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S u m m a r y .  - New oscillation criteria are established /or the ]irst order functional di]#rential  
equation (*) y'(t) ~- p(t)y(g(t))  : 0 and its nonlinear analogue. The results are presented 
so that a remarkable duali ty existing between the case where (*) is retarded (g(t) ~ t) and 
the ease where (*) is  advanced (g(t) > t) is apparent. Possible extension o] the results ]or (*) 
to equations wi th  several deviating arguments is  attempted. ~ inal ly ,  i t  is  shown that there 
exists a class o] autonomous equations ]or which the oscillation situation can be completely 
charaeterized. 

Introduction. 

In  this paper we are concerned with the differential equation 

(1) y~(t) + ~( t )y (g( t ) )  : O 

and related functional  differential equations with deviating arguments.  Without  
fur ther  mention we assume tha t  p(t)  and g(t) are continuous on [a, co), g(t) is non- 
decreasing and lira g(t) ~ oo. The deviating argument  g(t) (or equation (1)) is said 

~--* c o  

to be re tarded or advanced according to whether g(t) ~= t or g(t) ~ t for t ~= a; g(t) 
is said to be of mixed type  if g(t) - -  t changes sign infinitely often as t ~ co. 

We restrict  our a t tent ion to those solutions y(t) of equation (1) which exist on 
some half-line [T~, co) and satisfy sup {ly(t)[: t=~ : T } > 0  for any  f ~  T, .  Such 
a solution is called a proper solution of (1). ~u make the standing hypothesis 
tha t  (1) does possess proper solutions. A proper solution is called oscillatory if it 
has arbi trar i ly large zeros; otherwise it is called nonoscillatory. Equat ion (1) is 
terme4 oscillatory (resp. nonoscillatory) if all of its solutions are oscillatory (resp. 
nonoseil]atory). 

One of the striking features of the functional differential equation (1) is tha t  
i t  may  be oscillatory , though the corresponding ordinary diffei~entia.1 equation 
y ' ~ p ( t ) y - ~ O  is always nonoscillatory. For  example, it  is known ([8], [9]) t ha t  

(*) E n t r a t ~  in  Redazione il  21 apri le  1983. 
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the equa`tions 

(2) 

(3) 

y'(t) + p y ( t -  ~) = o ,  

y'(t) - p y ( t  + T) = o ,  

where p and ~ are positive constants, are both oscillatory if and only if pT > 1/e. 
The oscillation of first order functional differentia] equations, which is generated 
by the deviating arguments involved, has been studied by numerous a`uthors; see 
e.g. the papers [1-24]. 

How, the examples (2) and (3) given a`bove suggest a remarkable <~ duality ~> 
existing between equations with retarded arguments a`nd the corresponding (or 
companion) equations with advanced arguments. This kind of dua`lity has been 
observed by KOPLATADZE ancl ~ANTUt~IJA [6] and KUSANO [8]. The objective of 
this paper is to establish some new oscillation criteria for equation (1) and a non- 
linear analogue of it, laying particular emphasis on the duality between the retarded 
a`nd advanced cases. We also show that  a similar duality holds for differential equa`- 
tions with deviating arguments of mixed type. l~etarde4 and advanced equations 
of the form (1) a`re discussed in the first two sections; Section 1 an4 Section 2 con- 
cern, respectively, the case where the coefficient p(t) is of constant sign and the 
ca`se where in(t) is of varia`ble sign. Equa`tion (1) in which the  deviating argument 
g(t) is of mixed type is studied in Section 3. In Section 4 the results of Section 1 
are extended to nonlinear retarded and advanced equations of the form 

(4) y'(t) + i ,(t)/(y(g(t))) = O. 

Possible extension of the results regarding (1) and (4) to equations with several 
arguments is attempted in the final Section 5. There it is also shown that  there 
is à  class of autonomous functional differential equations for which a necessary and 
sufficient condition for oscilla`tion can be established. Om' results supplement, im- 
prove, extend an4 unify the previous results obtained in the papers [7, 9, 11, 13, 14, 
17, 19, 20, 22~ 23]. 

1. - Retarded and advanced equations with one-signed coefficients. 

We begin by considering equation (1) in which the coefficient p(t) is of constant 
sign. 

(5) 

TE~ORV, X 1. - (i) ~up~ose that p(t) ~ 0 and g(t) <= t for t ~ a. I] 

t ( _1 
lira inf p(s) ds > 

g(O 
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then equation (1) is osvitlatory. I], on the other hand, 

(6) 

t 

f p(s) ds < 1 
e 

g(t) 

]or all su]]iciently large t ,  

then equation (1) has a nonoscillatory solution. 

(ii) Suppose that p(t) <= 0 and g(t) ~= t ]or t ~ a. I] 

(7) l imin f  ~[--p(s)]ds  >1, 
t ~  J 

t 

then equation (1) is oscillatory. I], on the other hand, 

(s) 

g(t) 

f [--p(s)]ds <= 1 
e 

t 

for all su]ficiently large t ,  

then equation (1) has a nonoseillatory solution. 

P~OOF. - The first pa r t  of this theorem has recent ly  been proved by  ];(OPLATADZE 
an4 (~A~U~IJA [7]. We present  a proof of the second par t  which is dual to the 
one given in [7]. 

Le t  p(t) ~ 0 and g(t) ~ t an4 suppose tha t  (1) has a nonoscil latory solution y(t). 
We may  assume with no loss of general i ty  tha t  y(t) > 0 for t >= to. F r o m  (1), y'(t) ---- 
~- - -p( t )y(g( t ) )  ~= O, t ~ t o ,  so tha t  y(t) is nondeereasing for t ~ t o .  In  particular,  
y(g(t)) ~= y(t), t ~ to, and hence we have y'(t) = -- p(t) y(g(t)) >= -- p(t) y(t), t ~ to, or 

(9) y ' ( t ) / y ( t )~ - -p ( t )  for t ~ t o .  

