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OSCILLATIONS IN A DELAY-LOGISTIC EQUATION*

By

K. GOPALSAMY

Flinders University of South A ustralia

Summary. Sufficient conditions are derived for all nonconstant nonnegative solutions of
the equations of the form

^jp- = - E bjx(t ~ tj)

and

= x(t)(a-bj k(t — s)x(s)ds
dxjt)

dt

to be oscillatory about their respective positive steady states. The results are complemen-
tary to those in [15].

1. Introduction. Consider a nonlinear (delay-logistic) equation of the form

= x(ojo - £ bjx{t ~ t7)J, /> 0, (1.1)

where a, bj, t- (j = 1,2,...,«) are positive constants. Equation (1.1) denotes a generali-
zation of the equation

^p- = rN(t)[K-N(t-r)]/K, (1.2)

in which r, K, r are positive constants. By a change of variables (1.2) can be put in the
form (1.1) with n = 1. It has been suggested by Hutchinson [22] and Wangersky and
Cunningham [42] that (1.2) can represent the dynamics of a single-species population
system growing with a constant reproduction rate r toward a saturation level K, the term
[K - N(t)]/K denoting a feedback mechanism which takes t units of time to respond to
changes in the population size. Cunningham [5] indicated that (1.2) can be used to
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describe certain control systems and suggested that similar equations can also be used in
economic studies of business cycles. A number of authors (May [30], Maynard Smith [31],
Pielou [35]) have discussed (1.2) with respect to its potential application in mathematical
ecology, especially concerning the dynamics of single-species population systems. By
means of a change of variables (1.2) can be brought to an equation of the form

= -ay(s - l)[l +>>(*)] (1-3)

(for some constant a > 0), which has also been studied by several authors, notably Jones
[23, 24], Wright [43], and Kakutani and Markus [25].

Autonomous ordinary differential equations with delayed arguments have been used in
modeling epidemics (Waltman [41]), fish populations (Walter [40]), blowfly populations
(Taylor and Sokol [39], Perez et al. [36]), survival of red blood cells (Chow [3]),
neurophysiology (Hadeler and Tomiuk [18], an der Heiden [20]), respiratory and hema-
topoietic disorders (Mackey and Glass [29]), physiology of breathing (Grodins et al. [17]),
supply and demand in economics (Francis et al. [12]), biological immune response (Dibrov
et al. [8]), and heat exchangers (Fowler [11] and Friedly and Krishnan [13]).

Recently some authors (Claeyssen [4], Stech [38], Nussbaum [34], Braddock and Van
den Driessche [2], Hale [19]) have considered delay differential equations with two delays.
The existing literature on scalar equations with two delays is mainly concerned with the
derivation of conditions for the loss of linear stability of a steady state leading to a
Hopf-type bifurcation to oscillations. While a study of (1.1) for an arbitrary positive
integer n is of mathematical interest, there is some evidence of a need to study (1.1) with
at least n = 3; for instance, Kitching [26] has indicated that a model of the dynamics of
the Australian blowfly Eucilia cuprina must have three delays. We note that even in the
case of linear scalar equations with three or more delays, few global characteristics of the
equations are known which are valid for all possible values of the delay parameters due to
the complex transcendental nature of the related characteristic equation. The situation in
nonscalar systems is quite different, depending on how the delays appear in the equations
(Gopalsamy [15, 16]).

It is intuitively clear that if all the delays in (1.1) are sufficiently small then the
asymptotic behaviour as t -* oo of positive solutions of (1.1) is similar to that of an
equation without delays; this aspect has been investigated by the author [15] and sufficient
conditions have been derived for the global asymptotic stability of the positive steady state
of (1.1) along with conditions for (1.1) to be nonoscillatory. It is our principal concern in
the following to derive sufficient conditions for all the realistic solutions (i.e., nonconstant
and nonnegative solutions) of (1.1) to be oscillatory about a steady state. Since fluctuating
populations are susceptible to extinction due to sudden and unforeseen environmental
disturbances, a knowledge of the conditions under which populations fluctuate indefi-
nitely will be of some use in planning and designing control as well as management
procedures.

