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OSCILLATION RESULTS OF HIGHER ORDER LINEAR

DIFFERENTIAL EQUATION

NIDHI GAHLIAN

Abstract. We study higher order linear differential equation y(k) + A1(z)y = 0
with k ≥ 2, where A1 = A+ h, A is a transcendental entire function of finite order
with 1

2 ≤ µ(A) < 1 and h 6= 0 is an entire function with ρ(h) < µ(A). Then it is

shown that, if f (k) +A(z)f = 0 has a solution f with λ(f) < µ(A) then exponent
of convergence of zeros of any non trivial solutions of y(k) +A1(z)y = 0 is infinite.

1. Introduction

For the understanding of this paper, we must know the basic facts of Nevanlinna’s
value distribution theory. For a meromorphic function f , n(r, f), N(r, f), m(r, f)
and T (r, f) denote un-integrated counting function, integrated counting function,
proximity function and characteristic function respectively. We also use first main
theorem of Nevanlinna for a meromorphic function f , see [6, 9, 15]. Now we present
elementary definitions of order of growth ρ(f), lower order of growth µ(f) exponent
of convergence of zeros λ(f) for a meromorphic function f to make the paper self
contained.

ρ(f) = lim sup
r→∞

log T (r, f)

log r
,

µ(A) = lim inf
r→∞

log T (r, f)

log r
,

λ(f) = lim sup
r→∞

log n(r, 1
f
)

log r
= lim sup

r→∞

logN(r, 1
f
)

log r
,

where

N(r,
1

f
) =

∫ r

0

n(t, 1
f
)− n(0, 1

f
)

t
dt+ n(0,

1

f
) log r.

A meromorphic function g(z) is a small function of f(z) if T (r, g) = S(r, f) and vice
versa, here S(r, f) denote such quantities which are of growth o(T (r, f)) as r → ∞,
outside of a possible exceptional set of finite linear measure.
Suppose A be an entire function and k ≥ 2 is an integer. The complex differential
equation

f (k) + A(z)f = 0 (1)
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has entire solutions fj(j = 1, 2, ..., k), as proved by Hille [7] that any solutions of (1)
are entire functions whenever A is an entire function. In this note, we are concerned
with the zero distribution of solutions of linear differential equation of kth degree with
perturbed coefficients. The research in this direction is called complex oscillation
theory and to classify the oscillations of solutions of (1) has been a long standing
problem since 1980s. And it is basically depends on finding the conditions on A(z)
so that the existing solution f of (1) have λ(f) = 0 or λ(f) ≥ ρ(A) or λ(f) = ∞.
However, rest cases like 0 < λ(f) < ρ(A) or λ(f) = ρ(A) = ∞ or ρ(A) < λ(f) < ∞
are also possible but they seems to be quite exceptional.
In this field, many mathematicians have done research by relating the exponent of
convergence of zeros λ(fj)(j = 1, 2, ..., k) and order of growth ρ of coefficient A,
for e.g [1–3, 10, 12]. More results regarding complex oscillation of solutions of linear
differential equation can be found in [4, 5, 11] and references therein.
In 2005, A. Alotaibi [1] proved the following theorem, which shows that by doing

small perturbation of equation (1) we get exponent of convergence of zeros of solution
is at least the order of growth of coefficient A .

Theorem 1. [1] Suppose that A is a transcendental entire function with ρ(A) < 1
2
,

k ≥ 2 and (1) has a solution f with λ(f) < ρ(A). Let

A1 = A + h, (2)

where h 6≡ 0 is an entire function with ρ(h) < ρ(A). Then exponent of convergence
of zeros of any non trivial solution of

g(k) + A1g = 0 (3)

does not have a solution g with λ(g) < ρ(A).

So, it seems interesting to find the condition on A(z) so that exponent of conver-
gence of any nontrivial solution of equation (3) is infinite, and hence in 2020, by using
similar idea in [1] J. Long and Y. Li proved the following theorem by considering
lower order of growth of A along with the small perturbation of such equation.

Theorem 2. [13] Suppose that A is a transcendental entire function of finite order
with µ(A) < 1

2
, k ≥ 2 and (1) has a solution f with λ(f) < µ(A). Let A1 satisfies (2)

where h 6≡ 0 is an entire function with ρ(h) < µ(A). Then exponent of convergence
of zeros of any non trivial solution of (3) is infinite.

