Those parameters are mainly the
mean loss coefficient �, the backscattering coefficients m̃1,2,
and the gain of the feedback loop K �plus the relative excess
of pumping power above threshold �, which is easily de-

duced from the current inside the pump laser diode�.
The loss coefficient can be precisely estimated in a

class-B laser thanks to the presence, in the noise spectrum, of
relaxation oscillations at the following frequency �35�:

fr =
�r

2�
=

1

2�
���

T1
, �6�

with

� =
W − Wth

Wth
,

Wth being the pump power density at laser threshold. The
measurement of this frequency as a function of � leads to an
estimation of the loss coefficient �, as shown in Fig. 1. We
obtained the experimental value �
21.5�106 s−1, which
corresponds, for a 30-cm-long cavity, to intensity round trip
losses approximately equal to 2.3%.

The backscattering coefficient is more difficult to measure
than the loss coefficient. However, an estimate can be ob-
tained by following the same argument as in the case of gas
ring lasers �17�. For this, we first assume, for symmetry rea-
sons, that m̃1 and m̃2 have the same modulus m; i.e., we write

m̃1,2 = mei�− 1�2,1	1,2 with m � 0.

Then, we make both the hypothesis that the coupling de-
scribed by m̃1,2 is mainly due to the fraction of light scattered
by the YAG crystal in the solid angle of the couterpropagat-
ing beam and that such a scattering is mainly isotropic. In
particular, we neglect the backscattering induced by the cav-
ity mirrors as compared to the backscattering induced by the
crystal. We furthermore assume that all the losses induced in
the YAG crystal are due to diffusion, not absorption �this is
justified by the fact that the lower level of the laser transition
has a very short relaxation time, typically a few tens of nano-
seconds�. This leads to the following expression for m:
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FIG. 1. �Color online� Square of the relaxation frequency as a
function of the pumping rate �data obtained from the electronic
Fourier transform of the laser intensity�. The linear dependence is in
agreement with Eq. �6� and leads �for T1
200 �s� to the estimated
value �
21.5�106 s−1.
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m =
c

Lop

��b

�w
,

where b represents the intensity losses corresponding to one
pass through the YAG crystal �typically b=0.7% for a 25-
mm-long rod� and w is the waist of the emitted modes �typi-
cally 500 �m�. We obtain m
5.2�104 rad/s, which corre-
sponds to a few tens of ppm per round-trip. Although this
method is only a cursory estimate �and cannot predict in
particular any value for 	1 and 	2�, we will see further in this
paper that it provides at least the correct order of magnitude
for m.

The strength of the stabilizing coupling K is fully deter-
mined by the laser geometry �nonplanarity, characteristics of
the solenoid� and by the design of the electronic feedback
loop. A good stabilizing effect has been obtained with K

107 s−1, which we will use as a reference value in the next
sections.

We will describe further in this paper alternate possibili-
ties to estimate some of the relevant laser parameters
�namely �, m, and 	1,2�, based on the study of the laser
oscillation regimes.

B. Oscillation regimes in the absence
of beat-note stabilization

We first consider the possible oscillation regimes of the
‘‘plain’’ diode-pumped Nd-YAG ring laser—i.e., in the ab-
sence of additional coupling �K=0�.

In the absence of rotation, when such a laser is operated
slightly above threshold ��
0.2�, a stable stationary bidirec-

tional regime is observed, as reported on Fig. 2 �case 	̇=0�.
The occurrence of such a regime may seem at first sight
surprising, since the analytical condition for the stability of
the bidirectional stationary regime, which reads �23�

m sin�	1 − 	2

2
� �

��

3
, �7�

is obviously not fulfilled with the values of the laser param-
eters estimated previously. However, it has been shown in
�36� that the stability condition for the bidirectional station-
ary regime is weaker when the existence of many longitudi-
nal modes is accounted for. Indeed, experimental measure-
ments with an optical spectrum analyzer showed the
existence of many �typically three or four per direction� lon-
gitudinal modes in the laser at rest, which may explain the
fact that we observe a stable bidirectional emission even if
condition �7� is not fulfilled. It is worth noting that the laser
becomes single mode in each direction when it is rotated
above a critical speed �typically a few deg/s�, ensuring in this
case the validity of the theoretical description presented in
Sec. II.