It has been argued in the literature on mathematical ecology that continuously distrib-
uted delays are more appropriate than discrete delays as in (1.1) or (1.2) (see, for instance,
May [30], Cushing [6]). Accordingly, we will also consider in the following the oscillatory
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nature of a scalar integrodifferential equation of the form
dx(t)

dt — x(t)(a — bj k(t — i)x(i) ds >, t > 0, (1-4)

where a, b are positive constants and k corresponds to a "delayed weighting kernel"
representing the manner in which the past history of the species influences its present
growth rate. Under suitable assumptions on k, the local stability of a positive steady state
and the existence of periodic solutions arising from the loss of such stability have been
discussed by Cushing [7] and Stech [37]. While (1.4) may be biologically more realistic,
there is considerable difficulty in choosing or determining suitable delay kernels in (1.4).
However, due to the ensuing analytical convenience, kernels of the type

g m + l^m

k(t) = ——exp{-CT?}, t > 0, m = 0,1,2,..., (1.5)

where a is a positive constant, have been extensively used in integrodifferential equations.
It is possible to convert (1.4) with (1.5) into a vector system of ordinary differential
equations by means of a linear "chain trick" (see MacDonald [28]) originally due to
Fargue [10], Since (1.1) denotes a generalization of equations of the form of (1.2), it is of
some interest to study (1.1) for its own sake, and we will examine the oscillatory nature of
(1.3) below. There are not many results in the literature on the oscillation of integrodif-
ferential equations (or equations with unbounded delays) except for some partial results
due to the author [14], Levin [27], and Myschkis [33].

2. An oscillatory delay-differential equation. We begin with a note that if the delays are
absent in (1.1) and (1.2) then no solution of (1.1) and (1.2) corresponding to positive
initial conditions will be oscillatory. The following preparation will be useful for our
discussion of oscillations of (1.1). Let r = max,„t , t* = min1<y<nTy and consider
(1.1) together with initial conditions of the form

jc(s) = (p(s) > 0, <p is continuous on [-t,0], <p(0) > 0. (2.1)
Since we will assume that t- > 0 (j = 1,2,the method of steps (Bellman and
Cooke [1], El'sgol'ts and Norkin [9]) is applicable for (1.1) and (2.1), with which one can
show that solutions of (1.1) and (2.1) exist on intervals of the form [mr*, (m + 1)t»]
(m = 0,1,2,...). Thus it will follow that solutions of (1.1) and (2.1) exist for all t > 0 and
remain bounded on [-t, oo). Also, since any solution of (1.1) and (2.1) satisfies a relation
of the form

x(t) = (p(0) exp t > 0,jf' j a - £ bjx(s - 7y)j ds

we have that x(t) > 0 for t ^ 0. The system (1.1) has a positive steady state x* =
bj). We can introduce a change of variables by the formula

X(t) s log[x(/)/x*], t > 0, (2.2)
and derive that

dX(t)
dt

ri

= -x* Y, fy[exp{ X(t - t7)} - l], t>0. (2.3)
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We will use the following:

Definition. The system (1.1) is said to be oscillatory about its steady state x* if and
only if x(t) - x* has at least one zero for t in every interval of the form [a, oo) for
arbitrary positive a, where x(t) is a solution of (1.1) corresponding to any initial condition
of the type in (2.1).

We can now formulate our principal result as follows.

Theorem 2.1. Assume the following:
(i) The constants a, bj, iy (j = 1,2,...,«) are positive.

(ii)
n n

ex* Yj bjjj > 1, where x* = a/ £ bj. (2.4)
j-i i

Then the system (1.1) corresponding to initial conditions of the type in (2.1) is oscillatory
about x*.

Proof. It is clear from our preparation that it is sufficient to show that nonconstant
solutions of (2.3) are oscillatory about zero. Suppose there exists a nonconstant solution of
(2.3) defined on [-t, oo) which is not oscillatory about zero. Then there exists a positive
number t* > r and a nonconstant solution X*(t) of (2.3) such that X*(t) is bounded for
t > -r and either