Motivated by above results, It is natural to ask what we can say about the coef-
ficient A(z) of ρ(A) ≥ 1

2
or µ(A) ≥ 1

2
. So we consider the case 1

2
≤ µ(A) < 1 and

prove the following result.

Theorem 3. Suppose that A is a transcendental entire function of finite order with
1
2
≤ µ(A) < 1, k ≥ 2 and (1) has a solution f with λ(f) < µ(A). Let A1 satisfies(2)

and h 6≡ 0 is an entire function with ρ(h) < µ(A). Then exponent of convergence of
zeros of any non trivial solution of

y(k) + A1y = 0 (4)

is infinite.

By the proof of theorem 3 , we can easily prove the following result.



OSCILLATION RESULT 3

Corollary 1. Let A is a transcendental entire function of finite order with 1
2
≤

µ(A) < 1, k ≥ 2 and (1) has a solution f with finitely many zeros, and let A1

satisfies(2) and h 6≡ 0 is an entire function with ρ(h) < µ(A). Then (4) does not
have a non trivial solution with finitely many zeros.

In section 2 we state some lemmas and results. In section 3, we prove Theorem 3.

2. Auxiliary results

In this section we present some lemmas and definition which will be helpful in
proving our main theorem. For a set I ⊂ (0,∞), the linear measure is defined
by m(I) =

∫

I
dt. For a set J ⊂ (1,∞), the logarithmic measure is defined by

ml(J) =
∫

J
1
t
dt and the upper and lower logarithmic density of J ⊂ [1,∞) by

logdensJ = lim sup
r→∞

ml(J ∩ [1, r])

log

and

logdensJ = lim inf
r→∞

ml(J ∩ [1, r])

log
.

The logarithmic density actually gives an idea how big the set J is.

Definition 1. [9] Let B(zn, rn) = {z : |z− zn| < rn} be the open disc in the complex

plane.Countable union
∞
⋃

n=1

B(zn, rn) is said to be R-set if zn → ∞ and Σrn is finite.

Now we state a very well known result regarding rational function, which we use
in our main theorem’s proof.

Lemma 1. [9] A meromorphic function f is a rational function iff T (r, f) = O(log r).

Next we define a well known representation for higher order logarithmic derivatives
through which we can easily show the possibility of the existence of a solution f of
(1) with no zeroes by taking F = f ′

f
, f = eP where P is an entire function.

Lemma 2. (Hayman’s Lemma) [6] Let f(z) be an analytic function, and let F = f ′

f
.

Then for k ∈ N, we have

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ),

where Pk−2 is a differential polynomial with constant coefficients, which vanishes
identically for k ≤ 2 and has degree of (k − 2) when k > 2.

Lemma 3. [14] Let B(z) is an entire function with µ(B) ∈
[

1
2
,∞

)

then there exists
a sector Ω(α, β), β − α ≥ π

µ(B)
, such that

lim
r→∞

log log |B(reιθ)|

log r
≥ µ(B)

∀θ ∈ Ω(α, β), where 0 ≤ α < β < 2π.
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Lemma 4. [9] Suppose that f(z) is a meromorphic function of finite order. Then
there exists a positive integer N such that

f ′(z)

f(z)
= O(|z|N)

holds for large z outside of an R-set.

Lemma 5. (Langley’s theorem) [10] Let A(z) be a transcendental entire function of
finite order, and let J1 be a subset of [1,∞) of infinite logarithmic measure and with
the following property. For each r ∈ J1, there exists an arc

ar = {reit : 0 ≤ αr ≤ t ≤ βr ≤ 2π}

of the circle S(0, r) = {z : |z| = r} such that

lim
r→∞,r∈J1

min{log |A(z)| : z ∈ ar}

log r
= +∞.

Let k ≥ 2 and let f be a solution of 1 with λ(f) < ∞. Then there exists a subset
J2 ⊂ [1,∞) of finite measure, such that for large r ∈ J0 = J1 \ J2, we have

f ′

f
= crA(z)

1/k −
k − 1

2k

A′(z)

A(z)
+O(r−2)

holds for all z ∈ ar, where the constant cr satisfies ckr = −1 and may depend on r,
for a given r ∈ J0 but not depend on z, and the branch of A(z)1/k is analytic on
ar(included in the case where ar is the whole circle S(0, r)).