For faster rotations �typically above 70 deg/s�, the laser
turns to a unidirectional stationary emission regime, which
has been theoretically studied in �37�. The stability condition

for the stationary regime corresponding to 	Ẽ1	2� 	Ẽ2	2 reads

	̇ sin�	1−	2��0, while the stability condition for the oppo-

site case �	Ẽ1	2� 	Ẽ2	2� reads 	̇ sin�	1−	2��0. In particular,
the direction of emission depends in this case on the direc-
tion of rotation, something which we did observe experimen-
tally, as shown in Fig. 2. Note that Refs. �23,37� predict a
ratio of 3 between the intensity of the dominant mode in the
unidirectional regime and the intensity of both modes in the
bidirectional regime, while the ratio we measured was only
about 1.4. Again, this difference might be explained by the
fact that the single-mode hypothesis, which is used in the

theoretical description of Refs. �23,37�, is not valid when 	̇
=0.

In addition to those stationary regimes, a periodic �perma-
nent� regime in which the two counterpropagating modes
oscillate in phase opposition can occur, as reported in Fig. 3.
This regime, sometimes called “self-modulation of the first
kind,” has been described in �38� under the following hy-
pothesis:

		1 − 	2	 � 1, �� � m, 	�	 � m . �8�

It comes out from the theoretical analysis that such a regime
can give rise to a beat note when the frequency nonreciproc-
ity 	�	 obeys the inequality �1� 	� 	 ��2, with

sdeg/75−=θ� sdeg/0=θ� sdeg/75+=θ�

FIG. 2. Experimental observation of the stationary regimes of

the solid-state ring laser. When the laser is at rest �	̇=0�, the bidi-
rectional regime is observed. When the laser is rotating at
±75 deg/s, unidirectional operation occurs, the direction of emis-

sion depending on the sign of 	̇. The horizontal time scale is
5 �s /div, while the vertical scale is arbitrary.

FIG. 3. Experimental observation of the self-modulation regime
of the first kind. The counterpropagating modes oscillate in phase
opposition, with a frequency close to 27 kHz. The horizontal time
scale is 50 �s /div, while the vertical scale is arbitrary.
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�1,2 =
��aB

4		1 − 	2	
+

�− 1�2,1

2
�� ��aB

2		1 − 	2	
2

− 4m2, �9�

where ��=�−m 		1−	2 	 /2 and aB /2=�+1−� /��. The nu-
merical simulations we present in Fig. 4 show very good
agreement with expression �9�. When realistic experimental
parameters are used, numerical simulations show that the
laser behavior is qualitatively similar, although conditions
�8� are not fulfilled anymore. In particular, the zone of natu-
ral beat-note occurrence is still present. However, we could
not observe experimentally a beat-note signal that was natu-
rally stable over a reasonably long period, and to our knowl-
edge such an observation has never been reported in the lit-
erature. This is probably due to the weak stability of this
regime over external perturbations �e.g., mechanical noise�.

Another periodic regime, typical of solid-state ring lasers,
is presented in Fig. 5. It consists in a periodic switch between
both unidirectional regimes, with a period approximately
equal to T1, and is sometimes called the “self-modulation
regime of the second kind”. This regime, which had already
been observed in lamp-pumped solid-state ring lasers �23�,
can be described theoretically �24� if one accounts for the
existence of a second line in the emission spectrum of the
Nd-YAG �something which is generally neglected invoking
thermal equilibrium in the crystal due to phonon interactions
�39��. Although it is in principle not necessary, we had in
practice to modulate one of the laser parameters �namely, the
pump power� to observe this regime.

Because of the presence of strong nonlinearities in the
solid-state ring laser, periodic modulation of one of the pa-
rameters can also lead to chaotic behavior, as shown in Fig.
6. Such a regime turns the solid-state ring laser into a con-

venient experimental tool for the study of dynamic chaos
�see, for example, Ref. �9��. Preliminary numerical simula-
tions and experimental work, not reported in this paper, have
also shown the possibility of measuring the Sagnac fre-
quency in the spectrum of the signal obtained by superposing
both emitted modes when the laser is in the chaotic regime.
This would present the major advantage of suppressing mode
coupling effects, thus improving the quality of the gyro-
scopic response. However, some questions about this tech-
nique, like, for example, the problem of stabilizing the cha-
otic regime, are still not fully answered at the moment.