X*(t) > 0 for t > t* or X*(t) < 0 iox t > t*. (2.5)
Our strategy of proof is to show that both these possibilities lead to contradictions.
Consider the case X*(t) > 0 for t > t*. It will follow from (2.3) that

dX= -** E fe7[exp{ X*(t - T,.)} - l], t > t* + t, (2.6)
j-1

which imphes that dX*{t)/dt < 0 for t > t* + t; thus

lim X*(t) exists and we let c = lim X*(t) (2.7)
t —» OO t *00

for a constant c > 0. One can see from (2.6) that c = 0 and that

< -x* t bjX*(t - Tj), t>t* + t, (2.8)
7-1

which implies on integration that
n qq

X*(t)>x* E bjf X*(s-Tj)ds, t > t* + t. (2.9)
y-i J'

We now show that the existence of a bounded positive function X*(t) for t g [t*, oo)
satisfying (2.9) and lim,^ X*(t) = 0 implies the existence of a positive solution of the
delay-differential system

dy= -x* E bjy*(t ~ Ty)» t>t* + T. (2.10)
7 — 1
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Define a set S as follows:

S = {x:gC([;*,oo),R)|0<x(?)< X'*(?); t > t*}
and for each x & S we can define x: [t*, oo) -> [0, oo) by the following:

w ) = (x(t), t>t* + r, ii

X \x(f* + t) + Ar*(0 - **(?* + r), t&[t*,t* + t).

It is easy to see
0 < Jc(/) ^ X*(t) for t > ?*.

We consider a map T defined on S by (as in the case of x )
( n ^

x* H bjj x(j - Tj) ds, t > t* + T,

(Tx)(<)= 'I'
/* OO

**£ bj x(s — Tj) ds + X*(t) — X*(t* + t), (£[/*,(*+ t],
7-1 •'' + T

(2.12)
and note

^ r<*>
0 < (Tx)(t) x* £ b [ X*(s - Tj) ds < X*(t), t>t* + T. (2.13)

j-1 '

Define a sequence of functions { } (« = 0,1,2,...) such that

■>>0 = **. yn=Tyn_1, n = 1,2,3,.... (2.14)
It follows from the definition of T and the nature of A'* that

0 <yn(t) <yn-1(0 < x*(t) for t > t*, n = 1,2,3,...,
and hence the following hmit exists in a pointwise sense:

lim y„{t) = .y*(0> t>t*. (2.15)
n~* oo

By Lebesgue's convergence theorem, y* is a solution of

0 < ̂ *(0 = ) 00

x* £ bj f y*(s-Tj)ds, t > t* + t,

n 00

•** 52 b.: f _y(i - t ) A + X*(/) - A^*(/* + t), re [?*, + r ],
j-1 V<*+T

which implies that is a positive solution of (2.10) since X*(t) - X*(t* + t) > 0 for
t e [r*,/* + t). But by Lemma 1 of the appendix all bounded solutions of (2.10) are
oscillatory about zero when (2.14) holds. Thus the existence of X*(t) > 0 for t > t* leads
to a contradiction.

The second possibility in (2.5) is treated by showing that the existence of an eventually
negative solution X* of (2.6) will lead to an inequality of the form

> ~x*a £ bjX*(t - Tj), t>t* + r, (2.16)
j=\
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where a is a positive constant which can be chosen such that
n

ex*a £ bjTj > 1. (2-17)
j-1

The author is indebted to Professor G. Ladas for the following arguments in the
derivation of (2.16)-(2.17).

Let us suppose that A'*(?) < 0 for t > t* and note that for such X*, dX*(t)/dt > 0,
eventually implying that lim,^^ X*(t) exists and such a limit is in fact zero; thus the
convergence in lim(_ ^ X*(t) = 0 is monotonic in t eventually.

We will now show the existence of functions = £■(*)> j ~ 1,2,..., w, such that for all
large enough t,

ex*(t-rj)_ i = X(t - j = t > t* + t. (2.18)

For t > t* + t and t1> t* + r, we have

gX'o-rj) _ ex*Wz= ^ _ x{tx)\ex*{ej\ j = 1,2,..., h, (2.19)

where X*(0j) lies between X*(t - t■•) and X*(tl). Considering the limiting case of (2.19)
as tx —> oo,

e**(«-Ty)_ I = x*(t - t > t* + T, j = 1,2,..., 71, (2.20)

for some functions ^ = £,(')> 7 = 1, 2,t > t* + t, such that £y(/) -> oo as
t -* oo. Now by the monotonic nature of £ -(f) -» oo for ? > f* + t and since X*(£j(t))
—> 0 monotonically as f —> oo, it will follow from (2.20) that for sufficiently large t > t**
(say)