In  view of (7) there  exist  constants  tl > to and e such tha t  

a(t) 

(10) f [ - -  p(s)] as > c > 1/e for t ~ t l .  
t 

In tegra t ing  (9) over [t, g(t)] and using (10), we obtain 

a(t) 

t 

e~y(t) ~ ecy(t) , t ~ tl , 

where we have used the inequal i ty  e ~  ex for x ~ O. F r o m  (1) and (11) we have 

y'(t)>=ec[-p(t)]y(t), t>=tl. 
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Dividing this inequali ty by y(t) and integrating over [t, g(t)] yields 
a(t) 

t 

e~'~y(t) ~ (ec)~y(t) , t ~ tl . 

~ow, combine this w i t h  (1), divide the resulting inequali ty by y(t) and integrate 
from t to g(t). Continuing this process, we conclude that ,  for any  integer v > 0, 

y(g(t)) >= (ecFy(t) ,  t ~_~ t 1 . 

Since ec > 1 and ~ is arbitrary,  it  follows tha t  y(g(t)) = c~ for any  t ~ tl, a con- 
tradiction. Thus, equation (1) cannot  have a nonoscillatory solution if (7) is satisfied. 

Next,  suppose tha t  (8) holds for t >= to. Let  Y denote the set of all continuous 
functions y(t) which are continuous and nondecreasing on [to, c~) and satisfy the 
following inequalities : 

t 

to 

y(g(t)) <cy(t),  t__>to. 

:Y is a non-empty,  closed and convex subset of the locally convex space C[to, c~) 
of continuous functions on [to, c~) with the topology of uniform convergence on 
compact subintervals of [to, 0r Define the operator qb: y- ->  C[to, co) by 

t 

~ o ]  J ~ f g  

to 

I t  is a mat ter  of simple computat ion to show tha t  q) is a continuous operator 
mapping Y into a compact subset of X. Therefore, by  the Schauder-Tychonoff 
fixed point theorem, r has a fixed point y in Iz~ and we see tha t  this fixed point 
y = y(t) is a nonoscillatory solution of equation (1) on [to, co). This completes the 
proof. 

E X A ~ _ P L E  1 .  - -  Consider the equations 

(13) 

(14) 

y'(t) -~ at~y(logt) = O, 

y ' ( t ) -  at~y(e t) -~ 0 ,  

where a > 0  and ~ are constant.  I f  we put  p ( t ) = a t  ~ and g ( t ) : l o g t ,  then we 
have 

t 

l i m f p ( s ) d s = {  co ( ~ - - 1 ) ,  
t-.co j 0 ( e <  - - 1 ) ,  

a(t) 
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and  if we pu t  p ( t ) = - - a P  and  g( t )= e t, t hen  we have  
~,(t) 

[ - - p ( s ) ] &  = o 

t 

F r o m  Theorem 1 it  follows tha t  equat ions (13) and (14) are oscil latory for a n y  
a > 0  if and  only if a__>- - l .  

EXA~/'LE 2. - Consider the equat ions 

(15) y'(t) + a t y ( t - - l - t ) =  O , 

where a > 0 is a constant .  Since 
t t+(1/ t )  

l im f as & = lim f as ds = a 
t - ( l / t )  t 

(15) and  (16) are oscil latory if a > l/e, and  have  nonosci l la tory solutions if a < 1/e. 

2. - Retarded and advanced equations with oscillating coefficients. 

-Very recently,  LADAS, SFICAS and S~AV~OISLAKIS [14] have  establ ished cri teria 
for oscillation of differential equat ions of the forms  

y ' ( t )  -}- p ( t )  t ( t  - -  v)  = O, 

y'(t) ~, p(t)y(t q- z) = O, 

where T > 0 is a cons tan t  and  p(t) m a y  change sign as t -+ oo. To the best  of the 

au thors '  knowledge, t hey  seem to be the  first who discovered effective oscillation 
cri teria for funct ional  differential equat ions with oscillating coefficients. Our purpose 

here is to ex tend  their  resul ts  to the ease where g(t) is a general  r e ta rded  or advanced  
a rgument .  

T~Eo~E~ 2. - (i) Suppose that g(t) g t /or t >= a. Equation (1) is oscillatory i/ 
t there exists a sequence o] numbers { ~},=1 with the /ollowing properties: t~-->oo as 

t n-->o o; the intervals {[g(g(t~)), ~]}.=1 are disjoint; 

r t = l  
t .  

(18) fp(s)  ds >= 1 /or n = 1, 2, . . . .  
~(~) 
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(ii) Suppose that g(t) ~= t /or t ~ a. Equation (]) is oscillatory if there exists a 
t sequence of numbers {,}~=1 with the following properties: t . - ->c~ as n - + c ~ ;  the 

t ~ disjoint; i n t e r v a l s  {[%, g(g(.))]}.=~ a r e  

(19) i -p(t )  > o on ~ [to, g(g(t~))] ; 
~(t.) 

