Oscillation Theory of First Order Functional Differential Equations
with Deviating Arguments (%)

NOBUYOSHI FUKAGAT - TAkASI Kusano (Hiroshima, Japan)

Summary. — New oscillation criteria are established for the first order fumctional differential
equation (*) y'(t) + p(D)y({g(t)) = O and its nonlinear analogue. The resulls are presented
so that o remarkable duality existing between the case where (*) is retarded (g(t) <t) and
the case where (*) is advanced (g(t) > t) is apparent. Possible extension of the vesults for (*)
to equations with several deviating arguments is attempted. Finally, il is shown that there
ewists a class of aulonomous equations for which the oscillation situation can be completely
characterized.

Introduction.

In this paper we are concerned with the differential equation
(1) ')+ pO)y(g)) =0

and related functional differential equations with deviating arguments. Without
further mention we assume that p(f) and g(f) are continuous on [a, co), ¢(f) is non-
decreasing and lim ¢(t) = co. The deviating argument g() (or equation (1)) is said
to be retarded or advanced according to whether ¢(¢f) =<1 or g(t)= ¢ for t = a; ¢(2)
is said to be of mixed type if g(t) — ¢ changes sign infinitely often as ¢ — oc.

We restrict our attention to those solutions y(#) of equation (1) which exist on
some half-line [T, co) and satisfy sup {|y(#)|: ¢= T} >0 for any T=T,. Such
a solution is called a proper solution of (1). We make the standing hypothesis
that (1) does possess proper solutions. A proper solution is called oscillatory if it
hag arbitrarily large zeros; otherwise it is called nonoscillatory. Fquation (1) ig
termed oscillatory (resp. nonoscillatory) if all of its solutions are oscillatory (resp.
nonoscillatory).

One of the striking features of the funetional differential equation (1) i that
it may be oscillatory, though the corresponding ordinary differentizl equation
¥+ p(t)y =0 is always nonoscillatory. For example, it is known ([8], [9]) that

(*) Entrata in Redazione il 21 aprile 1983,
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the equations

(2) y'(@) +pylt—1) =0,
(3) y'({@)—pyt+1v)=0,

where p and 7 are positive constants, are both oscillatory if and only if pr > 1/e.
The oscillation of first order functional differential equations, which is generated
by the deviating arguments involved, has been studied by numerous authors; see
e.g. the papers [1-24].

Now, the examples (2) and (3) given above suggest a remarkable « duality »
existing between equations with retarded arguments and the corresponding (or
companion) equations with advanced arguments. This kind of duality has been
observed by KoprATADZE and CANTURLIIA [6] and Kusawo [8]. The objective of
this paper is to establish some new oscillation criteria for equation (1) and a non-
linear analogue of it, laying particular emphasis on the duality between the retarded
and advanced cases. We also show that a similar duality holds for differential equa-
tions with deviating arguments of mixed type. Retarded and advanced equations
of the form (1) are discussed in the first two sections; Section 1 and. Section 2 con-
cern, respectively, the case where the coefficient p(f) is of constant sign and the
case where p(t) is of variable sign. Equation (1) in which the deviating argument
g(t) is of mixed type is studied in Section 3. In Section 4 the results of Section 1
are extended to nonlinear retarded and advanced equations of the form

(4) y' () + p0)f(y(g)) =0.

Possible extension of the results regarding (1) and (4) to equations with several
arguments is attempted in the final Section 5. There it is also shown that there
is a class of autonomous functional differential equations for which a necessary and
sufficient condition for oscillation can be egtablished. Our results supplement, im-
prove, extend and unify the previous results obtained in the papers [7, 9, 11, 13, 14,
17,19, 20, 22, 23].

1. - Retarded and advanced equations with one-signed coefficients.

We begin by considering equation (1) in which the coefficient p(¢) is of congtant
sign.

THEOREM 1. — (i) Suppose that p(t) =0 and g(t) <1t for t = a. If

i

1
(5) lim inffp(s) ds >~

t—>co

g(t)
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then equaiion (1) is oscillatory. If, on the other hand,

{6) p(s)ds g% for all sufficiently large t,
a(t)

then equation (1) has a monoscillatory solution.

(il) Suppose that p(t) <0 and g(t) =1t for t=a. If
g{t)
(7 liminff[—p(s)]ds >% )

t—> o0

i
then equation (1) is oscillatory. If, on the other hand,
g(8)
1
(8) f[—P(S)]dS =-  for all sufficiently large ¢,

t

then equation (1) has a nonoscillatory solution.

ProOF. — The first part of this theorem has recently been proved by KOPLATADZE

and CANTURITA [7]. We present a proof of the second part which is dual to the

one given in [7].