= -** L £,**(' - t > t**, (2.21)dt j-i

> -x* t bjX*(t - Tj)ex'W» (2.22)
7 = 1

where t** can be chosen such that

x*e £ bjTje**«/<'"» > 1. (2.23)
;=i

The possibility of choosing such ;** is a consequence of .Y*(/) -» 0, £.(*) -» oo as
/ -» oo and our hypothesis ex*T.nJ^lbJTj > 1. Now by the first part of our proof, the
existence of an eventually negative solution A'* of (2.22) and (2.23) is impossible, and this
completes the proof.

3. Logistic equation with unbounded delays. We will now consider a nonlinear integrodif-
ferential equation of the form

^-1(0 a - b f k(t - i)x(^)
* - rv>

ds t> t0> -00, (3.1)
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together with initial conditions <p on (-00, ?0] of the type

x(s) = <p(s) ^ 0, se(-cc,t0], <p(t0) > 0, (3.2)

where <p is assumed to be bounded and piecewise (locally) continuous on (-00, f0].
Precisely, we will establish the following for (3.1) and (3.2).
Theorem 3.1. Suppose the following hold:

(i) a, b are positive constants and k: [0, 00) -» [0, oc) is piecewise (locally) continuous
on [0, 00) such that

/•OO /• OO /• OO

/ ^(5)^ = 1, / sk(s) ds < 00, I k(s)elisds < 00, (3.3)
Jo Jo Jo

for some positive number fi [note that the third of (3.3) will also imply the first two of
(3.3)].

(ii)
/•OO

bex* / sk(s) ds > 1 where x* = a/b. (3-4)
Jo

Then all nonoscillatory solutions of (3.1) corresponding to initial conditions of the type in
(3.2) are such that

lim [x(?) - x*] = 0, (3.5)
t~* 00

and if UmJ_>_00 x(s) # x*, with lim,^M jc(;) = x*, then the convergence in (3.5) cannot
be monotonic; in any case all solutions of (3.1) and (3.2) are oscillatory on [0, 00).

Proof. The local existence of solutions of (3.1)—(3.4) on an interval of the form
[/0, t0 + T) for some possibly small T > 0 will follow from the elements of integrodif-
ferential equations (Miller [32]). The form of (3.1) and the nonnegativity of <p on (-00, /0]
together with qp(t0) > 0 will imply that any solution of (3.1) and (3.2) will remain
nonnegative for those t > t0 for which such a solution exists. Since solutions of (3.1)—(3.3)
satisfy

x{0 = <p('o)exP rj-L k(s + Tj)x(ij)rfrj| ds

< <p('o)ea(' 'o)> ' > 'o>

it will follow that solutions of (3.1)—(3.3) are defined for all r > 0 (at least by continua-
tion) and remain nonnegative on [/0, 00). As before we let

X(t) = log[x(t)/x*], t>t0,

and derive that

dX(t)
dt =-bx* f k(t - i,)[exp( ^(i)} - l] ds, t > t0, (3.6)

J

and it is enough to show that all nonoscillatory solutions of (3.6) are such that

lim X(t) = 0 (3.7)
t~> OO

and if lim^_ A(s) # 0 then the convergence in (3.7) cannot be monotonic.
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Suppose now that a solution of (3.6) has at most a finite number of zeros on [0, oo) (i.e.,
nonoscillatory); then there exists a t* > 0 such that X(t) =£ 0 for t > t*. We now rewrite
(3.6) in the form

^ 1 I = _bx* f'+' k(t + t* - s)[exp{ A'(j)} - l] ds
^ -OO

= -bx* (' k(t + t* — s){exp[X(j')] - 1} ds
— 00

bx * (' +' k(t + t* - ^)[exp{ ^(s)} - l] ds

= -bx* (' k(t - ij)[exp{ X(t* + t?)} - l] dri - f{t), (3.8)
Jo

where

f(t) = bx*f' k(t + /* - s)[exp{ A'(j)} - l] ds. (3.9)
•'-oo

It is not difficult to verify that

|/(0 | < b\ sup |x(.s) — x*|) f k(rj)dri-*0 asf->oo,
,J<

and furthermore if we let

/OO
f(s) ds,

.
then

dt

(3.10)