When the laser is rotating not too fast �typically 		̇ 	
10 deg/s�, we observe a beat note signal, whose frequency
is proportional to the rotation speed but much smaller �about
100 times� than the theoretical Sagnac frequency �see Fig. 7�.
We believe this “anomalous scale factor” regime can be
theoretically described if one accounts for the nonzero relax-
ation time of the lower level of the laser transition �this time
constant, which is typically on the order of a few tens of
nanoseconds, is usually assumed to be equal to zero although
it is comparable with the photon lifetime inside the cavity
1/�
50 ns�. The establishment of an absorption grating is
likely to give rise to a low-frequency beat signal �40�.

The broad variety of oscillation regimes we observed for
the rotating diode-pumped solid-state ring laser illustrates the
richness and the intrinsic nonlinear characteristics of its dy-
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FIG. 4. �Color online� Numerically computed angular beat fre-
quency as a function of the Sagnac nonreciprocity �, using the
following laser parameters: �=2�106 s−1, m=106 rad/s, 	1−	2

=� /78, and �=0.1. The solid line corresponds to the ideal Sagnac
response. With those parameters, Eq. �9� predicts the following val-
ues for the boundaries of the beat note zone: �1=0.24�106 rad/s
and �2=4.2�106 rad/s, which is in good agreement with this
simulation. Integrating step: 3 ns. Integrating time: 7 ms. The plot-
ted values have been obtained by averaging the time signals be-
tween 5 ms and 7 ms.

FIG. 5. Experimental observation of the self-modulation regime
of the second kind. The measured switching frequency is about
3.7 kHz. The horizontal time scale is 100 �s /div, while the vertical
scale is arbitrary.

FIG. 6. Experimental observation of the chaotic behavior of the
diode-pumped solid-state ring laser. This regime has been obtained
by periodic modulation of the pump power at a frequency close to
the relaxation frequency fr. The horizontal time scale is
100 �s /div, while the vertical scale is arbitrary.
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namics. However, although many of those regimes do de-
pend on the speed of rotation of the device, none of them
exists for a sufficiently broad range of parameters nor are
stable enough to provide a satisfactorily way to use the
diode-pumped solid-state ring laser as a rotation sensor. This
observation has been the starting point for our theoretical and
experimental work about beat note stabilization coupling,
which will be described in the next sections.

IV. STABILIZATION OF THE BEAT NOTE:
THEORETICAL AND EXPERIMENTAL STUDY

We now turn to the study of the diode-pumped solid-state
ring laser with active beat-note stabilization; i.e., we assume
condition �3� is fulfilled, with K�0. The aim of this section
is to show, both theoretically and experimentally, that under
these conditions the beat regime exists and is stable provided
the rotation speed is high enough.

A. Theoretical study

We use as a starting point for this study Eqs. �4� and �5�.
It is more convenient for analytical calculations to define
new �real� variables as

Y = 	Ẽ1	2 + 	Ẽ2	2, X = 	Ẽ1	2 − 	Ẽ2	2,

� = arg�Ẽ2� − arg�Ẽ1� . �10�

We study the beat regime in the limit of high rotation speeds;
i.e., we assume

	�	 � m, 	�	 � �r. �11�

Under these conditions, the laser parameters in the beat re-
gime have the following expressions:

Y�t� = B�t� + yM�t� with 	yM	 � B,

X�t� = C�t� + xM�t� with 	C	, 	xM	 � B,

��t� − �t = �0�t� + �M�t� with 	�0	, 	�M	 � 1,

where the functions xM, yM, and �M are supposed to oscillate
at a frequency close to �, while B, C, and �0 are supposed
to be slowly varying with respect to 1/ 	�	. The phase origin
is chosen such that �0�0�=0.

