23. Oscillation Theorems for a Damped Nonlinear Differential Equation

By Manabu Naito
Department of Mathematics, Hiroshima University
(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1974)

In this paper we are concerned with the oscillatory behavior of solutions of the nonlinear differential equation
(A)

$$
x^{(n)}(t)+q(t) \phi\left(x^{(n-1)}(t)\right)+p(t) f(x(g(t)))=0 .
$$

Our main purpose is to extend to equation (A) some of the recent results regarding oscillation of solutions of the differential equation with a time lag

$$
\begin{equation*}
x^{(n)}(t)+p(t) f(x(g(t)))=0 \tag{B}
\end{equation*}
$$

and the differential equation without a time lag
(C)

$$
x^{(n)}(t)+q(t) \phi\left(x^{(n-1)}(t)\right)+p(t) f(x(t))=0 .
$$

We consider only solutions $x(t)$ of (A) which exist on some halfline $\left[T_{x}, \infty\right)$. A solution $x(t)$ of (A) is said to be oscillatory (or to oscillate) if $x(t)$ has a sequence of zeros $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} t_{k}=\infty$; otherwise, a solution is said to be nonoscillatory.

Throughout this paper the following assumptions are assumed to hold :
(a) $f \in C(R) \cap C^{1}(R-\{0\}), R=(-\infty, \infty)$, and

$$
x f(x)>0, \quad f^{\prime}(x) \geqq 0 \quad \text { for all } x \in R-\{0\} ;
$$

(b) $\phi \in C(R)$, and there is a constant $M>0$ such that

$$
0<y \phi(y) \leqq M y^{2} \quad \text { for all } y \in R-\{0\} ;
$$

(c) $g \in C^{1}\left(R^{+}\right), R^{+}=(0, \infty), g(t) \leqq t, g^{\prime}(t) \geqq 0$ for all $t \in R^{+}$, and $\lim _{t \rightarrow \infty} g(t)=\infty ;$
(d) $p \in C\left(R^{+}\right)$, and $p(t)>0$ for all $t \in R^{+}$;
(e) $q \in C\left(R^{+}\right)$, and there is a nonnegative function $m \in C\left(R^{+}\right)$such that $q(t) \leqq m(t)$ for all $t \in R^{+}$and $\lim _{t \rightarrow \infty} Q(t, T)=\infty$ for any fixed $T \in R^{+}$, where

$$
Q(t, T)=\int_{T}^{t} \exp \left(-M \int_{T}^{s} m(u) d u\right) d s .
$$

Lemma. Suppose that assumptions (a)—(e) hold. If $x(t)$ is a nonoscillatory solution of (A), then there is a T such that $x(t) x^{(n-1)}(t)$ >0 for all $t \in[T, \infty)$.

Proof. We may assume that $x(t)>0$ on $\left[t_{0}, \infty\right)$, since a parallel argument holds when $x(t)<0$ on $\left[t_{0}, \infty\right)$. Since $\lim _{t \rightarrow \infty} g(t)=\infty$, there is $t_{1} \geqq t_{0}$ such that $x(g(t))>0$ on $\left[t_{1}, \infty\right)$. Suppose that there is $t^{*} \in\left[t_{1}, \infty\right)$ at which $x^{(n-1)}\left(t^{*}\right)=0$. From (A) we see that

$$
x^{(n)}\left(t^{*}\right)=-p\left(t^{*}\right) f\left(x\left(g\left(t^{*}\right)\right)\right)<0
$$

It follows that $x^{(n-1)}(t)$ cannot have a zero larger than t^{*}, hence $x^{(n-1)}(t)$ is eventually of constant sign.