Let p(t) = 0 and ¢(f) = ¢ and suppose that (1) has a nonoscillatory solution y(7).
We may assume with no loss of generality that () > 0 for ¢t = {,. From (1), ¥'(f) =

= —p(t)y(g(t)) =0, ¢ =1, so that y(t) is nondecreasing for ¢=1,. In particular,
y(9()) = y(t), t=t, and hence we have y'(1) = — p()y(9(¥) = — p()y(t), ¢ Z &, or

(9) YOyt =—p(t) for t=4,.

In view of (7) there exist constants ¢, >, and ¢ such that

g(t)
(10) f[-p(s)] ds>c>1fe for i=1,.
t

Integrating (9) over [t, g(¢)] and using (10), we obtain

o(t)
(1) y(9) 2 y(t) exp | [[— p(s)1ds]
i

= eyt Zeylt), 12t

where we have used the inequality ¢” = ez for # = 0. From (1) and (11) we have

y'(t) =z ec[—p@®)]ylt), t=t,.
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Dividing this inequality by y(f) and integrating over [i, g(¢)] yields
g(t)
¥(9(0) Z y(t) xp [eo[T— p(s)) ds]
t

e y(t) = (e0)?y(t), 1=t

v

Now, combine this with (1), divide the resulting inequality by ¥(f) and integrate
from ¢ to g(t). Continuing this process, we conclude that, for any integer » > 0,

Y(9@) = (eeyy(t), t=t.

Since e¢ > 1 and v is arbitrary, it follows that y(g(t)) = oo for any ¢{=1#,, a con-
tradiction. Thus, equation (1) cannot have a nonoscillatory solution if (7) is satisfied.

Next, suppose that (8) holds for ¢ =14,. Let ¥ denofe the set of all continuous
funetions y(f) which are continuous and nondecreasing on [#,, oo) and satisfy the
following inequalities:

1=y =exp[o ﬁ—p(s)] as},

Y is a non-empty, closed and convex subset of the locally convex space C[ty, 0o)
of continuous functions on [f,, oo) with the topology of uniform convergence on
compact subintervals of [#,, co). Define the operator @: Y — ([t,, co) by

i
(12) Dy(t) = exp( f [—p(s)]y—(y“’((s—?) ds).

to

It is a matter of simple computation to show that @ is a continuous operator
mapping Y into a compact subset of ¥. Therefore, by the Schauder-Tychonoff
fixed point theorem, @ has a fixed point ¥ in ¥, and we see that thig fixed point
y = y(?) is a nonoscillatory solution of equation (1) on [f,, oo). This completes the
proof.

ExaMpLE 1. — Consider the equations

(13) _ y'(t) + at"y(logt) =0,

(14) y'(t)— aty(e) =0,

where a >0 and o are constant. If we put p(f) = at* and g(f) = logt, then we
have

(e=—1),
(e<<—1),

=

=
3
=

=y

o

I

ey
<o
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and if we put p(f) = — at* and g(¢) = ¢, then we have
o(t)
. X _J oo (xz=z—1),
filﬁf[ pls)]ds ”{ 0 (< —1).

From Theorem 1 it follows that equations (13) and (14) are oscillatory for any
a>0 if and only if x= — 1.

ExaMpLE 2. - Congider the equations

(15) y'(t) + aty (t—%) 0,

I

1
(16) vt —aty(1+3) =0,
where a > 0 is a constant. Since
¢ t+(1/8)

lim asds = lim asds = a,
f—> o0 {—> 00

t—(1/t) 11

(15) and (16) are oscillatory if a > 1/e¢, and have nonoscillatory solutions if a < 1/e.

2. — Retarded and advanced equations with oscillating coefficients.

Very recently, LADAS, SF1cAS and STAVROULAKIS [14] have established criteria
for oscillation of differential equations of the ferms

Yy +p)it—7)=0,
Yy +pMyt+7) =0,

where 7> 0 is a constant and p(f) may change sign as ¢ — co. To the best of the
authors’ knowledge, they seem to be the first who discovered effective oscillation
criteria for functional differential equations with oscillating coefficients. Our purpose
here ig to extend their results to the case where g(¢) is a general retarded or advanced
argument.

THEOREM 2. — (i) Suppose that g(t) =1t for t = a. Egquation (1) is oscillatory if
there exists a sequence of numbers {t,}>° | with the following properties: t, —co as
n — o0 the intervals {{g(g(t,)), 1,1}, are disjoint;

oo

17 p)=0  on Ulglgtn), .15

n=1
tﬂ
(18) fp(s)dsgl for n=1,2, ...

