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Oscillations in Monotone Systems with a Negative Feedback∗

Tomáš Gedeon†

Abstract. We study a finite-dimensional monotone system coupled to a slowly evolving scalar differential
equation which provides a negative feedback to the monotone system. We use a theory of multivalued
characteristics to show that this system admits a relaxation periodic orbit if a simple model system in
R2 does. Our construction can be used to prove the existence of periodic orbits in slow-fast systems
of arbitrary dimension. We apply our theory to a model of a cell cycle in Xenopus embryos. Abrupt
changes in signals upon entry to mitosis suggests that the cell cycle is generated by a relaxation
oscillation. Our results show that the cell cycle orbit is not a relaxation oscillator. However, we
construct a closely related system that exhibits relaxation oscillations and that approximates the
cell cycle oscillator for an intermediate range of negative feedback strengths. We show that the cell
cycle oscillation disappears if the negative feedback is too weak or too strong.
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1. Introduction. Genetic networks that support bistable [28, 33, 17, 5, 6, 34, 31] and
periodic [11] behaviors have attracted much attention in recent years. Bistable systems are
thought to be involved in the generation of switch-like biochemical responses [17, 5] as well as
in the establishment of cell cycle oscillations and mutually exclusive cell cycle phases [34, 31].
Biologically, relaxation oscillators appear to underlie many important cell processes, such as
the early embryonic cell cycle in frog eggs (Xenopus oocytes) [34, 31, 29, 37]. There are
other recognized mechanisms, most notably a delayed negative feedback [22, 36, 25], that can
generate cellular oscillations. In a cell cycle oscillator the need for an unambiguous signal
for the entry to mitosis may favor a relaxation oscillator. However, these two mechanisms
are clearly not mutually exclusive. Mathematically, a typical way in which relaxation (or
“hysteresis-driven”) oscillators arise is by a coupling of a slow parameter adaptation to the
dynamics of a bistable system. We illustrate this mechanism with a simple example. Suppose
that a one-dimensional parameterized system ẋ = F (x, z) has a bifurcation diagram that looks
like the curve shown in Figure 1, where the horizontal axis indicates the parameter z, with
solid arrows showing the vector field. In the middle range of the parameter space is a region
of bistability where two stable and one unstable equilibria coexist.

Now suppose that the parameter z itself is a function of the state x, ż = εg(x, z), ε � 1,
with a “negative feedback” rule that the parameter will slowly increase when x is above the
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Figure 1. Relaxation oscillator.

curve g(x, z) = 0 and will slowly decrease when x is below g(x, z) = 0. We now analyze what
happens when the initial state is at the point labelled “X” in the (z, x) plane. The state x will
quickly approach an equilibrium on the lower branch, but as the parameter z slowly decreases,
the trajectory in the (z, x) plane will follow the bifurcation curve, until a point at which there
are no stable equilibria nearby (the left knee of the bifurcation curve). A fast transition will
occur toward the upper branch. Now the state is above the curve g(x, z) = 0, so the feedback
rule forces the parameter z to increase. There results an oscillation as shown by the dashed
curve. For systems where the state variable x is scalar, a rigorous proof that a periodic orbit
exists for the joint (z, x) dynamics for sufficiently small ε is based on phase-plane techniques in
conjunction with the Poincaré–Bendixon theorem and will be presented in Lemma 3.1. This
result stems from three essential ingredients: (A) there are two time scales in the problem;
(B) the fast dynamics has a cubic-like set of equilibria when viewed as a parameterized family
of flows with the slow variable serving the role of the parameter; and (C) the slow dynamics
should push the trajectory toward the turning points on the cubic curve of equilibria.

Imagine now that the fast variable x is not scalar but lies in an Rn, while the slow variable
z is still scalar. Consider

ẋ = f(x, z),(1.1)

ż = εg(x, z).