3. Proof of main theorem

Proof. Given A1 = A + h, ρ(h) < µ(A) ≤ ρ(A) implies ρ(A1) = ρ(A). Let equation
(1) has a solution f with λ(f) < µ(A) ≤ ρ(A) and let us assume (4) has a solution
y with λ(y) < ∞. So we can take

f = PeU

and
y = QeV ,

where U, V, P,Q are entire functions of finite order [11].
Now f = PeU implies λ(f) = ρ(P ) < ∞ [9] as eU 6= 0 & ρ(P ) = λ(P ).
Similarly,

λ(y) = ρ(Q).

Let

F =
f ′

f
, (5)

Y =
y′

y
. (6)

Using f = PeU & Y = QeV , we get

F =
PeUU ′ + eUP ′

PeU
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=
P ′

P
+ U ′. (7)

Similarly,

Y =
Q′

Q
+ V ′. (8)

Applying Hayman’s Lemma 2, we get

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ) (9)

and
y(k)

y
= Y k +

k(k − 1)

2
Y k−2Y ′ + Pk−2(Y ), (10)

where Pk−2 is a differential polynomial with constant coefficients, which vanishes
identically for k ≤ 2 and has degree of k − 2, when k > 2.
Choose

max{λ(f), λ(y), ρ(h)} < β < γ < µ < 1. (11)

Using lemma 3 for A(z), there exists a sector Ω(α, β) such that following inequality
holds ∀θ ∈ Ω(α, β).

lim
r→∞

log log |A(reιθ)|

log r
≥ µ(A).

This gives

log |A(reιθ)| ≥ rγ ,

where γ = µ(A)− ǫ. Set

J1 := {z = reιθ : |z| = r > r0, α0 < θ < β0},

where α < α0 < β0 < β and r0 is a fixed number, satisfying

inf
|z|=r∈J1

log |A(z)| ≥ rγ, (12)

where J1 has a positive upper logarithmic density [8].
Using lemma 4, there exist a set J2 ⊂ [1,∞) which is a subset of finite measure, for
some t1 ∈ N,

∣

∣

∣

∣

A′(z)

A(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

P ′(z)

P (z)

∣

∣

∣

∣

+

∣

∣

∣

∣

Q′(z)

Q(z)

∣

∣

∣

∣

≤ rτ , (13)

holds for |z| = r ≥ 1, r /∈ J2. Now for large r ∈ J1 and ρ(h) < ρ(A), we have
A1 = A+ h. This gives

log(A1) = log(A+ h)

= logA + o(1)

≥ rγ + o(1).
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Next we calculate f ′

f
and y′

y
in terms of A(z). For applying lemma 5, take an arc

ar := {z = r1e
ιθ : θ ∈ (α1, β1)} in J1 for some fixed r1, where α0 < α1 < β1 < β0.

Now for some θ1 ∈ (α1, β1), we get

min{log |A(z)| : z ∈ ar} = log |A(reιθ1)|.

Next,
logA(reιθ1)

log r
≥

rγ

log r
.

As γ < µ < 1, so

lim
r→∞

rγ

log r
→ ∞.

Hence

lim
r→∞

min{log |A(z)| : z ∈ ar}

log r
= ∞.

Next, on applying lemma 5 in equations (1) and (4). The following equalities hold
for large r ∈ J0.

f ′

f
= cA(z)1/k −

k − 1

2k

A′(z)

A(z)
+O(r−2), z ∈ Ω, ck = −1, (14)

y′

y
= dA1(z)

1/k −
k − 1

2k

A′
1(z)

A(z)
+O(r−2), z ∈ Ω, dk = −1. (15)

Now expanding A1(z)
1/k and

A′

1(z)

A(z)
in terms of A(z)1/k and A′(z)

A(z)
with the help of

binomial theorem, we have

lim sup
r→∞

log logM(r, h)

log r
= ρ(h),

=⇒ |h(z)| ≤ er
ρ(h)+o(1)

,

where M(r, h) is the maximum term.
For |z| = r → ∞, r ∈ J0, using above equation and equation (12), we get

∣

∣

∣

∣

h(z)

A(z)

∣

∣

∣

∣

≤
er

ρ(h)+0(1)

erγ
= o(1).