7(tn)
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(i1} Suppose that g(t) =t for t = a. Equaiion (1) is oscillatory if there ewists a
sequence of numbers {1}, with the following properties: i, — oo as n — co; the
intervals {[t,, g(9(t,))]},>, are disjoint;

[es]

0 on Ut g(gt))];

n=1

v

(19) —p(d)
a(tn)
(20) ﬁ-p(s)]dsgl for m=1,2, ...

in

Proor. — We only prove the first part. The proof of the second part proceeds
by duality. Suppose to the contrary that (1) with p(t) = 0 and ¢(¢{) =< ¢ has a non-
oscillatory solution y(t). We may assume that y(t) > 0 for t=1{,. Since, by (17),

provided N is sufficiently large, y(f) is nonincreasing on U[g(g(%s)), t.], and so
o =N
y(g(t)) is nonincreasing on UI[g(t.), t.]. Integrating (1) from ¢(t,) and ¢, and using
n=N
the nonincreasing nature of y(g(¢)), we get

for » = N, which leads to
tﬂ

yit) +y(otn))] [Pl ds—1] <0, nzF.

g(ta)

This, however, is a contradiction, since the left-hand side is positive by virtue of (18).

The proof is complete. :
In the following theorem, g» denotes the n-times iteration of g:

Py=t, gt)=glg®), n=1,2,...

THEOREM 3. ~ (1) Suppose that g(t) < ¢ for t = a. Suppose that there is a sequence

of numbers {t,}2°, such that t, — oo as n — oo, the intervals {{g"(%,), t, 1}, are dis-
joint and

(21) pz0  on  Ulg*(ta), ta] -
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If there is a constant ¢ such that

2

‘1 o0
(22) fp(s)ds > >§ for  te U (g7 (), tal,
n=1
g(t)

then equation (1) is oscillatory.

(if) Suppose that g{t) =t for t = a. Suppose that there is a sequence of numbers
{tatny such that t, —oo as m — oo, the intervals {[t,, g"(t,)}>2, are disjoint and

(23) —p()=0 o U [Eny gn(t2)] -
fn=1
If there is a constant ¢ such that
a(t) 1
(24) [esenas=e=t jor ve [t e,
ne

i

then equation (1) is oscillatory.

Proor. — We only prove the second part. Assume the existence of a positive
solution y(f) on [¢;, co). Then

y(ty=—p@®ygt) =0 on U, g,

n=N
provided N is sufficiently large, so that y(g(t)) is nondecreasing on {J[t,, 9" 1(t.)].
=) n=N
Let teUlg(t.), g"2(£,)] be fixed and choose t* so that
n=N

t SR <t << g(t*) < gt

and
¢ a(t*)

(25) f[—p(s)]ds >7  and f[—p(s)]ds > g

i* i
Integrating (1) over [t*,¢] and [¢, g(t*)], respectively, and taking (23) and (25) into

account, we obtain

I3
y (&) — y(t¥) =f[— p(s)1y(g(s)) ds > g y(g(t*)),
and )
a(t*)

wlat64) =) = [ = o) 1ulote)) 5 > algto).
t
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From the above inequalities it follows that

(26)

4 [ole)
<';}—2 on U [g(t), 97201 .
n=N

y(t) = — 2O u(g®) = — 2Oy, 1eUlt, g-2t)],

n=N;

for some N, > N. Divide the above by y(¢) and integrate it over [t, g(t)]. We then
have

o(t)

y(90) 2 yt0) exp [ [[—p(s1]ds)

> eyt eey®), 1€Uh, 901
n=Ny

This combined with (1) yields

Y0 = ool—pIy(D), 1€ Uk, 01,

n=N

from which we can derive the following inequality

g{8)

9(9(®) 2 y(t) exp [eo[ 1~ p(s)] as]
13
Z ey(t) = (e0)*y(t),  teUlh, g"2(t)],
n=DN,

for some N,> N,. COontinuing in this manner, we conclude that, for any integer
» > 0, there is an integer N¥,> 0 such that N;<N,<..< N, and

y(g(t) = (ecyy(t), teUlts, g7 2(ta)] .

n=Ny

Since » is arbitrary, it follows that

: y(g®)
i sup =gy = o

which contradicts (26). This completes the proof of the second part of Theorem 3.
The first part can be proved similarly.
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BExavmpLE 3. — Consider the equations

(21) y't)+ 2 sin <1ogt>y(§—) —o,
(28) y'(%) ——%sin (logt)y(2t) =0~

Put p(t) = (2/t) sin (log?) and g(t) =1#/2. If t,=V2exp[(2n+ =], n=1,2,..,
then g(g(t,)) > exp [2na], p(t)>0 on [9(g(ts)), t.] and

tn

fp(s) ds = 4 sin ((log2)/2) > 1.

g(tn)

So, by (i) of Theorem 2, equation (27) is oscillatory. Similarly, via (ii) of Theorem 2,
it can be shown that equation (28) is also oscillatory.

