OSCILLATION THEORY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

L. H. Erbe

University of Alberta Edmonton, Alberta, Canada

Qingkai Kong

Northeastern Illinois University DeKalb, Illinois

B. G. Zhang

Ocean University of Qingdao Qingdao, Shandong, People's Republic of China

Marcel Dekker, Inc.

New York • Basel • Hong Kong

Contents

Preface		iii
Chapter 1. Preliminaries		1
1.0. Introduction		1
1.1. Initial Value Problems		2
1.2. Oscillation and Nonoscillation		4
1.3. Formulation of Boundary Value Problems		
for Functional Differential Equations		6
1.4 Fixed Point Theorems	1	8
	ł.	
Chapter 2. Oscillations of First Order Delay Differential		
Equations		14
2.0. Introduction		14
2.1. Stable Type Equations with a Single Delay		15
2.2. The Distribution of Zeros of Oscillatory Solutions		31
2.3. Unstable Type Equations		37
2.4. Equations with Oscillatory Coefficients		40
2.5. Equations with Positive and Negative Coefficients		45
2.6. Equations with Several Delays		50
2.7. Equations with Forced Terms		71
2.8. Single Population Models with Delays		76
2.9. Notes		93

•

- .

Chapter 3. Oscillation of First Order Neutral Differential	
Equations	95
3.0. Introduction	95
3.1. Characteristic Equations	97
3.2. Equations with Variable Coefficients (I)	110
3.3. Equations with Variable Coefficients (II)	135
3.4. Comparison Results	156
3.5. Unstable Type Equations	160
3.6. Sublinear Equations	168
3.7. Equations with Mixed Coefficients	175
3.8. Linearized Oscillation	185
3.9. Equations with a Nonlinear Neutral Term	191
3.10. Forced Equations	197
3.11. Notes	200
Chapter 4. Oscillation and Nonoscillation of Second Order	
Differential Equations with Deviating Arguments	202
4.0. Introduction	202
4.1. Linearized Oscillation	203
4.2. Existence of Oscillatory Solutions	210
4.3. Sturm Comparison Theorems	219
4.4. Oscillation Criteria	226
4.5. Classification of Nonoscillatory Solutions	242
4.6. Unstable Type Equations	255
4.7. Forced Oscillation	272
4.8. Equations with a Nonlinear Neutral Term	278
4.9. Advanced Type Equations	284
4.10. Notes	287
Chapter 5. Oscillation of Higher Order Neutral	
Differential Equations	288
5.0. Introduction	288
5.1. Comparison Theorems for Odd Order Equations	289
5.2. Oscillation and Nonoscillation of Odd Order Equations	302
5.3. Oscillation of Even Order Equations	317
5.4. Classification of Nonoscillatory Solutions	324
5.5. Existence of Oscillatory Solutions	340
5.6. Equations with Nonlinear Neutral Terms	347
5.7. Unstable Type Equations	357
5.8. Notes	373

- -

Contents

~ ~

Chapter 6. Oscillation of Systems of Neutral	
Differential Equations	374
6.0. Introduction and Preliminaries	374
6.1. Systems with Constant Matrix Coefficients	377
6.2. Systems with Variable Matrix Coefficients	389
6.3. Comparison with Scalar Equations	396
6.4. Existence of Nonoscillatory Solutions	400
6.5. Notes	413
Chapter 7. Boundary Value Problems for Second Order	
Functional Differential Equations	414
7.0. Introduction	414
7.1. Lipschitz Type Conditions	415
7.2. Nagumo Type Condition	422
7.3. Leray-Schauder Alternative	429
7.4. Topological Transversality Method	441
7.5. Boundary Value Problems for Singular Equations	452
7.6. Notes	464
References	465
Index	481