\Q(t) | < b\ sup |x(,s) — x* 11 f T]k(rj) dt] -* 0 asf-»oo. (3.11)

If we now define

Z(t) = X(t + t*), t>0, (3.12)
then we have from (3.8)

dZ(t) = -bx* f k(t - t])[eZM- 1] d-q (3.13)

with Z(t) # 0 on [0, oo) [since X(t + t*) 0 for t > 0], There are now two possibilities:
either Z(t) > 0 on [0, oo) or Z(t) < 0 on [0, oo). Suppose Z(t) > 0 on [0, oo) and let

Y(t) = Z(t)-Q(t). (3.14)
Then

^[p-= ~bx*k(f - y)[e*p{Y(y) + Q(ri)} - l]d-q, t > 0. (3.15)

Since Y(t) + Q(t) > 0 for / > 0, it will follow from (3.15) that for some constant (say) c,

lim [Z(/) - Q(t)] = c. (3.16)
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If c < 0, it will then follow that eventually Z(t) becomes negative for large t since
Q(t) -» 0 as / -* oo. Thus c > 0, and if c > 0, it will follow from (3.15) that

dY(t)
t~* 00
lim = -bx*[ec - 1] f k(s) ds < 0, (3.17)

t —* cc) dt Jf\

and (3.17) will imply that Y(t) —> -oo and t -* oo. Thus c = 0 and hence we have
lim,_00Z(r) = lim t^xX(t + t*) = 0.

One can show by similar arguments that if Z(t) < 0 on [0, oo) then limM(S I(( +/*)
= lim, _ ^ Z(t) = 0. We will turn to the mode of convergence; let us first suppose that

lim Z(s) > 0, Z(t) > 0 for t > -oo and Z(t) -» 0 as t -> oo. (3.18)
S-*-00

We will show that (3.18) will lead to a contradiction of the result of Lemma 2 of the
appendix. When (3.18) holds we have from (3.13) that there exists a positive solution Z(t)
of the linear integrodifferential inequality

^jp-<-bx*j^k(t-y)z(v)dii-f(t), t> 0, (3.19)

where f(t) > 0 for t > 0. Define a sequence {Wn(t); n = 0,1,2,3,...; t > 0} by the
following:

W0(t) = Z(t), t> 0, (3.20)

Wn+i(t) = bx*£ jjf k(s - v)K(v)dvJ ds + j f(s)ds, t > 0, n = 0,1,2,3,....

(3.21)
Integration of (3.19) leads to

/CO ( fS \ fOOk(s - i])Z(i]) d-qj ds - J f(s)ds, t > 0,

which on using Z(oo) = 0 implies that

Z(t) ^ bx* | J k(s - ■q)Z(ii) drj^j ds + f(s)ds, t > 0. (3.22)

It will follow from (3.20)-(3.22) and /(/) > 0 that
0 < ••• W„+i(0 < »;(0 < < W2{t) < ^(0 < W0{t), t>0,n> 1,2,3,....

(3.23)
It is easy to see from (3.23) that the limit of the sequence { Wn(t)} as n -» oo exists in a
pointwise sense and we let

lim »;(/)= W*(0, '>0- (3-24)
n—*oo

By Levi's theorem [21] on integration it will then follow from (3.21) that

W*(t) = bx*f( f k{s - rj)fV*(v) dvj ds + j°° f(s) ds, t > 0, (3.25)
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in which W*(t) cannot be zero for any finite t > 0 due to the positivity of the integrands
in (3.25). But (3.25) implies that W*(t) is a positive solution of the integrodifferential
equation

dU^ = ~bx* j'o k~ v)U{v)dTi - fit); (3.26)

but this is impossible since by Lemma 2 of the Appendix all solutions of (3.26) are
oscillatory under the hypotheses of the theorem.

