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ABSTRACT
Arid alluvial channels on piedmonts and valley floors often

exhibit an oscillating pattern of narrow, deeply incised reaches and
wide, shallow reaches with a characteristic wavelength. How do
these oscillations develop and what controls their wavelengths? To
address these questions we developed a two-dimensional numerical
model that couples erosion and deposition in a channel bed with
cross-sectional widening and narrowing. This model is inherently
unstable over a range of spatial scales dependent on the channel
width, depth, and slope. In the initial phase of model evolution,
wider-than-average channel reaches become zones of distributary
flow that aggrade, lose stream power, and further widen in a pos-
itive feedback. Simultaneously, narrower-than-average reaches in-
cise, gain stream power, and further narrow. In the second stage
of model evolution, this instability is balanced by the diffusive na-
ture of longitudinal profile evolution, and solitary topographic
waves propagate in the upstream direction with a characteristic
wavelength and amplitude. The model predicts a specific quanti-
tative relationship between the oscillation wavelength and channel
width, depth, and slope that is verified by a database of channel
geometries in southern Arizona.

Keywords: channel geometry, numerical modeling, instability, arroyo,
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INTRODUCTION
Many fluvial-geomorphic studies have modeled longitudinal-

profile evolution, but in these studies, channels have most often been
assumed to be uniform in width or a simple function of upstream drain-
age area (e.g., Slingerland and Snow, 1987; Begin et al., 1981; Sinha
and Parker, 1996; Dade and Friend, 1998). Actual channels often vary
substantially in width, and these variations may strongly influence
channel evolution. Schumm and Hadley (1957), for example, devel-
oped their conceptual ‘‘arid cycle of erosion’’ on the basis of the epi-
sodic cut-and-fill histories and oscillating geometries observed in the
arroyos of the American West. In their model, channels aggrade and
widen until a threshold slope and/or width is reached, initiating incision
in the oversteepened reach and aggradation in the downstream reach.
Schumm and Hadley’s model has not been clearly linked with estab-
lished process models, however, and it remains unclear precisely how
arroyos form and evolve (Reid, 1994). Bull (1997) summarized re-
search on the behavior of arid alluvial channels, including valley-floor
arroyos and piedmont discontinuous ephemeral streams. Bull empha-
sized the role of human disturbance and climate change in controlling
the evolution of these oscillating-channel systems, but his approach
does not describe how oscillations develop or what controls their
wavelengths.

Oscillating alluvial channels in southern Arizona are classified as
one of three basic types depending on their geomorphic position. Pied-
mont channels fed by montane drainage basins are continuous channels
that alternate between braided and narrowly entrenched reaches with
wavelengths on the order of 1 km. Wild Burro Wash on the Tortolita
Piedmont is a classic example of this type of oscillating channel (Field,
2001) (Fig. 1A). Channel width (measured from 1-m-resolution U.S.
Geological Survey digital orthophotoquadrangles [DOQQs]) and bed
elevation (measured from a high-resolution digital elevation model
[DEM] with average channel slope subtracted) in Wild Burro Wash are

plotted in Figure 1A. These data illustrate that oscillations in both bed
elevation and channel width occur in Wild Burro Wash and that the
two oscillations are in phase.

The second type of oscillating channel is the piedmont discontin-
uous ephemeral stream. These channels are fed only by local piedmont
runoff, and they alternate between incised channels and sheet-flow–
dominated channel fans without well-defined banks (Bull, 1997). The
transitions between channel fans and incised reaches occur abruptly at
one or more steep ‘‘headcuts’’ (Fig. 1B). Dead Mesquite Wash in
southeast Tucson is the classic example given by Bull (1997) (Fig.
1B). Packard (1974) documented in-phase oscillations in bed elevation
and width in Dead Mesquite Wash, similar to the behavior of Wild
Burro Wash.

The third type of oscillating channel is the classic southwestern
valley-floor arroyo. These systems alternate between narrow, deeply
incised channels and broad, shallow channel fans, but they typically
drain one or more broad basins and adjacent ranges and have wave-
lengths on the order of 10 km. Abrupt headcuts also characterize
distributary-to-tributary transitions in these systems. In contrast to the
other oscillating-channel types, not all arroyos are periodically alter-
nating; some are tectonically controlled by the elevations of basin di-
vides. Cooke and Reeves (1976) identified Vamori Wash in southern
Arizona as perhaps the best example of an oscillating arroyo system
(Fig. 1C). Entrenched reaches are associated with low vegetation den-
sity, whereas channel fans support a broad, dense riparian zone in Va-
mori Wash.