(20) f[--p(s)]ds >= 1 /or n = 1, 2, . . . .  

tn 

PROOF. - We only p r o v e  the first paxt. The proof of the second par t  proceeds 
by  duality. Suppose to the contrary that  (1) with p(t) ~ 0 and g(t) ~ t has a non- 
oscillatory solution y(t). We mgy assume thgt  y ( t ) >  0 for t ~ to. Since, by  (17), 

y'(t) ---- -- p(t)y(g(t))  ~ 0 on [J [g(g(to)), to] 

provided N is sufficiently ]~rge, y(t) is nonincre~sing on [~ [g(g(t.)), t~], ~nd so 

y(g(t)) is nonincreasing on [.J [g(t~), t~]. Integrat ing (1) from g(t~) and t. and using 
n=s 

the noninerea, sing nature of y(g(t)), we get 

t .  

o = y(t~)- y(g(t~)) +fp(s)y(g(s)) a~ 
g( t . )  t,, 

__ y(~.) ,  y(~(to)) -~ y(g(to)l~,(s)es 
~,(t.) 

for n ~ N, which leads to 

tn 

a( t . )  

n =  N .  

This, however,  is a contradiction, since the left-hand side is positive b y  vir tue of (18). 
The proof is complete. 

In  the following theorem, g" denotes the n-times iteration of g: 

g~ -~- t ,  g'(t) = g(g'-~(t)) , n = 1, 2, . . . .  

T~EORE]~{ 3. - (i) Suppose that g(t) ~ t / o r  t ~ a. Suppose that there is a sequence 
co t o/ numbers {t,}.= 1 such that t .  -~ c~ as n -+ co, the intervals {[g"(t~), ,]}~=1 are dis- 

joint  and 

n t  (21) p(t) ~ o o~ [g ( . ) ,  t .] 
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I] there is a constant c such that 

(22) 

t 

p(s) ds > c > - for t ~ [g~-~(t.), t~], 

g(t) 

then equation (1) is oscillatory. 

(ii) Su2pose that g(t) >= t for t >= a. Suppose that there is a seguence o] numbers 
t r ~ t ~ disjoint and (~}~=1 such that t ~ - + o o  as n-+c<~, the intervals {Its, g (~)]}~=~ are 

(23) - -p ( t )  ~ 0 on 0 Its, g"(t.)]. 

I] there is a constant c such that 

g(t) 

(24) [-- p(s)] ds > c > - ?or t e [t,, g~-~(t~)], 
e n = l  

then equation (1) is oscillatory. 

P~ooF. - We only prove the second part.  Assume the existence of a posit.rye 
solution y(t) on [to, co). Then 

y'(t) = - -p( t )y(g( t ) )  >= 0 o11 U [t~, g'( t . )] ,  

provided N is sufficiently large, so that  y(g(t)) is nondecreasing on [_J [t~, g~-~(t~)]. 

Let  t ~  [g(t~), g~-~-(t~)] be fixed and choose t* so that  

t~ ~ t* < t < g(t*) ~ g~-~(t~) 

~nd 

f f (25) [--p(s)]ds > ~  and [--p(s)]ds  >-~.  

~* t 

Integrat ing (1) over It*, t] and [t, g(t*)], respectively, and taking (23) and (25) into 
account,  we obtain 

t 

y(t) - -  y(t*) ~- f [-- p(s)] y(g(s) ) ds 

and  

C , > ~ y(g(t~)), 

~(t*) 

f y(g(t*)) - -  y(t) -= [--p(s)]y(g(s))  ds > ~ y(g( t ) ) .  

t 
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F rom the above inequalities it  follows tha t  

y(g(t)) 
(26) y(t) < - ~  on U [g(t.), g"-~(t.)]. 

On the other hand, we have 

y'(t)  = --  p ( t )y (g( t ) )  >= -- p ( t ) y ( t )  , 
c ~  

t m U [&, g"--~(t.)], 
=NI 

for some N1 > I .  Divide the ~bove by  y(t) ~nd integrat~ it over [t, g(t)]. We then  
have 

z(t) 

t 

> = e ~  t ~ U [ t ~ ,  g~-2(t~)]. 

This combined with (1) yields 

y'( t)  >= ee[-- p( t)  Jy(t) , 
c o  

t e U [ t . ,  g.-2(&)], 

f rom which we can derive the following inequal i ty  

g(t) 

t 
c o  

e~ ~ (ee)2y(t) ,  t e U [t, ,  g"-S(t,)], 

for some _~s > N1. Continuing in this manner ,  we conclude that ,  for any  integer 

> 0, there  is an integer _~ > 0 such tha t  -~ i<  I ~ <  ... < N~ and 

y(g(t))  >= (ee) y(t) , 
c o  

t e U [&, g'-~-~(t~)]. 

Since v is arbi t rary ,  it follows tha t  

. y(g(t))  
lm sup ~ --  c~ 

t-~ ~ Y(~) 

which contradicts (26). This completes the proof of the second par t  of Theorem 3. 

The first par t  can be proved similarly. 
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EXA~M_PLE 3. - Consider the equations 

(27) y'(t)+-isin(logt)y = O, 

2 
(28) y'(t) -- ~ sin (log t)y(2t) = O" 

P u t  p(t) = (2/t) sin (log t) and g(t) = t/2. I f  t~ = V ~  exp [(2~ + �89 ~], ~ = 1, 2, ..., 
then  g(g(t.)) > exp [2n~], /~(t) > 0 on [g(g(t.)), t~] and 

t~ 

fp(s) ds = 4 sin ((log 2)/2) > 1 .  
a(t~) 

So, by  (i) of Theorem 2, equat ion (27) is oscillatory. Similarly, via (ii) of Theorem 2, 

it  can be shown tha t  equat ion (28) is also oscillatory. 

EXA~IPLE 4. - I f  ]C[ > l /e,  t hen  the following equations are oscillatory: 

(29) y'(t) + c t s i n i y ( t - - { ) =  0 , 

(30) y'(t)~+ c t s i n t y ( t+  l )  = 0 , 

We first suppose e > O .  P u t  p(t) =c t s in t ,  g ( t )=t - - (1 / t )  and t ~ = [ 2 n  ~ + � 8 9  
n = 1, 2, ...- Le t  as denote  the smaller root  of the quadrat ic  equat ion in 

n~ ~ - t ~ o ~ + t .  ~ = 0 .  