The spatial harmonics of the population inversion density
N0 and N1 can be calculated in this regime, keeping only the
lowest order terms in the expressions for Y /B, X /B, and �
−�t and solving Eq. �5�. We obtain

N0 = WT1 −
aB

2
Nth, N1 = −

aBNth

4

1 + i�T1

1 + �2T1
2e−i�t,

where Nth=T1Wth is the population inversion density at
threshold. Integrating Eq. �4� using the same approximation
leads to

yM =
m

�
�B2 − C2 sin��t +

	1 + 	2

2
sin�	2 − 	1

2
 ,

xM =
m

�
�B2 − C2 cos��t +

	1 + 	2

2
cos�	2 − 	1

2
 ,

�M =
m

�
�B − C

B + C
cos��t +

	1 + 	2

2
sin�	2 − 	1

2
 .

�12�

Inserting those expressions in to Eq. �4� up to the first order
and then averaging over a few periods of 1 / 	�	, we obtain
the following equations for the slowly varying functions B
and C:

Ċ = dC +
Bm2

2�
sin�	1 − 	2� −

aKBC

2
,

Ḃ = dB +
Cm2

4�
sin�	1 − 	2� −

�l

4T

NseuilaB2

1 + �2T1
2 − aKC2,

where d is defined by d=�lN0 /T−�. In the stationary re-
gime, we obtain aB
2�, 2d=�� / �1+�2T1

2�, and

aC =
2m2 sin�	1 − 	2�

�
�2K −

�

1 + �2T1
2−1

.

The initial hypothesis 	C 	 , 	xM 	 , 	yM 	 �B is self-consistently
fulfilled in the high rotation speed limit defined previously.
To study the stability of this solution, we assume a small
perturbation ��B ,�C�exp��t� and look for the possible val-
ues for �. We find the following three solutions �1,2,3:

�1,2 = −
1

2T1
± i�r, �3 =

��/2

1 + �2T1
2 − K� .

The first two solutions correspond to damped oscillations at
the angular frequency �r, while the third solution determines
whether or not the beat regime will be stable, the stability
condition �3�0 reading
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FIG. 7. �Color online� Measured beat frequency as a function of
the rotation rate in the regime of the “anomalous scale factor.” The
estimated line slope is about 20 Hz/ �deg/s�, which is about 100
times smaller than the Sagnac scale factor, about 2 kHz/ �deg/s�.
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2K �
�

1 + �2T1
2 . �13�

Physically, this condition expresses the fact that for the beat
regime to be stable, the additional stabilizing coupling �left
term� has to be stronger than the destabilizing coupling due
to the population inversion grating �right term�. It is a re-
markable fact that whatever the stabilizing coupling strength
is �provided it is nonzero and positive�, the beat note will
always be stable for sufficiently high rotation speeds. This is
due to the fact that all the instrinsic couplings go to zero
when the rotation speed increases, while the external stabi-
lizing coupling strength remains constant whatever the rota-
tion speed is �22�.

B. Experimental achievement

When the additional stabilizing coupling is turned on, the
beat regime occurs for rotation speeds higher than

10 deg/s. The observation, with two close detectors, of
two modulated signals in phase quadrature �Fig. 8� is an
undisputable signature of the beat note �as opposed to just
intensity modulations� and gives the additional information
of the direction of the rotation.

Experimental study of the intensities of the counterpropa-
gating modes in the beat regime allows to measure the pa-
rameter 	1−	2. As a matter of fact, it comes out from Eq.
�12� that the relative phase between the modulated parts of
E1

2= �X+Y� /2 and E2
2= �Y −X� /2 is given by �+	1−	2. For

our experimental configuration, we obtained the following
measurement: 	1−	2
� /20.

The measured value of the beat frequency as a function of
the Sagnac nonreciprocity � is reported in Fig. 9. A very
good agreement with the ideal Sagnac line is observed for
high values of 	�	. The frequency response becomes nonlin-
ear when the rotation speed decreases, and finally disappears

when 		̇ 	 10 deg/s.
It is worth noting that the zone corresponding to the ab-

sence of beat note around �=0 is not a lock-in zone as in the
case of gas ring-laser gyroscopes, but rather a zone of self-
modulation of the first kind with an average value of the
phase difference equal to zero. It is also worth noting that the
condition for the occurrence of the natural beat-note regime,

as described in the previous section, is with our parameters
weaker than the validity condition �11�. The size of the zone
of insensitivity to rotation is thus determined by the condi-
tion of occurrence for the natural beat regime, rather than by
condition �13�.