The common oscillatory pattern in these channel types suggests
a common underlying mechanism that acts across multiple spatial
scales. This paper explores this hypothesis in two ways. First, a nu-
merical model for the coupled evolution of the channel longitudinal
profile and cross section is presented. This model predicts that arid
alluvial channels are unstable over a range of wavelengths controlled
by channel width, depth, and slope. Second, a database of channel
geometries in southern Arizona is constructed that confirms the model
predictions and places the three channel types within a single contin-
uum, from steep, small-wavelength–oscillating channels to gently slop-
ing, long-wavelength–oscillating channels.

MODEL DESCRIPTION
Exner’s equation (conservation of mass) states that erosion and

deposition in the alluvial-channel bed is proportional to the gradient
of total sediment discharge, or

]h 1 ](wq )s
5 2 , (1)

]t C ]x0

where h is the elevation of the channel bed, t is time, C0 is the volu-
metric concentration of bed sediment, w is the channel width, qs is the
specific sediment discharge (i.e., the sediment discharge per unit chan-
nel width), and x is the distance downstream. In most bed-load trans-
port relations, specific sediment flux is proportional to the 3/2-power
of the bed shear stress. This implies that specific sediment discharge
is a linear function of channel gradient and a nonlinear function of the
discharge per unit channel width, or

bQ ]h
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Figure 1. Examples of oscillating channels in southern Arizona. Alternating reaches: B—braided and I—incised. A: Wild Burro Wash data,
including (top to bottom) high-resolution digital elevation model (DEM) in shaded relief (Pima Association of Governments, 2000), color
digital orthophotoquadrangle (DOQQ), 1:200-scale flow map corresponding to extreme flood on 27 July 1988 (House et al., 1991), and plot
of channel width w (thick line) and bed elevation h (thin line, extracted from DEM and with average slope removed). B: Dead Mesquite
Wash shown in color DOQQ and detailed map of channel planform geometry (after Packard, 1974). C: Vamori Wash shown in oblique
perspective of false-color Landsat image (vegetation [band 4] in red) draped over a DEM. Channel locations in Figure 3A.

where B is a mobility parameter related to grain size and, Q is water
discharge. The value of b is constrained by sediment rating curves and
is between 2 and 3 for both suspended-load and bed-load transport.
Here I consider the case b 5 2. Equation 2 assumes that the bed shear
stress is much larger than the threshold for particle entrainment.

If the channel width is assumed to be uniform along the longi-
tudinal profile, the combination of equations 1 and 2 gives the classic
diffusion equation:

2]h ] h
5 k , (3)
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where the diffusivity is given by k 5 (BQ2)/(C0w0); w0 is the uniform
channel width.

If the channel width is not uniform along the longitudinal profile,
the chain rule must be used when differentiating qs in equation 1. This
approach introduces an additional nonlinear term into equation 3, to
give

2]h 1 ] h 1 ]w ]h
5 kw 2 . (4)0 2 21 2]t w ]x w ]x ]x

It is convenient to define h as the difference between the local
bed elevation and that of a straight, equilibrium channel with uniform
discharge. Equation 4 then becomes

2]h 1 ] h 1 ]w ]h
5 kw 1 S 2 , (5)0 02 2 1 2[ ]]t w ]x w ]x ]x

where S0 is the equilibrium channel slope. Equation 5 can be used to
study the evolution of perturbations from the equilibrium geometry.

Channel widening and narrowing occur by a complex set of pro-
cesses, including bank retreat and bed scouring. Scouring often leads
to channel narrowing as flow is focused into the scour zone and parts
of the former channel bed effectively become part of the bank. Bull’s
(1979) ‘‘threshold-of-critical-power’’ concept can be used to relate the
rate of channel widening and narrowing with the excess stream power
if channels are assumed to widen as they aggrade and narrow as they
incise. Bull’s model states that channels incise if the stream power is
greater than a threshold value and aggrade if the stream power is less
than that value. Expressing this relationship in terms of channel wid-
ening (aggradation) and narrowing (incision) gives

]w wq 2 w qss 0 0
5 2 , (6)

]t h 2 h0

where is the equilibrium sediment flux or stream power, and h0 isqs0

the equilibrium bank height. Equation 6 represents a cross-sectional
mass balance: sediment removed from the bank contributes to the local
sediment-flux deficit wqs 2 w0 (i.e., the amount of sediment thatqs0

cannot be transported out of the reach), promoting further aggradation
in the reach.