I t  is easy to ver i fy  tha t  x . > l  and ~ . - > 1  as n - + o o .  Since 

k <  2 2 - - t . ~ . @ t . < 0  for l < _ k < n  

we have  

(31) > 0  

for 1 <= lc < n, provided n is large enough. We claim tha t  

(32) g~(t~) > t . - -  t~- for 1 g k ~ n .  

Since ~. > 1, (32) holds for k = 1. Assuming tha t  (32) is t rue for some k, 1 <_--/~ < n~ 
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we see with the help of (31) tha t  it  is also t rue  for k ~- 1 as follows: 

1 
g~+~(t.) = g~(t~) gTo(t.) 

t n -- 

k~n i 

tn t n -  k~n/tn 

t~ t~ t .  

Thus (32) holds~ and in par t icular  we have 

Tb0~n 
t ~ - ~  < g~(t~) < to, 

which implies tha t  

(33) lira [t~ - -  g',(t~)] = 0 .  
~--> co 

oo 

Since s i n t n =  1, we see tha t  p(t)>=O on [_J[g~(t~),t~], provided Y is sufficiently 

large. On the other  hand,  by  the mean value theorem,  we have 
t 

(34) f p(s)ds ct*sint*t for some t*e[g(t),t]. 

a(t) 

~ o t e  tha t  if t ~ [g'(t~), t~], then 

(35) g~(t~) - - -  
1 

g'(t.) ~ g(t) ~_ t* ~ t ~ Q. 

:From (33), (34:) and (35) we conclude tha t  there  exist  a constant  c ' and an integer ~ '  
t oo 

such tha t  Ip(s) ds > e' > 1/e for t e [J [g'(t~), t~]. Thus the hypotheses of (i) of The- 

orem 3 are satisfied, and so equat ion (29) is oscillatory if c > 1/e. I f  c ~ 0, then  
the same argument  applies by  taking t~ ----- [Pn ~ + ~]~. Equat ion  (30) can be ana- 

lyzed analogously. We r emark  tha t  if we apply  Theorem 2, then  we have the weaker 
conclusion tha t  (29) and (30) are oscillatory for Ic] > 1. 

3. - Equat ions  w i th  dev iat ing  a r g u m e n t s  o f  mixed  type.  

Let  us now consider equat ion (t) in which g(t) may be of mixed type.  IvA~ov 
and ~EVELO [3] have recent ly  given oscillation criteria for such an equat ion with 
one-signed coefficients. The purpose of this section is to proceed fur ther  to discuss 
the case where p(t) is oscillatory. 
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We introduce the following notatioll:  

= {t e (a, ~ ) :  g(t) > t } ,  

= {t e (a,  ~ ) :  g(t) < t } .  

The sets A and 2~ are called the advallee4 and the retarded par t  of g(t), respectively. 
I f  g(t) is of mixed type, then A and ~ are unbounded and countable unions oi 
disjoint open in terwls .  

T~tEonnZ~ 4. - (i) Suppose that _~ is unbounded and is a countable union o] disjoint 
o o  

open intervals: 5~ -~ U ( ~ ,  fl~). I / there  ,is an infinite number of intervals { ( ~ ,  fl~) ~ 
such that ~=1 

(36) p(t) >= O on ~ [~, , /3~,]  
/r 

and if 

(37) p(s) ds >= 1 
g(t~) 

/or some t~e ( ~ ,  f l~) ,  k = 1,2, . . . ,  

then equation (1) is oscillatory. 

(if) Suppose that A is unbounded and is a countable union of disjoint open 
o o  

intervals: A - ~  U(~'~, ~,~). I] there is an infinite number of intervals {(y,~, 6~)}k~=l 
such that ~= ~ 

k = l  

and if 

(39) 

~(t~) 

-- s s ~ l  
t~ 

for some tk e (y,~, ~. ,) ,  k = 1, 2~ . . . ,  

then equation (1) is oscillatory. 

PRoo~ ~. We prove the first par t  (i). Let  y(t) be a nonoscillatory solution of (1) 
which m~y be assumed to be eventually positive without  loss of generality. We 
have for sufficiently large k 

y'(t) = -- p(t)y(g(t)) ~ 0 for t e [g~, fl.~], 

so tha t  y(t) is nonincreasing on [ ~ ,  fi~]. Since g(t) is nondecreasing and g(t) -~ t 
at the endpoints ~ and fi,~, we have ~,~ =< g(t) <= fl~, for c~  ~ t ~ fl,~, and so 
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and so y(g(t)) is nonincreasing on [e~,  fl~]. An integrat ion of (1) over [g(tk), tk] 
yields, as in the  proof of (i) of Theorem 2, 

te 

o(t~) 

which is dea r ly  impossible. Thus the proof of (i) of Theorem 4 is complete. A 
parallel a rgument  applies to the proof of the second par t  (ii). 

: E X A 3 I P L ] 3  5 .  - Consider the equat ion 

(40) y'(t) --  c sin ty(t ~ sin t) = 0 ,  

where c > 0  is a constant .  Here  p(t) := -- e sin t, g ( t ) = t ~ - s i n t  and 

n = 0  

Since p(t) > 0 on s and 

~n 

p(s) ds 
~(t~) 

a = U ( (2n- -  1)z,  2n~) . 
n = l  

= c sin i 

i o r t ,  = (2n - �89 e ( ( 2 n -  1) z,  2nz~), n = 1, 2, ..., b y  (i) of Theorem 4, equat ion (40) 
is oscillatory if c > 1/sin 1. One m ay  also apply (ii) of Theorem 4 by  taking 

4. - Nonlinear equations with deviating arguments. 