If in (3.18) we have Z(t) < 0 for t > -oo, then we will have from (3.13), on using
Z(f) -» 0 as t -* oo,

dZ(t) ^1
dt /; k(t - T,)| gZ™ 11 Z(n) dn - /(/) (3.27)

J(~bx*)/o' k(< ~ 7l)Z(v)dr1 -f(t)lim inf
t—*oo

Z(0 _ J

z(0
>-bx* f k{t - i\)Z{i\)df\ - f(t). (3.28)

•'o
We note that in (3.28) /(;) < 0 for t > 0, and repeat a procedure similar to that in the
above and derive that the existence of a negative solution of the inequality leads to the
existence of a negative solution of (3.16), which is again a contradiction of the result of
Lemma 2 of the Appendix.

The last assertion is proved as follows. We first note that all solutions of (3.1) and (3.2)
existing on [0, oo) are bounded as / —> oo. For instance, suppose a solution x{t) of (3.1)
and (3.2) is not bounded for t -» oo. Then there will exist a sequence (tn\ n = 1,2, 3,...},
tn -» oo as n -» oo, such that x(tn) oo as n -* oo and dx(tn)/dt >0, n = 1,2,3, 
But we have from (3.1) and (3.2),

ds - b f° k(t„- s)<p(s)<
J0 •'-oo

= x(t )dt K ">

= x(tn)

ds

a - bx(0tn) k(-q) dt] - b f° k(t„- s)tp(s)
J0 J-oo

ds 0 < 6 < 1,

<0 if n is sufficiently large,
and this contradiction shows that hm,_>00supx(r) < oo. Now as before the existence of a
nonoscillatory bounded solution of (3.1) and (3.2) leads to the existence of a nonoscil-
latory bounded solution of (3.26), which by Lemma 2 of the Appendix is not possible, and
this completes the proof.

4. A brief discussion. The conditions of Theorems 2.1 and 3.1 are formulated as
sufficient conditions only for the respective nonlinear systems to be oscillatory. It is not
known whether the conditions (2.4) and (3.4) are necessary also for (1.1) and (3.1),
respectively, to be oscillatory. However, a condition somewhat weaker than (2.4) of the
type

ex*
n

Y, bj) T > 1, T = max(r1,...,T„), (4.1)
V >=i
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is known to be necessary for (1.1) to be oscillatory, and a detailed discussion of this aspect
can be found in [15]. It is also shown in [15] that if

t V, < !' (4-2)
7 = 1 I

then the steady state x* of (1.1) is globally attractive of nonoscillatory solutions; as a
consequence of this and our Theorem 2.1, it will follow that if

n n

Tex* Y, bj > 1 and** £ bJT/ < 1, (4.3)
7-1 7=1

then no solution of (1.1) can be monotonic and the convergence of x(t) to x* as t -> oo is
oscillatory. This is an extension of a single-delay result of Kakutani and Markus [25] to
the multidelay logistic equation (1.1).

It is not difficult to generalize and extend the results of our Theorems 2.1 and 3.1 for
systems of the form

~ V(0 - i hjx(t - Ty)J (4.4)

and
dyjt)

dt = y(t)l^a - b0y(t) - b f k(t - s)y{s) (4.5)

where a, b0, bj, r (j = 1,2,..., n) are positive constants and k is a suitable delay kernel.
The relevant lemmas needed for a discussion of oscillation of (4.4) and (4.5) can be
obtained from Corollaries 2.1 and 2.2 of [14]. We conclude with the remark that it is
worthwhile to obtain conditions under which nonscalar systems of the form

dX'^ = + T. auxj(t ~ (4.6)

will be oscillatory or nonoscillatory, where r(y- are nonnegative constants and bt, a:j
(i, j = 1,2,...,«) are arbitrary constants; systems of the form (4.6) are of fundamental
theoretical interest in mathematical ecology and, as remarked in the introduction, identifi-
cation of a system as either oscillatory or nonoscillatory is a necessary prerequisite for
understanding and managing complex time-delayed systems.

5. Appendix. Detailed statements concerning the applicability of Laplace transform
techniques for delay-differential and integrodifferential equations can be found in [14],
Proofs of the following lemmas are briefly outlined for the sake of completeness of our
results.