EXAMPLE 4. — If |¢| > 1/e, then the following equations are oscillatory:
. 1
(29) y'(t) + ot smty(t_;)—_: 0,
- . 1
(30) y'(t)+ ¢t sin ty(t + Z) =0,

We first suppose ¢> 0. Put p(f) = otsint, g(t) =t — (1/t) and ¢, = [202 | §]=,
n=1,2,... Let «, denote the smaller root of the quadratic equation in «

e’ — i 412 =0.
It is easy to verify that «,>1 and «,—>1 as n->oco. Since
kog, —thee, +12 <0 for 1Sk<m,

we have

oy 1 — ko2 4+ 2o, —12

Ty R N - iy T S

(31)
for 1 < k< n, provided » is large enough. We claim that
(32) g (t,) > t,— — for 1£kEEn.

Since a, > 1, (32) holds for k= 1. Assuming that (32) is true for some k, 1 =k < n,
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we gee with the help of (31) that it is also true for &k - 1 ag follows:

B1(,) = gF(1,) ——
g la) = 9¥) — s
o 1

ta  Tn— kotuft,

kon otn (B +1)a,

el

2 tn

> by —

> by

Thus (32) holds, and in particular we have

neL,
tn_T < gn(tn) < tn )
n

which implies that

(33) lim [t, — g"(t)] = 0 .

> 00

Since sint, = 1, we see that p(t) =0 on U[g"({,), t.], provided N is sufficiently
n=N
large. On the other hand, by the mean value theorem, we have
3

(34) f p(s) ds
g(t)

ot* gin 1*

; for some t*e&{g(?),?].

Note that if ¢ e [¢g*(f,), £,], then

(35) Pltn) = S g S S L,

From (33), (34) and (35) we conclude that there exist a constant ¢’ and an integer N’

i ©o

such that fp(s) ds> ¢ >1fe for telJ[g"(t,), t,]. Thus the hypotheses of (i) of The-
g() a=N"'

orem 3 are satisfied, and so equation (29) is oscillatory if ¢ > 1je. If ¢<C 0, then

the same argument applies by taking ¢, = [2n? + §]@. Equation (30) can be ana-
lyzed analogously. We remark that if we apply Theorem 2, then we have the weaker
conclusion that (29) and (30) are oscillatory for [¢| > 1.

3. — Equations with deviating arguments of mixed type.

Let us now consider equation (1) in which g(f) may be of mixed type. IVANOV
and SEvELO [3] have recently given oscillation criteria for such an equation with
one-signed coefficients. The purpose of this section is to proceed further to discuss
the case where p(f) is oscillatory.
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We introduce the following notation:

A= {te (e, c0): glt) >1},
R={te(a,c0): glt) <<t} .
The sets & and R are called the advanced and the retarded part of g(i), respectively.

If g() is of mixed type, then A and R are unbounded and countable unions of
disjoint open intervals.

TuEOREM 4. — (i) Suppose that R is unbounded and is a countable union of disjoint

open intervals: R = U(an, fa). If there is an infinite number of intervals {(o,., Bu)}res
such that n=1

(36) p®=0  on U ldn, fa]
k=1
and if
173
(37) J.p(s) ds=1  for some t,€ (otn,, fu,), k=12, ...,

o{tx)
then equation (1) is oscillatory.
(ii) Suppose that A is unbounded and is a countable union of disjoint open

intorvals: #& = U (ya, 0a). If there is an infinite number of intervals {(y,,, 6, )},
such that n=1

(38) "P(t) é 0 on U [Vnkv 611,,]
Ee=1
and if
] a(tx)
(39) [r=p(eNdsz1 or some te(rn,, 00), B=1,2, ...,

L
then equation (1) is oscillatory.

Proor. We prove the first part (i). Let y(f) be a nonoscillatory solution of (1)
which may be assumed to be eventually positive without loss of generality, We
have for sufficiently large k

Y = “‘p(t)y(g(t)) =0 for te [etn, s ﬁnk] ’

so that y(#) is nonincreasing on [w«,,, f,]. Since g(¢) is nondecreasing and g(t) = ¢
at the endpoints «,, and f,, we have On, = g(1) = B, for a, £t< P, and so
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and so y(g(¢)) is nonincreasing on [6n,s Bn,]. An integration of (1) over [g(1,), t:]
yields, as in the proof of (i) of Theorem 2,

i

y(t) +9(g)] [pioras—1] <o,

o(te)

which is clearly impossible. Thus the proof of (i) of Theorem 4 is complete. A
parallel argument applies to the proof of the second part (ii).