We are interested in extending the previous results to nonlinear equations of 

the form 

(4) y'(t) + p(t)/(y(g(t))) = 0 

where ](y) is continuous on R and satisfies y ] ( y ) >  0 for y # 0. Here  we restr ict  
ore'selves to the case where p(t) is of one sign and extend par t  of Theorem 1 as 

follows. 

TtIEO~EI~[ 5. - (i) Suppose that p(t) > 0 and g(t) < t ]or t >> a. Suppose moreover 

that 

o o .  



~ .  ~U~_GAI - T. KUsA~o: Oscillation theory o] ]iest order, etc. 107 

I/ 

(42) 

then equation (4) is oseil~atory. 

(43) 

t 

f l imin f  p(s)ds > - ,  
t--~ oo e 

g(t) 

(ii) Suppose that p(t) <= 0 and g(t) >= t ]or t >= a. 

lira sup [y] 

/ /  
a(t) 

(44) [ -  p(8)] a8 
t 

then equation (4) is oscillatory. 

>~-, 
e 

~uppose moreover that 

PROOF. - We only prove the second par t .  Let  y(t) be an eventual ly  positive 

solution of (4). Condition (44) implies tha t  

oo 

f [--p(t)] dt -~ oo. 
ct 

Since f [ - -p( t )]dt<oo is a necessary and sufficient condition for (4) to have  a 

bounded nonoscil latory solution, it  follows tha t  l ira y(t) = co. Suppose # > O. Then~ 

in view of (43) we can choose T > a so large tha t  

(45) ](y(t)) ~ ~ y(t) for  t ~ T .  

For  each t sufficiently large there  exists a t* such tha t  t*<t<g(t*) ,  

t g(t*) 

f f (46) [-- p ( s ) ] d s  > # and [ - - p ( s ) J d s  = 2e ~- 2e 
$* t 

We let t be large enough so tha t  t* ~ T. In tegra t ing  (4) over [t*, t] and [t~ g(t*)] 
and using (45) and (46)7 we see t h a t  

t t 

t* t* 

a(t*) o(~*) 

y(g(t*)) -  y(t) -- [ -  p(s)]](y(g(s))) a~ > [ -  p(s)]y(g(~)) as > ~ y(~(t)). 
t t 
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Combining the above inequalities yields 

>1__ 
y(t) = (4ep y(g(t)) for t => T~, 

provided T~ > :T is sufficiently large. Let  

(47) o) = lim inf y(g(t)) 
~ y(t) 

Then co is finite: 1 N co ~ (4e) '2. 
We now divide (4) by  y(t) and integrate  it  over It, g(t)], obtaining 

"/'> ~ . 
(48) log y(g(t)) [-- p(s)] ds = y(t) = y(s) J [--pts)J ~ y(s) 

t t 

- -  d s ~  

Taking lower limits on both  sides of (48) and using (47), (44) and (43), we obtain 
log eo > o~/e. Bu t  this is impossible since log x ~ x/e for M1 x ~ 0. The case where 
tt----0 can be discussed similarly. Thus equat ion (4) cannot  have an eventual ly  
positive solution. Likewise, (4) has no eventual ly  negative solution. 

ExA~-e~  6. - Consider the advanced equat ion 

t ~ 

(49) y'(t) 21og(l§247 ly(2t)t] = 0 ,  

where m is a constant .  I f  we pu t  p(t) ~ -- P/2  log (1 -~ 2t), g(t) ~ 2t and ](y) = 
= y l o g  (1 + hi), thenl,,l   Y/S'(Y) = 0 a n d  

g(t) 
l im  r [ _ p ( s ) ] d s = {  c~ ( m > - l ) ,  

t 

t Ience,  by  (ii) of Theorem 5, equat ion (49) is oscillatory if m > -  1. ~ o t e  tha t  
y(t) = t is a nonoscil latory solution of (49) with m -~ -- 1. I f  m < -- 1, then  (49) 

oo 

has a bounded nonoseil latory solution y(t), since f [ - -2 ( t ) ]  dt < c~. 

R ~ A R K  1. -- Equat ions  of the form (4) with different nonlinearities have  been 

studied in IvA~ov and ~VE]~o [3], KImA~:RA and  KUSA~O [4] an(:[ SEVELO and 
IVA~OV [18]. I n  these papers a dual i ty  between the advanced and re ta rded  cases 

is clearly described. 

:RE~A~K 2. - I t  would be of interest  to obtain oscillation criteria for nonlinear 
equations of the form (4) in which the coefficient ~o(t) changes sign infinitely often 
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5. - Equations with several deviating arguments. 

Iu  this section we consider equations with severa,1 de~i~ting arguments of the 

types 
hr 

(50) y'(t) + = o,  
i = 1  

y'(t) + . . ,  = 0 ,  

where pi(t) and g~(t), 1 ~ i <_ 2~, ~re continuous on [a, oo) and lim g~(t)=-o% 
- -  ~ - - ->  c o  

1 ~ i ~  hr. The p~evious results, except Theorem 4~ for equations (1) and (4) 
ullow na~turul extensions to the above equations (50) and (51), respectively. Below 
we stute the extended versions of Theorems 1, 3 und 5. 