Lemma 1. Suppose x*, bj, 7- (j = 1,2,..., n) are positive constants satisfying the first of
(2.4). Then all bounded solutions of the linear system

^p-=-X* t bjU(t - Tj) (5.1)
7 = 1
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corresponding to continuous initial conditions u(s) = \p(s), e [-t, 0] (r =
maxjTj), are oscillatory on [0, oo).

Proof. The characteristic equation associated with (5.1) is given by
n

A = -X* £ bje-XT'. (5.2)
7-1

Any solution of (5.1) is of the form
"(0 = (5-3)

m

where the summation is over all the roots of (5.2); the convergence of the series in (5.3)
has been discussed in Bellman and Cooke [1], the coefficients pm(t) being determined as
follows:

ex' [ u(0) - x*EJ_! fy?"Xt7/_°r. e"X7iu(ri) dij]

A + x*T."J=lbJe~
Pm(0 = residue of | x+ v'x, > (5-<>

at a root Am of (5.2).
Suppose now that (5.1) has a bounded nonoscillatory solution; then it will follow that

(5.2) has at least one real nonpositive root, say A = -p, for some jii > 0; but /t = 0 is not
possible. Thus we have from

n

p = ** E VTy
7 = 1

for some ju. > 0 that

1 = x* £ ^ x* X (5.5)
7=1 \7=1 I

which contradicts the first of (2.4). Thus (5.1) cannot have a bounded nonoscillatory
solution and the proof of the lemma is complete.

Lemma 2. Assume that the conditions of Theorem 3.1 hold. Then all bounded solutions of
the scalar linear integrodifferential equation

^p-=-bx*f kit-vM^drj-fit), t> 0, K(0)#0, (5.6)
where / is any bounded continuous function on [0, oo) such that /(/)->Oas/->oo and
(2(?) = /,°° f(s) ds -* 0 as t -* oo, have the following character:

(i) If V is of the same sign on [0, oo) then lim,^xV(t) exists and
lim,_00F(r) = 0.

(ii) If V is any bounded solution of (5.6) on [0, oo) then V is oscillatory
(has zeros on intervals of the form [a, oo) for arbitrary positive a)
on [0, oo).

Proof. Suppose V(t) > 0 for t > 0. If we let S(t) = V(t) - Q(t) then

^dP~ = ~bx*fo k(yt ~ +
<0 for t > 0, (5.7)
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implying that lim,_00S(0 exists. If 50 = lim,.,^^/) then we have sQ = hm,_>00F(?)
and it follows from our hypotheses on k and (5.6) that

0 =-bx*^J k(r]) dr]^s0 since/(f) -* 0 as t -* oo,

which implies s0 = 0; if V(t) < 0 on [0, oo) then the arguments are similar.
Now let us suppose that (5.5) has a bounded solution on [0, oo) having at most a finite

number of zeros on [0, oo). It will follow from our hypotheses on / that the Laplace
transform of / exists and furthermore if

r°o
F(x) = / /(')«* dt = P{\)/Q(\) (say)

Jo

then P is analytic on the complex A-plane and the zeros of Q or the poles of F cannot
have nonnegative real parts.

By means of Laplace transforms one can show that a solution of (5.6) can be
represented in the form

^(0 = LPi(0^K'-E^(0e'lJ', t>0, (5.8)*7 v
j

where

/>,(<) = residue of (5.9)
X + bx*Jf k(s)e-Xsds

at a root X = X, of
/•OO

X + bx* k(s)e~ ds = 0, (5.10)
•>Ci

qAt) = residue of e p(X) Q(x)ix + bx*j k(s)e sds (5.11)

at a root n = jli • of Q(/i) = 0.
The convergence and the representation of the solution in the form (5.8) are established

as in the case of discrete delays (see, for instance, Zubov [44]). Since the zeros of Q(X)
cannot have nonnegative real parts, the bounded nonoscillatory nature of V and V(0) + 0
impUes that there exists a real nonpositive root, say X = -X* (for some X* > 0), of (5.10).
Since X* = 0 is not possible, X* > 0, and it will then follow that

X* = bx* [ k(s)ex'sds,
Jo

leading to

1 = bx* f fc(5)i[ex*yX*^| ds
Jo
JfCC' k(s)sds,

n

which contradicts (3.4). Thus (5.6) cannot have a nonoscillatory solution bounded on
[0, oo) and the proof is complete.
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