ExamMpLE 5. — Congider the equation

(40) y'(§) —esinty(t -sing) =0,
where ¢> 0 is a constant. Here p(f) = —¢sint, g(t) = ¢ -+ sin¢ and
A= (2nm, 2n + 1)7) , R=U(@2n—1)x, 2nz) .
=0 n=1

Since p(t) >0 on R and
tn
fp(s) ds=¢sinl
o(tn)

for t, = (2n— $)me ((2n—1) m, 2nz), n =1,2,..., by (i) of Theorem 4, equation (40)

is oscillatory if ¢> 1/sin1. One may also apply (i) of Theorem 4 by taking
by = (2” + %) 7.

4. — Nonlinear equations with deviating arguments.

We are interested in extending the previous results to nonlinear equations of
the form

(4) y' (1) + 20 (y(91)) =0

where f(y) is continuous on R and satisfles yf(y) > 0 for y = 0. Here we restrict
ourselves to the case where p(f) is of one sign and extend part of Theorem 1 as
follows.

THEOREM 5. — (i) Suppose that p(t) = 0 and g(t) <t for t = a. Suppose moreover
that

, e _lyl
(41) A = lim sup a5y -
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If

|1

(42) lim inffp(s) ds > %,
f-> 00

o{t)
then equation (4) is oscillatory.

(il) Suppose that p(t) =0 and g(t) =1t for t = a. Suppose moreover that

, Y]
43 =limsup ——<<co.
(#3) # lwl—>oop !f(?/)!
If
g(t)
(44) lim inff[— p(s)]ds > f‘—; :
t—oco

7)hen equation (4) is oscillatory.

Proor. — We only prove the second part. Let y(f) be an eventually positive
solution of (4). Condition (44) implies that

o

[r—pmat=oco.
a
Since f[—— p()]dt<<co is a necessary and sufficient condition for (4) to have a
a
bounded nonoscillatory solution, it follows that tl_lglc y(t) = oco. Suppose u > 0. Then,

in view of (43) we can choose T > a so large that

(45) f(y(t))gélpy(t) for t=T.

For each t sufficiently large there exists a t* such that t*<<t<Cg(t*),
¢ o(i*)

46 — Sl — =£,

(46) [ponazle ma [poszs

t‘

4

We let ¢ be large enough so that ¢* = T. Integrating (4) over [t*,¢] and [t, g(t*)]
and using (45) and (46), we see that

|4 i
v =) = [ = pf{o(00) a5 = 5 [ = pio1ulow) ds = 5 olote)
i t*

2(i*) o(i*)
o) —(t) = [ = poloe) as = oL [ 1 putate) as = 1 lat0)

¢ ¢
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Combining the anO Ve inequa'lities yields
= ( | )2 ik = 41y

provided 7T, > T ig sufficiently large. Let
y(g(®)

47 w = liminf —=—~
( ) {—>oo ?/(t)

Then w is finite: 1 < w < (4e)%
We now divide (4) by %(¢) and integrate it over [¢, g(t)], obtaining

o(t)

a(t)
o ede®) o Hew) T () vew)
us)  log 00 ! o6 o s tf P St e

Taking lower limits on both gides of (48) and using (47), (44) and (43), we obtain
log w > w/e. But this is impossible since log # < x/¢ for all x> 0. The case where
u =10 can be discussed similarly. Thus equation (4) cannot have an eventually
positive solution. Likewise, (4) has no eventually negative solution.

ExAMPLE 6. — Consider the advanced equation

(49) V0 — o Y20 s [1+ 2] =0,

where m is a constant. If we put p(f) = — t*/21og (1 + 2t), g(¢) = 2¢ and f(y) =
= ylog (1 + [y]), then lim y/f(y) = 0 and

y|—>o0
o(f)
lim f[—— p(s)]ds =

{—>c0

co (m>-—1),
{O (m=-—1).

Hence, by (i) of Theorem 5, equation (49) is oscillatory if m > —1. Note that
y(t) =t is a nonoscillatory solution of (49) with m = — 1. If m <—1, then (49)

has a bounded nonoscillatory solution y(t), since f[— p(t)] dt < oo.

REMARK 1. — Equations of the form (4) with different nonlinearities have been
studied in Ivaxov and SEvELO [3], KITaMURA and KusaNo [4] and SEVELO and
Ivaxov [18]. In these papers a duality between the advanced and retarded cases
is clearly described.