The nonlinear term in equation 5 alters the dynamics of channels
markedly compared to the diffusive behavior expressed in equation 3.
Along a reach with uniform discharge and grain size, the diffusion
equation smoothes out curvatures in the profile over time. The nonlin-
ear term in equation 5, however, has the opposite effect through a
positive feedback between channel width and slope. In this feedback,
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Figure 2. Model behavior. A: Schematic diagram of model geometry. B: Growth curve for linear-stability analysis,
where d is nondimensional growth rate. This analysis predicts unstable behavior for small wavelengths, with maxi-
mum value at l 5 p(w0h0/S0)1/2. C: Numerical solution. Initial phase (left) is characterized by growth of small, random
perturbations and increase in oscillation wavelength with time (line thickness increases with time). Steady-state phase
(right) is characterized by solitary-wave propagation of oscillations in upstream direction. Incision and channel nar-
rowing on leading edge of each wave are balanced by backfilling and widening on trailing edge.

spatial variations in channel slope generate variations in width via
equation 6. Large gradients in channel width, in turn, increase the non-
linear behavior in equation 5, further localizing erosion and deposition
to complete the feedback cycle. This cycle is balanced by the diffusive
term, and the balance between these two terms controls the oscillation
wavelength.

MODEL BEHAVIOR
Equations 5 and 6 may be solved by using linear-stability analysis

and direct numerical solution. Linear-stability analysis works by solv-
ing the linear approximation to equations 5 and 6 for the growth rate
of a small-amplitude oscillation superimposed on the initial channel
geometry (a channel with specified equilibrium width, w0, bank height,
h0, and slope, S0). This analysis is presented in Appendix DR11 and
predicts the growth curve shown in Figure 2B. The growth rate is
positive (i.e., perturbations are unstable) for small wavelengths, rises
to a steep maximum at

w h0 0
l 5 p , (7)! S0

and quickly becomes negative (i.e., perturbations decay to zero) for
larger wavelengths. The growth rate is a function of k (i.e., channels
with larger values of k develop oscillations more rapidly), but the
wavelength corresponding to the maximum growth rate (equation 7) is

1GSA Data Repository item 2004117, Appendix DR1, linear-stability
analysis and channel database, is available online at www.geosociety.org/pubs/
ft2004.htm, or on request from editing@geosociety.org or Documents Secretary,
GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA.

independent of k. This independence is important for testing equation
7 because k is not well constrained, but the average channel width,
bank height, and slope can be readily measured for any channel.

The two-step Lax-Wendroff scheme (e.g., Press et al., 1992) was
used to integrate equations 5 and 6 for the direct numerical solution.
The width was not allowed to go below 10 m or above 300 m in the
model. Without bounds, the model develops infinitely small and large
channel widths that are unrealistic. The model results are not sensitive
to the specific values of the lower and upper bounds as long as they
are small and large compared to the equilibrium channel width.

Figure 2C shows plots of bed elevation h (top) and channel width
w (bottom) for the early (left) and late (right) stages of the numerical
model. We assumed an initial width, bank height, and slope of 100 m,
2 m, and 0.01, respectively, with small (1%) random variations super-
imposed on the initial channel width. The solutions are plotted for a
temporal sequence, with thicker lines representing later times. The ear-
ly stage of the model is characterized by the amplification of spatial
variations in width within a range of wavelengths close to 1 km. In
the latter stage, oscillations achieve a steady-state amplitude and prop-
agate upstream as a train of solitary (i.e., nondispersive) topographic
waves. At any given instant, the channel geometry is characterized by
alternating zones of narrow, deeply incised reaches and wide, shallow
reaches. The most abrupt slope break is where the channel changes
from distributary to incised. This break is similar to the headcuts often
observed in arroyos and discontinuous ephemeral streams. The basic
two-step model evolution is a robust feature of the model and was
observed for a wide range of model parameters.

As the instability develops from random initial conditions, the
dominant wavelength increases, and the channel geometry becomes
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Figure 3. Database of oscillating channel geometries in southern Arizona. A: Location map. Clockwise from upper left: Bo—Bouse Wash;
Ce—Centennial Wash; H—Hassayampa River; S—Sycamore Creek; NA—North Airport Wash; V1—Vail Wash; V2—Vail–Dead Mesquite Wash;
DM—Dead Mesquite Wash; C—Cottonwood Wash; WB—Wild Burro Wash; CO—Canada del Oro Wash; P—Penitas Wash; Bi—Bobaquivari
Wash; V—Vamori Wash; Q—East La Quituni Wash. B: Plot of oscillation wavelength l vs. (w0h0/S0)1/2. Lower line is linear-stability prediction.
Upper line and filled squares are numerical results. Observed data for channels in Figure 3A are plotted with circles (10 yr flood depth)
and open triangles (25 yr flood depth).

more regularly periodic. The increase in oscillation wavelength indi-
cates that nonlinear, finite-amplitude effects are an important part of
the model behavior. This result is confirmed by Figure 3B, which com-
pares the oscillation wavelengths predicted by the linear-stability
analysis and the direct numerical solution for different values of (w0h0/
S0)1/2. The lower solid line corresponds to the linear-stability prediction
(equation 7), and the filled squares and upper solid line are the fully-
nonlinear numerical results. Which model is more consistent with ob-
servations: the linear or nonlinear model?