Similarly we can find
∣

∣

∣

∣

h′(z)

A(z)

∣

∣

∣

∣

≤
er

ρ(h)+0(1)

erγ
= o(1).

Now expanding with the help of above two equations, we have

A
1
k

1 (z) = (A+ h)
1
k

= A
1
k

(

1 +
h

A

)
1
k

= A
1
k

(

1 +O

(

|h|

|A|

))

,
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for |z| = r ∈ J0. Similarly,

A′
1(z)

A(z)
=

(

A′ + h

A+ h

)

=
A′ + h

A
(

1 + h
A

)

=
A′ + h′

A

(

1−
h

A
+

h2

A2
...

)

=

(

A′

A
+

h′

A

)(

1 +O

(

|h|

|A|

))

=
A′

A

(

1 +O

(

|h|

|A|

))

,

for |z| = r ∈ J0. So we get equation

y′

y
= dA(z)1/k −

k − 1

2k

A′(z)

A(z)
+O(r−2), dk = −1. (16)

Now we will prove c = d for large r ∈ J0. Let d/c = ω, where ωk = 1 and
using equation 11, we get

y′

y
= cωA(z)1/k −

k − 1

2k

A′(z)

A(z)
+O(r−2), wk = 1. (17)

Multiply equation 9 with ω,

ω
f ′

f
= ωcA(z)1/k − ω

k − 1

2k

A′(z)

A(z)
+O(r−2), ck = −1.

Now subtract equation 17 from above equation, we get

ω
f ′

f
−

y′

y
= ωcA(z)1/k −ω

k − 1

2k

A′(z)

A(z)
+O(r−2)−ωc(A(z)1/k)−

k − 1

2k

A′(z)

A(z)
+O(r−2)

ω

(

f ′

f
−

k − 1

2k

A′(z)

A(z)

)

=
y′

y
+

k − 1

2k

A′(z)

A(z)
+O(r−2)

Now by using Argument principle, integrate above equation around |zn| = rn ∈ J0,
and rn → ∞ as n → ∞, we get

ω

[

2πιn

(

rn,
1

f

)

+
k − 1

2k
2πιn

(

rn,
1

A

)]

+o(1) = 2πιn

(

rn,
1

y

)

+
k − 1

2k
2πιn

(

rn,
1

A

)

.

(18)

In this equation R.H.S must be a positive integer as n
(

rn,
1
y

)

≥ 0 and n
(

rn,
1
A

)

> 0.

Let us suppose that n
(

rn,
1
A

)

= 0, if so then it implies N
(

rn,
1
A

)

= 0.
Now since log |A(z)| ≥ rγ for r > r0 i.e inf |z|=rn∈J0 log |A(z)| is very large for rn → ∞,
thus we get

m(rn,
1

A
) =

1

2π

∫ 2π

0

log

∣

∣

∣

∣

1

A(reιθ)

∣

∣

∣

∣

dθ

= 0.
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Hence

T (rn,
1

A
) = m(rn,

1

A
) + n(rn,

1

A
) = 0.

Now with the help of Nevanlinna’s first fundamental theorem T (rn, A) = T (rn,
1
A
) +

O(1), we get

T (rn, A) = O(1),

which is a contradiction with the fact that A is transcendental. So our supposition
is wrong and hence n(rn.

1
A
) > 0. So n(rn,

1
A
) + n(rn,

1
f
) is a positive integer. Now

as n(rn,
1
A
) ≥ 1 implies k−1

2k
n(rn,

1
A
) + n(rn,

1
f
) ≥ k−1

2k
. Taking modulus of imaginary

part of both sides after multiplying with ω, we get
∣

∣

∣

∣

Im

[

ω

(

n

(

rn,
1

f

)

+
k − 1

2k
n

(

rn,
1

A

))]
∣

∣

∣

∣

≥
k − 1

2k
|Im(ω)|,

and taking imaginary part of both sides of 18, we get

Im

[

ω

(

n

(

rn,
1

f

)

+
k − 1

2k
n

(

rn,
1

A

))]

+ Im(o(1)) = 0,

so

|Imo(1)| =

∣

∣

∣

∣

−Im

[

ω

(

n

(

rn,
1

f

)

+
k − 1

2k
n

(

rn,
1

A

))]
∣

∣

∣

∣

≥
k − 1

2k
|Im(ω)|

≥
k − 1

2k
∆,

where ∆ := inf{|Im(ω)| : ωk = 1, Im(ω) 6= 0}. It is obvious ∆ > 0. Now for
sufficiently large rn ∈ J0 and |Im(o(1))| < ∆k−1

2k
, we get Im(ω) = 0.