T]~EO~E~ 1'. - (i) Suppose that p i ( t ) ~ O  and g~(t)<=t Jor t ~ a ,  1 ~ i ~ _ ~ .  
Suppose moreover that there exists a continuous nondecreasing Junction g*(t) such 
that g~(t) <= g*(t) <= t /or t ~= a, 1<~ i <-- hr. IJ 

t 

(52) lira inf ~ p~(s)ds > e ' 
t--> oo i = 1  

g*(t)  

then equation (50) is oscillatory. I], on the other hand~ there exists a continuous non- 
decreasing Junction g.(t) such that g.(t) ~ g~(t) ]or t ~  a, 1 <_ i <_ ~V, lira g.(t) -~ oo and 

t 

f N  1 (53) ~. pi(s)ds <=- jor all suJJiciently large t ,  
i = 1  e 

a,( t)  

then (50) has a nonoscillatory solution. 

(ii) Suppose that p,(t) <= 0 and g~(t) >= t /or t ~ a, 1 <~ i <_ hr. Suppose more- 
over that there exists a continuous nondecreasing junction g.(t) such that t <= g.(t) <= 
<=g,(t) /or t >= a, 1 <- i <- hr. I /  

g,( t )  

(5g) l iminf  ~ [--p~(s)~ds >-e '  
t - + c o  i = 1  

t 

then equation (50) is oscillatory. I], on the other hand, there exists a continuous non- 
decreasing function g*(t) such that gi(t) <= g*(t) jor t ~ a, 1 <_ i <_ 5T, and 

a*(t) 

<=! (55) ~ [--p~(s)]ds Jor all suJ]iciently large t ,  
i = 1  e 

t 

then equation (50) has a nonoscillatory solution. 
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Tt[EO~E~ 3'. - (i) ~u~pose that there is a continuous nondeereasing ]unction g*(t) 
such that g~(t) <= g*(t) ~ t ]or t ~ a, 1 <-- i <_ N.  Suppose moreover that there is a se- 
quence {t~}~=~ such that t~-+c<) as n--->c~, the intervals {[(y*)"(t~), t.]}~=~ are dis- 
joint and 

(56) p,(t) ~= 0 on 5 [(g*)'(t.), t . ] ,  1 _< i _< N .  

I] there is a constant e such that 
t 

(57) ~ p~(s) ds > e > - ]or t e [(g*)~-~(t~), t~], 
i = 1  C ~ = 1  

o*(t) 

then equation (50) is oscillatory. 

(ii) ~uppose that there is a continuous nondeereasing ]unction g,(t) such that 
t ~ g,(t) <= g~(t) ]or t ~ a~ 1 <-- i ~ 2~. Suppose moreover that there is a sequence (t~}~~176 1 

n t r disjoint and such that t . - ~ o o  as n-->oo, the intervals {[t., (g,) (n)]{~=l are 

(58) --p,(t)>__O on 5 [t., (g.) ' ( t~)] ,  l<- - i<_N.  
~ t = l  

I] there is a constant e such that 
a,(t) 

5 (59) ~ [ - - p ~ ( s ) ] d s  > e > - ]or t e [ t . ,  ( g . p - ~ ( t . ) ] ,  
~=i C n=l 

t 

then equation (50) is oscillatory. 

T~rEOm~ 5'. - (i) Suppose that p(t) >= 0 and g,(t) ~ t ]or t ~ a~ 1 <-- i <_ N.  
pose moreover that ](y~ ..., Y~v) is a continuous ]unction on tU  such that 

Sup- 

(60) y l ] ( y l , . . . , y ~ ) > O  ]or y l y ~ > O ,  l < _ i < _ N ,  

and 

(61) ). = lira sup Iy1[~1 "'" [Yzr 
~,~0 l l ( y l , . . . ,  y~)l < oo 

l ~ i ~  

]or some nonnegative constants ~i, 1 ~ i <_ N~ with ~ or = 1. I] there is a continuous 
4=1 

nondeereasing ]unction g*(t) such that gi(t) ~ g*(t) g t ]or t ~ a~ 1 ~_ i <-- N~ and 

t 

o*(t) 

then equation (51) is oscillatory. 
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(ii) Suppose that 2(t) < O and g~(t) > t /or t > a, l <~ i <-- iy. Su2pose more- 
over that ](y~, ...~ Y~v) is a continuous /unction on tt ~ satis/ying (60) and 

(63) tt : l im sup TylI~I "'" ]y~ l~  < oo 
,~,i-+~ i / (yl ,  . . . ,  y~.)l 

.57 

/or some nonnegative constants fl~ 1 <_ i <_ 2~, with ~ fl~ : 1. I] there is a continuous 
{=1 

nondecreasing /unction g,(t) such that t <= g,(t) < g~(t) /or t >= a, 1 <_ i <_ N~ and 
g,( t )  

g e  

(64:) l iminf  j [-- 10(s)] ds > 
t-*co J e '  

t 

then equation (51) is oscillatory. 

The first par t  of Theorem 1' has recently been obtained by  7K:oPLATADZE and 
~A~rl~XZA [7]. Theorem 2' could easily be formulated.  These theorems can be 
proved b y  proceeding, with slight modifications, as in the proof of the corresponding 
theorems (without ~( primes ~)). The details are left to the  reader. 

EXA]gs 7. - Consider the re tarded equation 

(65) y'(t) q- ~ y  e q- 2-~ y 7 i = 0 ,  

which is a special case of (50) in which p l ( t ) =  1let, 19~(t)= 1/2et, g~(t)= tie and 
g~.(t) : t/e< One can take g*(t)= tie. Since 

t 

g*(t) 

for all t > 0, equat ion (65) is oscillatory by  (i) of Theorem 1% Note that  each of 
the  equations 

1 [ t , ~  ,~1 ~tl (~) y'(t) y , - , = o  and y ' ( t )+  y = 0  

has ~ nonoscillatory solution. 