Suppose that $x^{(n-1)}(t)<0$ on [$\left.T, \infty\right)$. Multiplying (A) by $x^{(n-1)}(t)$, integrating over $[T, t]$ and observing that

$$
\int_{T}^{t} p(s) f(x(g(s))) x^{(n-1)}(s) d s<0,
$$

we find

$$
\int_{T}^{t} x^{(n)}(s) x^{(n-1)}(s) d s+\int_{T}^{t} q(s) \phi\left(x^{(n-1)}(s)\right) x^{(n-1)}(s) d s>0
$$

from which using (b) we have

$$
\left[x^{(n-1)}(t)\right]^{2}>\left[x^{(n-1)}(T)\right]^{2}-2 M \int_{T}^{t} m(s)\left[x^{(n-1)}(s)\right]^{2} d s
$$

Hence, by the Langenhop inequality [7],

$$
\left[x^{(n-1)}(t)\right]^{2} \geqq\left[x^{(n-1)}(T)\right]^{2} \exp \left(-2 M \int_{T}^{t} m(u) d u\right)
$$

which, in view of the hypothesis that $x^{(n-1)}(t)<0$ on [$\left.T, \infty\right)$, yields

$$
x^{(n-1)}(t) \leqq x^{(n-1)}(T) \exp \left(-M \int_{T}^{t} m(u) d u\right)
$$

Integrating the above inequality over [T, t], we obtain

$$
x^{(n-2)}(t) \leqq x^{(n-2)}(T)+x^{(n-1)}(T) Q(t, T) .
$$

Since $x^{(n-1)}(T)<0$, by (e), we conclude that

$$
\lim _{t \rightarrow \infty} x^{(n-2)}(t)=-\infty, \quad \text { and hence } \quad \lim _{t \rightarrow \infty} x(t)=-\infty
$$

The contradiction completes the proof of the lemma.
Remark 1. This lemma is essentially that given by Kartsatos and Onose [2, Lemma]. Our proof is based on the method used by Baker for second order ordinary differential equations [1, Lemma 1].

Theorem 1. In addition to (a)-(e) assume that $q(t) \geqq 0$ for all $t \in R^{+}$, and that for some $a>0$

$$
\begin{equation*}
\int_{a}^{\infty} \frac{d x}{f(x)}<\infty, \quad \int_{-a}^{-\infty} \frac{d x}{f(x)}<\infty . \tag{1}
\end{equation*}
$$

If

$$
\begin{equation*}
\int^{\infty}[g(t)]^{n-1} p(t) d t=\infty, \tag{2}
\end{equation*}
$$

then, for n even, every solution of (A) is oscillatory and, for n odd, every solution of (A) is either oscillatory or tending monotonically to zero as $t \rightarrow \infty$ together with its first $n-1$ derivatives.

Theorem 2. In addition to (a)-(e) assume that $q(t) \geqq 0$ for all $t \in R^{+}$, and that there exist positive numbers $M, \lambda_{0}, \alpha<1$ such that for $\lambda \geqq \lambda_{0}$
(3) $\quad f(\lambda x) \geqq M \lambda^{\alpha} f(x)$ if $x>0$ and $f(\lambda x) \leqq M \lambda^{\alpha} f(x)$ if $x<0$.

If

$$
\begin{equation*}
\int^{\infty}[g(t)]^{\alpha(n-1)} p(t) d t=\infty, \tag{4}
\end{equation*}
$$

then the conclusion of Theorem 1 holds.
Proof of Theorem 1. Assume that equation (A) has a nonoscillatory solution $x(t)$. In view of Lemma, we may suppose without loss of generality that there is a T such that $x(t)>0$ and $x^{(n-1)}(t)>0$ on $[T, \infty)$. Since this implies that $q(t) \phi\left(x^{(n-1)}(t)\right) \geqq 0$ on $[T, \infty)$, it follows that
(5) $\quad x^{(n)}(t)+p(t) f(x(g(t))) \leqq 0$.
Now, arguing exactly as in the proof of Theorem 2 of [4] or Theorem 1 of [6], we can derive from (5) the contradiction

$$
\int^{\infty}[g(t)]^{n-1} p(t) d t<\infty
$$

We omit the details.
Proof of Theorem 2. Apply the techniques used in the proof of Theorem 3 of [4] or Theorem 2 of [5] to derive from (5) the contradiction

$$
\int^{\infty}[g(t)]^{\alpha(n-1)} p(t) d t<\infty
$$

Remark 2. Theorems 1 and 2 extend some of the recent results [1], [2], [4-6], [8], [9] regarding oscillation of equations (B) and (C).