REMARE 2. ~ It would be of interest to obtain oscillation eriteria for nonlinear
equations of the form (4) in which the coefficient p(f) changes sign infinitely often
as ¢t — oo,
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5. — Equations with several deviating arguments.

In this section we consider equations with several deviating arguments of the
types

N
(30) ¥ + Tpylodn) =0,
(51) y'(®) -+ 2O (H(0:(0), -0, y(g5(1)) = 0,

where p,(t) and g,(t), 1< i< N, are continucus on [a, co) and }Lrglo g:(t) = oo,
1< i< N. The previous results, except Theorem 4, for equations (1) and (4)
allow natural extensions to the above equations (50) and (51), respectively. Below
we state the extended versions of Theorems 1, 3 and 5.

THEOREM 1. — (i) Suppose that p,(1)=0 and g(t) =1 for t=za, 1=i=N.
Suppose moreover thal there ewisis a continuous nondecreasing function g¢*(t) such
that g,(0) < g*(@) <t for t=a, 1Si=N. If

) 1
(52) hminff > pids)ds > -
1

{—>o0 j==
o*(t)

then equation (B0) is oscillatory. If, on the other hand, there exists a continuous non-
decreasing function g.(t) such that g.() < g,(t) for t=za, 1SiE N, hm gx(t) = oo and

1
(53) 2 pis)ds == for all sufficiently large t,

then (50) has a nonoscillatory solution.

(ii) Suppose that p,(t) <0 and g,(t) =t for t=a, 1<i =< N. Suppose more-
over that there ewisis a continuous nondecreasing function ¢.(f) such that t = g.(t) =
<gt) for 12 a, 1S i< N. Ij

7x(t)

x 1
(54) lim inf f 2 (s)]ds >

t—o0

13

then equation (BO) is oscillatory. If, on ithe other hand, there evists a continuous non-
decreasing function g*(t) suech that g.(t) < g*(t) for t=Za, IS={< N, and

‘(t) 1
(65) f z [—ps)]ds = < = fjor all sufficiently large t,

then equation (b0) has a monoscillatory solution.
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THEOREM 3'. — (i) Suppose that there is o continuous nondecreasing function g*(t)
such that ¢;(t) S g*(t) <t for t=a, 1 = i< N. Suppose moreover that there is a se-
quence {t,}:°, such that t, —oco as n — oo, the intervals {[(g%)"(%,), 8,1}, are dis-
joint and

(56) p)z0 on  Ulg"(t)s 1], 1SISN.

If there is a constant ¢ such that

(57) f

9* (1)

8)ds > ¢ >% for  te J [g*)" ) tal,

b Mz

then equation (50) is oscillatory.

(ii) Suppose that there is a continuous nondecreasing function ¢.(t) such that
1< 0:(0) = g,00) for t=a, 1S i< N. Suppose moreover that there is a sequence {15,,};‘;1

such that t, oo as n — oo, the intervals {[t,, (9+)"(%,){;>, are disjoint and
(58) ~p)20 on  Ulh, (g)(t)], 1SS N,
=1

If there is a constant ¢ such that
a*(t)

(59) f Spods > o>y for e U e (g1,

then equation {50) is oscillatory.

THEOREM 5'. — (i) Suppose that p(t)= 0 and g,(t) =t for t=za, L4 N. Sup-
pose moreover that f(yy, ..., Yy) s a continuous function on RY such that

(60) Y1/ Y1y s Yn) >0 for 4y, >0, 1<is N,
and
61 A ==limsu M< o)
o seon? 04 s ]
1Sis=N
N
for some nonnegative constants a;, 1 < i = N, with > o; = 1. If there is a continuous
i=1

nondecreasing function g*(f) such that g,) < g*t) <t for t=a, 1=¢< N, and
|3

(62) liminffp(s) ds > %,
oo

g*{(t)

then equation (B1l) is oscillatory.
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(i) Suppose that p(t) < 0 and g,(t) =1t for t=a, 1=e¢=N. Suppose more
over that f(yy, ..., Yn) 98 @& continuous function on RY satisfying (60) and

9172 ... [Yxlgy
(63) 4 = lim sup 5— << 00
|wi]~> o0 ;fyly [ yN)l
1SiEN
N
for some nonnegative constants f;, 1 < i< N, with 3 f; = 1. If there is a continuous
i=1

nondecreasing function g¢.(t) such that t = g.(t) < g:(t) for t=a, L<i= N, and
g4 {t)
(64) liminff [— p(s)]ds > ﬁe ,

{~—> o0

¢
then equation (Bl) is oscillatory.
The first part of Theorem 1’ has recently been obtained by KopPLATADZE and
CANTURLIA [7]. Theorem 2’ could easily be formulated. These theorems can be

proved by proceeding, with slight modifications, as in the proof of the corresponding
theorems (without « primes»). The details are left to the reader.