EXA)I-PLE 8. -- Consider the equations 

(66) y'(t) + a t s i n t y ( t - - ~ ) - ~  b tcos ty ( t  2 ) : 0 ,  

(67) y'(t) ~- a t s i n t y ( t +  ~)~- b t c o s t y ( t +  2 ) :  O , 

7 - A n n a l i  d i  M a l e m a t i c a  
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where  a a nd  b are  nonzero  cons tan t s .  W i t h  r ega rd  to  (66) we can  t~ke p ~ ( t ) - ~  

= at  sin t, l~ ( t )  -~ bt cos t, g~(t) = t - -  (l/t), g~(t) -~ t - -  (2/t) and  g*(t) = t - -  (l/t). 

~ o t i n g  t h a t  
t t 

[~(s) ds = (~  + ~ ' )~  [ s cos (~-- O) ds 

g*(t) t--(lit) 

for  some 0~ 0 < 0 < 2 ~  a nd  a rgu ing  as in E x a m p l e  4 b y  t ak ing  t .  = 2n2z  § 0~ we 

conclude  f r o m  (i) of T h e o r e m  3 ' t h a t  (66) is osc i l la tory  if (a ~ § b2) ~/2 ~ 1/e. The  

same  is t rue  of equa t ion  (67). 

E x A ~ T , ~  9. - Consider  the  a d v a n c e d  e q u a t i o n  

(68) y ' ( t ) -  a t  ~ [y(2t)] ~;8 [y(4t)] ~/a--- O, 

where  a > O  a n d  m are cons tan ts .  This is a special  case of (51) in which  ] (y l ,  y~) =- 
a,1/3 al2[3 -~  ~ ~ , g~(t) = 2t ,  g~(t) = 4t a n d  iD(t) ----- - -  a t% One can  t ake  g . ( t )  = 2t. Condi-  

t ion  (63) is satisfied wi th  fl~ = 1/3~ fl~ = 2/3 and  # = 1. Since 

a . ( t )  

[ - - p ( s ) ] d s  = a l og2  (m = - - 1 ) ,  

accord ing  to (ii) of T h e o r e m  5% equa t ion  (68) is osci l la tory  for  a n y  a > 0 if m > - -  1 

or  if m - - - - - - 1  a n d  a > l / ( e l o g 2 ) .  I~ote t h a t  when  m ~ - - i  a n d  a - - - -2  -7/3 equa-  

t ion  (68) has  a nonosc i l l a to ry  solut ion y( t )  = t 2. I t  is no t  h a d  to see t h a t  if m < - -  17 

t h e n  (68) has  a b o u n d e d  nonosc i l l a to ry  solut ion.  

I~E~A~K 3. - Theorems  1% 3'  a n d  5 ' can  f u r t h e r  be e x t e n d e d  to  equa t ions  of the  

f o r m s  

y'(t) + a(t)y(t) + y~p,(t)y(g~(t)) = 0 ,  
i = l  

y'(t) + a(t)y(t) + p(t)/(y(g,(t)), ..., y(g~(t))) = o ,  

so t h a t  some of the  prev ious  oscil lation cr i ter ia  p resen ted  in the  papers  [3~ 11~ 17, 

20-23] are  covered.  
F ina l ly  we show t h a t  the re  is a class of func t iona l  differential  equa t ions  for  

which  the  oscil lat ion s i tua t ion  can  be comple te ly  charac ter ized .  

T m ~ o i r  6. - C o n s i d e r  the e q u a t i o n s  

(69) 

(70) 

y'(t) §  ~I), ..., y ( t -  ~ ) )  = o ,  

y ' ( t ) - / (y ( t  § ~1), ..., y(t + ~ ) )  = 0 ,  
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where 7fi, 1 ~_ i ~ N, are positive constants with v~ ~ ... ~ T~.. Suppose that ](y~, ..., Y~v) 
is continuous on R~'and increasing in each y~, 1 ~_ i ~ 2r and satis]ies 

(71) ](~Yl, ..., ~Y~v) : o~f(y~, ..., y~) ]or all o ~ t t  . 

Then a necessary and suHicient condition for equations (69) and (70) to be oscillatory 
is that 

(72) rain [ - - 2  ~- ](exp [~.T~], ..., exp [)~v])] > 0 .  
~>o 

PI~OOF. - Suppose tha t  (70) has u nonoscillatory solution y(t). We may  suppose 
tha t  y( t )>O for t>=to. Since, by  (70), 

y'(t) > i(y(t + T~),..., y(t ~- T~)) > o,  t >= to, 

y(t) is increasing for t =~ to, and so, using' (71) and the increasing natm'e o~ f, wehave  

](y(t ~, v~), ..., y(t ~- ~:~v)) > ](y(t), ..., y(t)) = 1(1, ..., 1)y(t) ,  

](y(t + "q), ..., y(t -~ ~ ) )  ~ / ( y ( t  ~- -q), ..., y(t + ~))  = 1(1, ..., 1)y(t + ~1), 

(73) 

(74) 

and 

(75) ](y(t + T1), ..., y(t + 7:~r <=/(y(t 7- TN), ..., y(t ~- ~ ) )  --~/(1, ..., 1) y(t + T~). 

Let  A denote the following set of positive numbers:  

A - - - - ( 2 >  0: y ' ( t ) -  2 y ( t ) > 0  for all sufficiently large t}. 

In  view of (73) we have 

o = y ' ( t ) - / ( y ( t  + u) ,  ..., y(t + ~)) 

<y ' ( t ) - - ] (1 ,  ..., 1)y(t) ,  r~=to, 

so tha t  ](1, ..., 1) e A, tha t  is, A is not  empty.  I t  can be shown that  A is bounded 
f rom above. In  fact, f rom (70) and (74) it follows tha t  

(76) y'( t)--](1,  ..., 1)y(t + ~1) ~ 0 ,  t ~ t o .  