Theorem 3. In addition to (a)-(e) assume that there is a constant $K>0$ such that

$$
\begin{equation*}
q(t) \geqq-\frac{K}{t} \text { for all sufficiently large } t \text {. } \tag{6}
\end{equation*}
$$

If

$$
\begin{equation*}
\int^{\infty} t^{n-1} p(t) d t=\infty \tag{7}
\end{equation*}
$$

then, for n even, every bounded solution of (A) oscillates and, for n odd, every bounded solution of (A) either oscillates or tends monotonically to zero as $t \rightarrow \infty$ together with its first $n-2$ derivatives.

Proof. Suppose that $x(t)$ is a bounded nonoscillatory solution of (A). As before, we may assume that $x(t)>0$ and $x^{(n-1)}(t)>0$ on $[T, \infty)$. From a lemma of Kiguradze [3, Lemma 2] it follows that (8) $\quad(-1)^{j+1} x^{(n-j)}(t) \geqq 0 \quad$ on $[T, \infty), j=1,2, \cdots, n-1$.

Since $x^{\prime}(t)$ is of constant sign on [T, ∞), there exists a finite limit $\lim _{t \rightarrow \infty} x(t)=x(\infty)$. If n is even, then $x^{\prime}(t) \geqq 0$ by (8), and hence $x(\infty)$ >0, while, if n is odd, $x^{\prime}(t) \leqq 0$ by (8), so that $x(\infty)>0$ or $x(\infty)=0$.

Suppose that $x(\infty)>0$. Then, there exist $k>0$ and $T_{1} \geqq T$ such that $f(x(g(t))) \geqq k$ on $\left[T_{1}, \infty\right)$. It follows from (A) and (b) that

$$
\begin{equation*}
x^{(n)}(t)-\frac{K M}{t} x^{(n-1)}(t)+k p(t) \leqq 0 \quad \text { on }\left[T_{1}, \infty\right) \tag{9}
\end{equation*}
$$

Multiplying (9) by t^{n-1} and integrating over [T_{1}, t], we obtain

$$
\begin{equation*}
\int_{T_{1}}^{t} s^{n-1} x^{(n)}(s) d s-K M \int_{T_{1}}^{t} s^{n-2} x^{(n-1)}(s) d s+k \int_{T_{1}}^{t} s^{n-1} p(s) d s \leqq 0, \tag{10}
\end{equation*}
$$

which, after successive integration by parts, yields

$$
\begin{align*}
& t^{n-1} x^{(n-1)}(t)-(n-1) t^{n-2} x^{(n-2)}(t)+\cdots+(-1)^{n-2}(n-1)!t x^{\prime}(t) \\
& \quad+(-1)^{n-1}(n-1)!x(t) \\
& \quad-K M\left\{t^{n-2} x^{(n-2)}(t)-(n-2) t^{n-3} x^{(n-3)}(t)+\cdots\right. \tag{11}\\
& \left.\quad \quad+(-1)^{n-3}(n-2)!t x^{\prime}(t)+(-1)^{n-2}(n-2)!x(t)\right\} \\
& \quad+k \int_{T_{1}}^{t} s^{n-1} p(s) d s \leqq C,
\end{align*}
$$

where C is a constant. Using (8) and the boundedness of $x(t)$, we conclude from (11) that

$$
k \int_{T_{1}}^{\infty} t^{n-1} p(t) d t<\infty,
$$

which contradicts (7). Therefore, we must have $x(\infty)=0$. Clearly, this is possible only when n is odd, and in this case the derivatives $x^{(j)}(t), j=1, \cdots, n-2$, also tend monotonically to zero as $t \rightarrow \infty$. This completes the proof.