We wish to formulate a set of assumptions analogous to (A), (B), and (C) that would guarantee
the existence of a periodic orbit for sufficiently small ε in (1.1). We start with an informal
discussion and later formulate the assumptions more precisely. The analogue of (B) is an
assumption that the set f(x, z) = 0 is “cubic-like” with respect to a projection onto the
z variable. Note that since z ∈ R the set f(x, z) = 0 is still a one-dimensional manifold.
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Instead of (C) we assume that the hypersurface g(x, z) does not intersect the “upper” and
“lower” branches of the cubic, and that the trajectories of the slow flow move toward the
knees of the cubic. These assumptions, however, are not sufficient to guarantee the existence
of a relaxation periodic orbit for (1.1). The remaining problem is that there is no guarantee
that the trajectories of the fast dynamics ẋ = f(x, z) in Rn that starts just off of the knees
of the cubic will converge to the equilibrium on the other branch. When x is scalar this is
guaranteed by the fact that all solutions of the one-dimensional systems ẋ = F (x, z) converge
to equilibria, and that the equilibrium on the upper branch is unique for z < z1 and on the
lower branch for z > z2.

We show that the convergence result necessary for existence of a relaxation periodic orbit
can be recovered if the fast subsystem ẋ = f(x, z) of (1.1) is a monotone system. Then the
existence of connecting orbits in the neighborhood of both turning points to the other branch
follows from the uniqueness of the equilibria past the turning point. In summary, we will show
that the existence of a relaxation periodic orbit in (1.1) follows from (A)–(C) when the fast
subsystem is monotone.

Our analysis will use input-output characteristics [3, 12, 13, 15]. Because for some range
of z the system ẋ = f(x, z) will have multiple equilibria, we will need to consider a multi-
valued characteristic [10, 14]. Recent work [18] has shown that such a characteristic can be
used to define a Morse decomposition of a global attractor. A Morse decomposition [9] is a
collection of compact isolated invariant sets endowed with a partial order. This partial order
carries dynamic information: there are no connecting orbits between Morse sets that do not
respect this order. The concept of a Morse decomposition is of great practical importance if
a nontrivial Morse decomposition can be found without a detailed knowledge of the invariant
set. Then the following two-tiered approach to studying complicated invariant sets is feasible.
First we find a nontrivial Morse decomposition whose ordering defines in a broad outline the
structure of the global dynamics. In the second step, and perhaps using different methods,
we study the internal structure of the individual Morse sets. The paper [18] shows how a
multivalued input-output characteristic can be used to define a Morse decomposition and also
provides conditions under which some Morse sets consist of a single equilibrium. The results
in this paper can be used to show the existence of periodic orbits in Morse sets that do not
meet these conditions. Therefore our results are complementary to those in [18].

We apply our theory to a model of cell cycle dynamics in Xenopus oocytes. This model,
developed by Tyson, Pomerening, and others [31, 32, 29, 37] over the last 15 years, is one
of the best developed dynamical models of a subcellular process. One of the most striking
features of the cell cycle is the abrupt change that signals entry into the M-phase of the cycle.
Several experimental papers [31, 32] suggest that the presence of the positive feedback loops
is responsible for this switch-like behavior, and that the negative feedback loop is responsible
for generating periodic oscillations. The most natural translation of this verbal model into
a mathematical framework is to assume the existence of a slow-fast system, where the fast
system, composed of a subsystem consisting of positive feedback loops, is bistable and its
equilibria form a hysteretic curve. The negative feedback loop is slow and provide a means
of traversing the hysteretic curve in such a way that the entire system exhibits a relaxation
periodic orbit. As an application of our theory we examine a hypothesis that the cell cycle
oscillation is generated by such a mechanism. A simplified model of Pomerening, Kim, and
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Ferrell [32] has the form

(1.2) ẋ = f(x, εz), ż = g(x, z),

where x ∈ R5, z ∈ R, and ε is small. The change of variables ζ = εz produces

ẋ = f(x, ζ), ζ̇ = εg

(
x,
ζ

ε

)
,

which is not a fast-slow system. We will apply our methods to a closely related system where
we rewrite the second equation as

ζ̇ = ε1g

(
x,
ζ

ε2

)
,

fix ε2, and let ε1 go to zero. The resulting system

(1.3) ẋ = f(x, ζ), ζ̇ = ε1g

(
x,
ζ

ε2

)

is a fast-slow system of the form (1.1). For a fixed value of ε2, analysis of (1.3) can prove
existence of periodic orbits only for sufficiently small ε1. We check numerically if this orbit
persists until ε1 reaches the fixed value of ε2, and thus recover a periodic orbit generating the
cell cycle in (1.2). The value of ε2 can be interpreted as the strength of the negative feedback
in the cell cycle control, and we examine the behavior of this system for a range of values
of ε2. We find that if ε2 is too small, the cell cycle is abolished, while if it is too large, the
numerical simulation suggests that the periodic orbit disappears before ε1 reaches ε2. There is
a bounded interval of feedback strengths ε2 for which we show analytically that (1.3) admits
a periodic orbit for small ε1 and show numerically that this orbit persists until ε1 = ε2. This
shows that the cell cycle oscillator requires the negative feedback strength to be in an interval
bounded away from zero and infinity.