Exampre 7. — Consider the retarded equation

(65) v +59(5) + 50 () =0

Whlch is a special case of (50) in which p,(t) = 1/et, p,(t) = 1/2¢t, g,(t) = ¢/e and
gx(t) = t/er. Ome can take g*(f) = t/e. Since

t

f [91(5) -+ Pals)] ds = 2% -

)

!

for all £> 0, equation (65) is oscillatory by (i) of Theorem 1’. Note that each of

the equations
1 /1 1 ]
/ t —_— — = ! t | frd
y()+ety(e) 0 and y()+ m@’( ) 0

has a nonoscillatory solution.

ExAMpPLE 8. — Consider the equations
. 1 2
(66) y'(t) + atsmty(t—;)—}—bt costy(t—?)_—_ 0,

(67) y’(t)—[—atsinty(t—f—%)—}— bteosty(t—]-%):

7 = Adnnali di Matematica
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where ¢ and b are nonzero constants. With regard to (66) we can take p,(t) =
=atsint, p(f) =Dbicost, g(f) =1t— (1/f), ¢,(8) ==1— (2/i) and ¢*@) =1 — (1/5).
Noting that

[4 i

fp(s)ds = (a? 4 bz)llﬂfs cos (s — ) ds

g*(t) t—(1/1)

for some 6, 0 <0< 27, and arguing as in Example 4 by taking {, = 2n*x + 0, we
conclude from (i) of Theorem 3’ that (66) is oscillatory if (a® 4 b2)¥2>1je. The
gsame is true of equation (67).

ExAamprE 9. — Congider the advanced equation
(68) Y (t) — atm [y (2O [y (4] = 0,

where a > 0 and m are constants. This is a special case of (51) in which f(y, ¥.) =
= Yyl g.(t) = 21, gy(t) = 4¢ and p(f) = — at™. One can take g,(¢) = 2¢. Condi-
tion (63) is satisfied with f; = 1/3, f. = 2/3 and p = 1. Since

2. (£)

| oo (m>—1),
J‘[——p(s)]ds—-{ alog2 (m=—1),

t

aceording to (ii) of Theorem 5', equation (68) is oscillatory for any a>0if m>—1
or if m = —1 and &> 1/(elog 2). Note that when m = — 1 and a = 2-7% equa-
tion (68) has a nonoscillatory solution y(f) = ¢2. It is not had to see that if m<—1,
then (68) has a bounded nonoseillatory solution.

REMARK 3. — Theorems 1/, 3’ and b’ can further be extended to equations of the
forms

N
y'(0) + alyt) + Zp0v(e) =0,
¥'() + a®y®) + pOH{y(@:0); - 9(gx(®)) =0,

so that some of the previous oscillation criteria presented in the papers [3, 11,17,

20-23] are covered.
Finally we show that there is a class of functional differential equations for

which the oscillation situation can be completely characterized.
THEOREM 6. — Consider the equations

(69) y'(t) + f(?/(t"“ Ty)y vy Y(E— TN)) =0,
(70) Y —Hy+ 7)oy gt + 7)) =0



N. FuraGar - T. Kusaxo: Oscillation theory of first order, efo. 113

where 1, 1 L1 < N, are positive constants with 1, = ... < Ty. Suppose that f(yy, ..., ¥x)
is continwous on RY and increasing in each y;,, 1 <{=< N, and satisfies

{71) floyrs ooy ) == of (Yr, ooy Yw)  for all x€R.

Then a necessary and sufficient condition for equations (69) and (70) fo be oscillatory
18 that

(72) I}’lin [— 2+ flexp [A7y], ..., exp [A74])] > 0.
z0

Proor. — Suppose that (70) has a nonoscillatory solution 4(¢). We may suppose
that y(t) >0 for t=1%,. Since, by (70), '

YO>HyE+ )y ooy gt F 7)) >0, =1,
y(t) is increasing for ¢t = ¢,, and so, using (71) and the increasing nature of f, wehave

(73) f(?/(t + Ty ey Y+ TN)) >f(y(t)a cey y(t)) = f(ly s 1)yl ,
(74) f(flj(t + 7a)y ey TN)) = f(:t/(i + T1)g ey Y&+ 771)) =1, ..., Byl + ),

(78)  F(y(t 4 7y ooy 9(E + 7)) SHYE A+ T0)y ooy 9E+ 7)) = (L, ey Dyl 4 70) -
Leti A denote the following set of positive numbers:
A={1>0: y'(t) — Ay(t) > 0 for all sufficiently large #} .