Remark 3. When $g(t) \equiv t$, Theorem 3 improves a result of Kartsatos and Onose [2, Theorem 1].

Example 1. Theorem 3 implies that all bounded solutions of the equation

$$
x^{(4)}-\frac{1}{t} x^{(3)}+\frac{6}{t^{3 \alpha+1}}|x|^{\alpha} \operatorname{sgn} x=0, \quad 0<\alpha \leqq 1,
$$

are oscillatory. We note that this equation has an unbounded nonoscillatory solution $x(t)=t^{3}$.

Theorem 4. Let $n=2$. In addition to (a)-(e) assume that conditions (1), (6) and (7) are satisfied. Then all solutions of (C) are oscillatory.

Proof. Let $x(t)$ be a nonoscillatory solution of (C) such that $x(t)$ >0 and $x^{\prime}(t)>0$ on $[T, \infty)$. We multiply (C) by $t / f(x(t))$, integrate over [T, t] and use (6) to obtain

$$
\begin{align*}
\frac{t x^{\prime}(t)}{f(x(t))} & -(K M+1) \int_{T}^{t} \frac{x^{\prime}(t)}{f(x(t))} d t \\
& +\int_{T}^{t} \frac{s f^{\prime}(x(s))\left[x^{\prime}(s)\right]^{2}}{[f(x(s))]^{2}} d s+\int_{T}^{t} s p(s) d s \leqq C, \tag{12}
\end{align*}
$$

where C is a constant. Taking the limit as $t \rightarrow \infty$ and using (1) and (7) we arrive at the contradiction that $x^{\prime}(t)<0$ for all sufficiently large t. This completes the proof.

Example 2. The conclusion of Theorem 4 is false for the retarded differential equation (A). In fact, the equation

$$
x^{\prime \prime}(t)-\frac{1}{t} x^{\prime}(t)+\frac{1}{t^{2}}\left[x\left(t^{1 / 3}\right)\right]^{3}=0
$$

has a nonoscillatory solution $x(t)=t$, though conditions (1), (6) and (7) are satisfied.

References

[1] J. W. Baker: Oscillation theorems for a second order damped nonlinear differential equation. SIAM J. Appl. Math., 25, 37-40 (1973).
[2] A. G. Kartsatos and H. Onose: On the maintenance of oscillations under the effect of a small nonlinear damping. Bull. Fac. Sci. Ibaraki Univ. Ser. A. Math., 4, 3-11 (1972).
[3] I. T. Kiguradze: On the oscillation of solutions of the equation $d^{m} u / d t^{m}$ $+a(t)|u|^{n}$ sgn $u=0$. Mat. Sb., 65, 172-187 (1964) (in Russian).
[4] T. Kusano and H. Onose: Oscillation theorems for delay equations of arbitrary order. Hiroshima Math. J., 2, 263-270 (1972).
[5] --: Nonlinear oscillation of a sublinear delay equation of arbitrary order. Proc. Amer. Math. Soc., 40, 219-224 (1973).
[6] -: Oscillations of functional differential equations with retarded argument (to appear in J. Differential Equations, 15 (1974)).
[7] C. E. Langenhop: Bounds on the norm of a solution of a general differential equation. Proc. Amer. Math. Soc., 11, 795-799 (1960).
[8] V. N. Ševelo and N. V. Vareh: On some properties of solutions of differential equations with delay. Ukrain. Mat. Ž., 24, 807-813 (1972) (in Russian).
[9] Y. G. Sficas and V. A. Staikos: Oscillations of retarded differential equations (to appear in Proc. Cambridge Philos. Soc.).