As ωk = 1 with imaginary part zero implies either ω = −1 or ω = 1.
But ω = −1 contradicts with (18), so ω = 1 and hence c = d. By using it we can
write equation (16) as

Y (z) =
y′

y
= cA(z)1/k −

k − 1

2k

A′(z)

A(z)
+O(r−2), ck = −1, (19)

for |z| = r ∈ J0. Subtracting equation (17) from equation (14), we get

f ′(z)

f(z)
=

y′(z)

y(z)
+O(1), |z| = r.

Now as poles of f ′

f
= zeroes of f , hence for large r ∈ J0, we have

n(r,
1

f
) = n(r,

1

y
).

With the help of equations (6), (7), (8) and (9) we get,

P ′

P
+ U ′ =

Q′

Q
+ V ′ +O(1).
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Using above equation and (13), we get

|U ′ − V ′| ≤

∣

∣

∣

∣

P ′

P

∣

∣

∣

∣

+

∣

∣

∣

∣

Q′

Q

∣

∣

∣

∣

≤ 2rτ ,

which holds for all |z| = r with large r ∈ J0 \ J2. Next

logM(r, U ′ − V ′) ≤ log(2rτ ),

where M(r, U ′ − V ′) is the maximum term, this gives

T (r, U ′ − V ′)

log r
≤ τ.

As U ′ − V ′ is entire function so

M(r, U ′ − V ′) = T (r, U ′ − V ′).

By above inequality, we get

T (r, U ′ − V ′) = O(log r).

This implies U ′−V ′ is a rational function but as U and V are entire so P0 = U ′−V ′

is a polynomial. From equation (8) and (9),

F =
P ′

P
+ U ′ =

P ′

P
+ P0 + V ′

and

Y =
Q′

Q
+ V ′.

This implies

F =
P ′

P
+ P0 + Y −

Q′

Q
= Y +M, (20)

where M = P ′

P
− Q′

Q
+ P0. Using (1) and (10), we get

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ) = −A, (21)

where Pk−2 is a differential polynomial with constant coefficients, which vanishes
identically for k ≤ 2 and has degree of atmost k − 2, when k > 2.
By equations (2), (4) and (11), we get

y(k)

y
= Y k +

k(k − 1)

2
Y k−2Y ′ + Pk−2(G) = −A− h. (22)

Using equations (20) and (21), we get

(Y +M)k +
k(k − 1)

2
(Y +M)k−2(Y ′ +M ′) + Pk−2(Y +M) = −A.

With the help of Binomial theorem, we can expand above equality and we obtain

Y k +MkY k−1 +
k(k − 1)

2
Y k−2Y ′ +Bk−2(Y,M) = −A,
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where Bk−2 represent a polynomial in M,Y, and their derivatives with the total degree
of atmost k − 2. Now combining above equation with equation (22), we get

h = kMY k−1 +Rk−2(Y,M). (23)

Now we will claim M 6≡ 0. On the contrary, let M ≡ 0. As F = Y + M implies
F = Y , then by equations (21) and (22), we get h = 0, which contradicts with the
hypothesis and hence claim is true.
Now divide equation (23) by MY k−2, we get

kY +
Rk−2(Y,M)

MY k−2
=

h

MY k−2
. (24)

Assume that |Y | > 1 and
Rk−2(Y,M)

MY k−2 is a sum of the terms

1

MY k−2
Mp0(M ′)p1 ...(M (k))pkY q0(Y ′)q1...(Y (k))qk ,

where q0 + q1 + ...qk ≤ k − 2.
As |Y | > 1 implies 1

|Y |
< 1 and taking modulus of above equation, we get

|M |p0+p1+...pk−1

∣

∣

∣

∣

M ′

M

∣

∣

∣

∣

p1

.......