In view of (73) we have

0 :vy,(t) “f(@/(t T T1)s ey y(t -+ TN))
<y'(t)—11, ..., Ly, r=ty,

so that f(1, ..., 1) e/l, that is, A is not empty. It can be shown that A is bounded
from above. In fact, from (70) and (74) it follows that

(76) y/(t)'—f(ly-"71)?/“‘{‘71)20; t=1,.

Integrating (76) over the intervals [t — (7,/2), ¢] and [¢, ¢ + (74/2)], we get
i

y(t)—y(t—ffél—)g 1, ., 1) f@/(s 4+ Tl)dsggf(l, - 1)y<t+ ;—1),

t—(14/2)
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and
b+ (71/2)

y(t +f2-1)-—y(t)gf(1, ey 1)fy(s + rl)dsé:;—‘f(l, ey 1)yt 4+ 7).

¢

Combining these inequalities yields

y() = %[Tlf(:h e DPy(E+ 1),

which implies that the function

Yt 4+ 1)

7O ="

is bounded for ¢ =1y -+ (7,/2). If n> 0 is an integer such that 7y < nr,, then

Yyt 4 7y) _y(t + n7y)
y(t) y(t)

IA

=)ot + ) ... p(t + (n —1)7),

and so there is a constant M > 0 such that

(1) WL <, 12442,

y(®)
From (70), (75) and (77) it follows that

0=y'(t) — fy(t + 71); ooy Y(E+ 73))
=y () —f(1, ..., 1)yt + 7x)

ym—ﬂLmJﬂ%%@mn

y'(t) — Mf(1, ..., D)y(t) , tg%+§.

i

W%

This shows that Mf(1,...,1)¢ 4. Thus A is bounded from above. Consequently,
there is a 1, > 0 such that A, A but 4, + m ¢ A, where m denotes the left-hand
side of (72). Put

2(t) = exp [— A tly(t) .

Since #'(t) = exp [— Ltl[y (1) — Ay(®)] >0, 2(¢) is increasing. Using this fact, the
increasing nature of f and (64), we see that

0=y9'(t) =y + ) ..., y(t + 7x))
- = exp [Atl[#'(t) + Ao2(t)] — F(exp [Aolt -+ 71)12(E 4 72); +.vy €XD [Ao(f + Ta)]2(E 4 7))
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= exp [Aot][#'(t) 4 Ao(t) — f(eXP [AoT1]2(t + 71); -, €XP [Ag 7] 2(2 - TN))]
< exp [lot]{z’(t) —[—+ f(exp [AoTd]; -.r, €XD [;"OIN])]Z(t)}
= exp [4,1][2' () — ma(?)]
=y'{l)— (A +myt), t=t.
This implies that 1,4 m e, a contradiction. We therefore conclude that (70)

must be oscillatory provided (72) is satisfied.
If (72) is violated, then there is & A* > 0 such that

— A* - flexp [A*Ty], ..., exp [A*74]) = 0.
The function y(f) = exp [A*t] is a nonoscillatory solution of (70), since
YO = Y0+ 72y veey Y+ 7))
= J* exp [A¥1] — f(exp [A*(¢ 4 )], ,.., exp [A¥(t + 7x)])
= exp [A*f][1* — f(exp [A* %], ..., exp [A*74])] =0 .
Equation (69) can be discussed analogously. This finishes the proof.

REMARK 4. — The linear equation with constant coefficients and constant devia-
tions

N
(78) y'(®) +§1pty(t— 7)) =0

is a special case of (69) (resp. (70)) satisfying the hypotheses of Theorem 6 if p;>0
and 7,>0, 1=i< N, (resp. if p, <0, 7;<<0, 1<¢< N). Condition (72) then
reduces to

N N
min [—-—Z + ¥ p;exp [)m]] >0 [resp. min [—-/1— > p.exp[— An]] > 0] .
j=1 i=1

A0 220

A characterization for the oscillation of (78) in the retarded case was obtained by
TrAMOV [24]. A different proof has recently be given by LADAS, SFIcAs and STA-
VROULAKIS [13]. Our proof presented above is an adaptation by duality of their
method to the advanced case. We note that equations (69) and (70) may not be
linear as the following example shows.

ExAmpLE 10. — Consider the equations

(79) ¥+ ply(t—3)123 [y(1— 6)]¥* =0,
(80) y'(8) — ply(t + )13 [y(t 4 6)]2 =0,
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where p is a positive constant. The function f(y,, y,) = py®y¥® satisfies the hypoth-
eses of Theorem 6, and so these equations are oscillatory if and only if

min (— 4 -+ p exp [51]) >0

iz20

that is, p > 1/be.
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