V. FREQUENCY RESPONSE OF THE DIODE-PUMPED
Nd-YAG RING-LASER GYROSCOPE

A typical frequency response curve for the solid-state ring
laser is shown on Fig. 9. The difference between the beat
frequency and the ideal Sagnac frequency can be expressed
analytically provided it is much smaller than the absolute
value of the beat frequency. Equation �4� then leads to:

�̇ = � −
Y

�Y2 − X2

�L

T
Im�N1ei�� −

m

2
��Y − X

Y + X
cos�� + 	1�

−�Y + X

Y − X
cos�� + 	2� .

Using for the beat regime the definition stated previously, we
obtain, in the limit 	xM 	 �B, 	yM 	 �B, 	C 	 �B, and
	�M 	 �1, the following equation for �0 �after averaging
over a few periods of 1 / 	�	�:

�̇0 =
m2 cos�	1 − 	2�

2�
+

��

2�T1
.

The beat frequency ��̇� is thus finally given by

��̇� = � +
m2 cos�	1 − 	2�

2�
+

�r
2

2�
. �14�

As can be seen on this equation, the two sources of deviation
from the ideal Sagnac line are the coupling through back-
scattering on the cold cavity elements and the coupling in-
duced by the population inversion grating.

FIG. 8. Experimental observation of two sinusoidal signals in
phase quadrature with two close detectors, which is the signature of
the beat note. The direction of the measured rotation can be de-
duced from the relative position of the two signals. Only the AC
components of the signals are shown in this figure. 0 50 100 150 200 250 300
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FIG. 9. �Color online� Experimental frequency response curve
of the solid-state ring-laser gyroscope—i.e., beat frequency as a
function of rotation speed. The line corresponds to the ideal �theo-
retical� frequency response curve.
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The linear dependence of the beat frequency on the pump-
ing rate � has been checked experimentally, as reported on
Fig. 10. We deduce from the line slope another measurement
for the loss parameter: namely, �
19.3�106 s−1. This value
is in good agreement with the measurement performed on the
relaxation frequency ��
21.5�106 s−1; see Fig. 1�. The dif-
ference can be attributed to the analytical approximations
made in deriving expression �14�.

The value of the extrapolated beat frequency at �=0 �off-
set� provides a measurement of the parameter m. Considering
the fact that cos�	1−	2�
1 �see Sec. IV�, we obtain with
this technique m
11�104 rad/s, which is twice the value
estimated in Sec. III. This difference might be due in particu-
lar to the fact that we neglected in Sec. III the effect of
diffusion on crystal edges and on cavity mirrors.

As can be seen on Fig. 9, the solid-state ring laser has a
characteristic response curve “above” the ideal Sagnac line,
while the typically admitted frequency response curve for the
gas ring-laser gyroscope is rather “below” the ideal Sagnac
line �Fig. 11�. The first reason for this is that the typically
admitted picture for the frequency response curve of the gas
ring laser is not always true: it has been shown �41� that
when the coupling induced by the cold cavity elements was
dissipative �i.e., when 		1−	2 	 �1�, the frequency response
curve was above the ideal Sagnac line, at least in the limit of
fast rotations. This result is in agreement with Eq. �14�. The
second reason is that the deviation induced by the population
inversion grating, which is not present in the gas ring-laser
gyroscope, is always positive and often dominates the former
coupling, resulting in typical frequency response curves
“above” the ideal Sagnac line.

VI. CONCLUSION

We have studied in this paper the dynamics of a diode-
pumped solid-state ring laser with active beat-note stabiliza-
tion. We have shown in particular that among a broad variety
of oscillation regimes, including chaotic behavior, a stable
rotation-sensitive regime can occur thanks to fine mode cou-
pling control. Focusing on this regime, we have derived
theoretically its stability condition and its frequency response
under rotation. We have also studied this regime experimen-
tally, showing a very good quantitative agreement with our
theoretical predictions.

Applications for this work range from the study of non-
linear systems with periodic boundary conditions �including
other fields than optics—e.g., superfluidity �22�� to optical
gyroscopes. In the latter case, the performances will depend
on the possibility of reducing the strength of the couplings
induced by backscattering and by the population inversion
grating. Some techniques to improve these performances will
be presented in future publications.
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