EMPIRICAL DATA FOR OSCILLATING CHANNELS IN
SOUTHERN ARIZONA

To test the model predictions for oscillation wavelength, we con-
structed a geographic information system database of DOQQs, rectified
false-color Landsat imagery, and 30-m-resolution DEMs for all of
southern Arizona. This database was used to measure oscillation wave-
lengths and average channel widths, depths, and slopes for 15 oscil-
lating channels (Appendix DR1, see footnote 1). Our data set includes
examples of each of the three channel types, including channels over
a broad range of sizes. DOQQs were found to be especially useful for
measuring channel widths and oscillation wavelengths in small chan-
nels, and false-color Landsat imagery was useful for distinguishing
vegetation patterns associated with large arroyo oscillations.

Bank heights are difficult to estimate in many of these systems,
particularly along channel-fan reaches where banks are not well de-
fined. As an alternative to direct measurements of bank height, we
estimated the average bank height using an indirect method. First, a
regional frequency-discharge relationship (Thomas et al., 1997) was
used to estimate a bankfull discharge for each channel based on its
drainage area. Second, Manning’s equation was used to estimate the
average channel depth on the basis of the bankfull discharge, the av-
erage channel width, and a Manning’s n of 0.04. We used estimates
for bankfull depths corresponding to the 10 yr and 25 yr floods as
estimates for the average bank height. The results do not depend sig-
nificantly on which interval is used, and both estimates yield bank
heights comparable to those observed in the field.

Figure 3B gives the average oscillation wavelength measured for
each channel (locations given in Fig. 3A) as a function of (w0h0/S0)1/2.
The data points corresponding to 10 yr flow depths are plotted with
circles; 25 yr flow depths are plotted with triangles. The agreement be-
tween the observed and predicted trend in the data is quite good, and
provides validation for the quantitative prediction of the nonlinear model.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation grant EAR-

0309518. We thank Doug Hirschberg for geographic information system tech-
nical assistance. A. Brad Murray, J. Ramon Arrowsmith, and an anonymous
reviewer provided helpful comments.

REFERENCES CITED
Begin, Z.B., Meyer, D.F., and Schumm, S.A., 1981, Development of longitu-

dinal profiles of alluvial channels in response to base-level lowering: Earth
Surface Processes and Landforms, v. 6, p. 49–68.

Bull, W.B., 1979, Threshold of critical power in streams: Geological Society of
America Bulletin, v. 90, p. 453–464.

Bull, W.B., 1997, Discontinuous ephemeral streams: Geomorphology, v. 19,
p. 227–276.

Cooke, R.U., and Reeves, R.W., 1976, Arroyos and environmental change in
the American Southwest: Oxford, Clarendon Press, 213 p.

Dade, W.B., and Friend, P.F., 1998, Grain size, sediment transport regime, and
channel slope in alluvial rivers: Journal of Geology, v. 106, p. 661–675.

Field, J., 2001, Channel avulsion on alluvial fans in southern Arizona: Geo-
morphology, v. 37, p. 93–104.

House, P.K., Pearthree, P.A., and Vincent, K.R., 1991, Flow patterns, flow hy-
draulics, and flood-hazard implications of a recent extreme alluvial-fan
flood in southern Arizona: Geological Society of America Abstracts with
Programs, v. 23, no. 5, p. 121.

Packard, F., 1974, The hydraulic geometry of a discontinuous ephemeral stream
on a bajada near Tucson, Arizona [Ph.D. thesis]: Tucson, University of
Arizona, 127 p.

Pima Association of Governments, 2000, Digital DTM data: http://
www.pagnet.org/RDC.

Press, W.H., Flannery, B.P., and Teukolsky, S.A., 1992, Numerical recipes in C
(second edition): New York, Cambridge University Press, 400 p.

Reid, I., 1994, River landforms and sediments: Evidence of climatic change, in
Abrahams, A.D., and Parsons, A.J., eds., Geomorphology of desert envi-
ronments: London, Chapman and Hall, p. 571–592.

Schumm, S.A., and Hadley, R.F., 1957, Arroyos and the semiarid cycle of ero-
sion: American Journal of Science, v. 255, p. 161–174.

Sinha, S.K., and Parker, G., 1996, Causes of concavity in longitudinal profiles
of rivers: Water Resources Research, v. 32, p. 1417–1428.

Slingerland, R.L., and Snow, R.S., 1987, Mathematical modeling of graded river
profiles: Journal of Geology, v. 95, p. 15–33.

Thomas, B.E., Hjalmarson, H.W., and Waltemeyer, S.D., 1997, Methods for
estimating magnitude and frequency of floods in the southwestern United
States: U.S. Geological Survey Water Supply Paper 2433, 195 p.

Manuscript received 29 January 2004
Revised manuscript received 13 April 2004
Manuscript accepted 18 April 2004

Printed in USA