Integrat ing (76) over the intervMs It--(~1/2), t] ~nd It, t ~-(v~/2)], we get 

t 

y ( t ) - - y  t ~ 1 ( ~ , . . . , 1 )  y (s~-T~)ds~=~](1 , . . . ,  

t - ( h / 2 )  
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and 
t + (vd2)  

y t-t- - -  y(t) >= ](1, ... ,1) y ( s+r~)ds>=-~] (1 ,  

t 

..., 1)y(t + ~ ) .  

Combining these inequalities yie]ds 

y(t) >= ~z[z~f(], ..., 1)]~y(t + T~), 

which implies tha t  the function 

y ( t  -F- ~) 
~(t )  - 

y ( t )  

is bounded for t > t o  + (v~/2). I f  n >  0 is an integer such tha t  z ~ g n v ~ ,  then 

y(t + "c~) <_ y(t -]- n~:~) 
y(t) --  y(t) --q~(t)qJ(t H- ~)  "" 9 ( t - F  ( n - - 1 ) ~ )  ' 

and so there is a constant  M > 0 such tha t  

31 (77) y(t + -c~) < M ,  t > to + 2 
y( t )  = = " 

f r o m  (70), (75) and (77) it  follows tha t  

0 = y'(t) - -  l(y(t  -]- 3i), ..., y(t + ~ ) )  

> y ' ( t ) - - f O ,  . . . ,  1 ) y ( t  + ~) 

y ( t  + ~ )  
= ~j ' ( t )  - 1 ( ] ,  ..., 1)  y(t) 

y ' ( t ) -  M](1, ..., 1)y(t) ,  

y(t) 

T~ 
t >= to + -~ . 

This shows tha t  M](1, ..., 1 ) ~ A .  Thus A is bounded from above. Consequently, 
there is a 20 > 0 such tha t  2o e A but  2o + m ~ A~ where m denotes the left-hand 
side of (72). Pu t  

z(t) = exp [-- 2ot]y(t).  

Since z'(t) -~ exp [-- Jot][y'(t) --  ~oy(t)] > O, z(t) is increasing. Using this fact, the 
increasing nature  of ] and (64), we see tha t  

o = y'(0 - ](u(t + ~1), ..., y(t + ~ ) )  

= exp [~oGZ'(t) + ~ o z ( t ) ] - / ( e x p  [~0(t + ~1)]z(t + rl), ..., exp [~o(t + ~ ) ] z ( t  + ~ ) )  
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= exp [~ot] [z'(t) § ~oZ(t) - / (exp  [;~o ~]  z(t + T~),..., exp [,~oT~] z(t + T~-))] 

< exp [2otJ(z'(t) -- [-- ~o ~- / (exp [2oT~], ..., exp [2oV~v])Jz(t)} 

=__ exp [ ~otJ[z' (t) - -  mz(t) ] 

-~ y'(t) --  (2o -~ m)y ( t ) ,  t >= to. 

This implies tha t  20 + m ~A,  a contradiction. We therefore conclude tha t  (70) 
must  be oscillatory provided (72) is satisfied. 

I f  (72) is violated, then  there is a X*> 0 such tha t  

-- ~* -[-/(exp [Z*w~], ..., exp [X*vs]) = 0 .  

The function y ( t ) =  exp [X't] is a nonoscillatory solution of (70), since 

y'(t) - / (y( t  + ~) ,  ..., y(t + ~.)) 

= ;,* exp [ ; ~ * t ] - / ( e x p  [~*(t § ~:~)], , . . ,  exp [,~*(t § v~)]) 

= exp [~* t] [ ~ * - / ( e x p  [~* ~ ] ,  ..., exp [~* T~])] = 0 .  

Equat ion (69) can be discussed analogously. This finishes the proof. 

I~]~)IAnK 4. - The linear equation with constant  coefficients and constant  devia- 
tions 

N 

(78) y'(t) ~- ~ p , y ( t -  v~) =- 0 
i = l  

is a special case of (69) (resp. (70)) satisfying the hypotheses of Theorem 6 if p~ > 0 
and v ~ > 0 ,  l ~ i _ < N ,  (resp. if p , < 0 ~  v , < 0 ,  l g i < _ 2 ~ ) .  Condition (72) then 
reduces to 

A characterization for the oscillation of (78) in the retarded case was obtained by 
TnANOV [24]. A different proof has recently be given by ~ A D A S ~  SFICAS and STA- 
V~O~A~:IS [13]. Our proof presented above is an adaptat ion by  dual i ty  of their 
method to the advanced case. We note t ha t  equations (69) and (70) may  not  be 
linear as the following example shows. 

EXA:~IPZE 10. - Consider the equations 

(79) 

(8o) 

y'(t) ~- p[y(t --  3)] m [y(t-- 6)] 2/3 ---- 0 ,  

y'(t) --2~[y(t + 3)]i/3 [y(t ~ 6)] .'/3 : 0 
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~ ~t~ ~u/~ w h e r e  p is ~ pos i t i ve  c o n s t a n t .  The  f u n c t i o n  f(y~, y~) = ~,~ ~,. ss t i s f ies  t h e  h y p o t h -  

eses of T h e o r e m  6, a n d  so these  e q u a t i o n s  a~re o sc i l l a to ry  if  a n 4  o n l y  if  

r a in  ( - -  2 -~- p exp  [52]) > O, 
,~o 

t h a t  is, p > ] /5e .  
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