∣

∣

∣

∣

M (k)

M

∣

∣

∣

∣

pk

|Y |q0+q1+...qk−k+2

∣

∣

∣

∣

Y ′

Y

∣

∣

∣

∣

q1

...

∣

∣

∣

∣

Y (k)

Y

∣

∣

∣

∣

qk

≤ |M |p0+p1+...pk−1

∣

∣

∣

∣

M ′

M

∣

∣

∣

∣

p1

...

∣

∣

∣

∣

M (k)

M

∣

∣

∣

∣

pk ∣
∣

∣

∣

Y ′

Y

∣

∣

∣

∣

q1

...

∣

∣

∣

∣

Y (k)

Y

∣

∣

∣

∣

qk

. (25)

Taking proximity function on both sides of equation 24, we get

m(r, kY ) = m

(

r,−
Rk−2

MY k−2
+

h

MY k−2

)

m(r, Y ) ≤ m

(

r,−
Rk−2

MY k−2

)

+m

(

r,
h

MY k−2

)

+ log 2.

Using equation (25), we get

m(r, Y ) ≤m
(

r, |M |p0+p1+...pk−1
)

+m

(

r,

∣

∣

∣

∣

M ′

M

∣

∣

∣

∣

)

+ ...m

(

r,

∣

∣

∣

∣

M (k)

M

∣

∣

∣

∣

)

+m

(

r,

∣

∣

∣

∣

Y ′

Y

∣

∣

∣

∣

)

...m

(

r,

∣

∣

∣

∣

Y (k)

Y

∣

∣

∣

∣

)

+m(r, h) +m

(

r,
1

M

)

+m

(

r,
1

Y k−2

)

+ log 4.

Now as M and Y are rational functions, so m
(

r, M ′

M

)

= S(r,M)and m
(

r, Y ′

Y

)

=
S(r, Y ), hence we get

m(, Y ) ≤c0m(r,M) +m(r,
1

M
) +m(r, h) + s(r,M) + S(r, Y ),



OSCILLATION RESULT 11

where c0 = p0+p1+...pk−1, positive constant. Now by adding and subtracting terms
c0N(r,M), N(r, 1

M
), N(r, h) and using first fundamental theorem of Nevanlinna, we

get

m(r, Y ) ≤c0T (r,M) + T (r,
1

M
) + T (r, h) + S(r, Y )

= (c0 + 1)T (r,M) + T (r, h) + S(r, Y ). (26)

Take proximity function on both sides of equation (22), we get

m(r, A) ≤m(r, Y k) +m(r,
k(k − 1)

2
Y k−2Y ′) +m(r, Pk−2(Y )) +m(r, h)

≤ km(r, Y ) +m(r,
k(k − 1)

2
) +m(r, Y k−2) +m(r,

Y ′

Y
)

+m(r, Y ) + S(r, Y ) + S(r, h).

With some simple calculations, we get

m(r, A) ≤ c2m(r, Y ) +O(log r). (27)

Using equation (26) and (27), we get

T (r, A) ≤ c3T (r,M) + c2T (r, h) + S(r, Y ) +O(log r). (28)

As

T (r,M) = T

(

r,
P ′

P
−

Q′

Q
+ P0

)

= m

(

r,
P ′

P
−

Q′

Q
+ P0

)

+N

(

r,
P ′

P
−

Q′

Q
+ P0

)

≤ S(r, P ) + S(r, Q) +O(log r) +N

(

r,
P ′

P

)

+N

(

r,
Q′

Q

)

+N(r, P0)

= N(r,
1

P
) +N(r,

1

Q
) + S(r,W )

≤ T (r, P ) + T (r, Q) + S(r,W ),

where W is some entire function with order of growth β. Using equation (12) with
ρ(P ) = λ(f) and ρ(Q) = λ(y), we have

T (r,M) ≤ o(rβ).

Now as ρ(h) < β, we get

T (r, h) ≤ o(rβ).

Using these in equation (28), we get

T (r, A) ≤ o(rβ)

for r ∈ J0 \ J2. Hence contradiction arises. This completes the proof. �
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