2. Statement of the main result. We first motivate our approach by a series of informal
observations and a simple example. One approach to studying slow-fast systems of the type
(1.1) is to analyze first the fast subsystem

(2.1) ẋ = f(x, z), ż = 0

as a parameterized family of flows. If this system is relatively simple, for each z we can find
the set of equilibria. These equilibria form one-dimensional manifolds when z is varied. By
changing time τ = εt and subsequently setting ε = 0 the slow subsystem

0 = f(x, z), ż = g(x, z)

describes the slow dynamics along the manifolds of equilibria of the fast subsystem. The
analysis of slow-fast systems proceeds by forming concatenations of solutions of the fast sub-
system and the slow subsystem and then using either geometrical or topological methods to
show that the full system (1.1) has a solution in the neighborhood of this concatenation.
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We assume that the function g(x, z) depends only on a subset y of the x variables. Then
the dynamics of the slow subsystem depends only on the value of y on the set of equilibria
0 = f(x, z). In particular, let h be a function such that y = h(x) and y ∈ Rk with k � n.
Then the slow-fast analysis of (1.1) is equivalent to the analysis of the open loop system [2, 4]

(2.2) ẋ = f(x, z), y = h(x)

in combination with the slow equation

ż = εg(y, z),

where it is understood that y needs to be evaluated only at the equilibria satisfying 0 = f(x, z).
In the language of control theory, z is the input, x is the state, h(x) is an output function,
and y is the output of the open loop system.

Example 1. We introduce a simple illustrative example. Consider

ẇ = −w + 2y,

ẏ = −y(y2 − 1) + w − z,(2.3)

ż = ε(4y − z).

Here the x = (w, y) are fast variables, and z ∈ R is the slow variable. Note that the function
g(x, z) = 4y − z does not depend on all state variables x := (w, y) but only on the variable y.
Therefore the output function h is a projection from the state (w, y) to the second coordinate y.
The open loop system consists of the first two equations with z as an input and the output
function y = h(w, y).

The concept of an open loop system leads naturally to the concept of an input-output
characteristic, which we define next. Such a characteristic is usually a function; however, for
our purposes we will need a more general notion of a multivalued input-output characteristic.

Definition 2.1. We say that the controlled dynamical system

(2.4) ẋ = f(x, z), y = h(x)

is endowed with an input-state characteristic kx(u) : Z → X, Z ⊂ R, X ⊂ Rn, if for
each constant input z(t) ≡ z̄ there exists a (necessarily unique) globally asymptotically stable
equilibrium kx(z̄) of system (2.4). We also define the input-output characteristic as

k(z) := h(kx(z)), k : Z → Y, Z ⊂ R, Y ∈ Rk.

A multivalued input-state characteristic [18] assigns for each constant input z(t) ≡ z̄ a fi-
nite set of equilibria kx(z̄) of system (2.4) that attracts a generic set of initial data. The
multivalued input-output characteristic is the value of the output function h on the set kx(z):

y := k(z) := h(kx(z)), k : Z → Y, Z ⊂ R, Y ∈ Rk.

In Example 1 the open loop system admits a multivalued input-state characteristic, which
consists of the set of equilibria given implicitly by

(2.5) C := {(x, y, z) | z = −y(y2 − 1) + w, w = 2y}.
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For each z there are one, two, or three equilibria in C, corresponding to one, two, or three
roots of z = −y(y2 − 1) + 2y = −y(y2 − 3). Since the output function y = h(w, y) is a
projection to the y-coordinate, the input-output characteristic y = k(z) is given implicitly by
z = −y(y2 − 3).

We now focus on the special case of existence of relaxation-type periodic orbits in the fast-
slow system (1.1). We assume for simplicity that k = 1 and thus y ∈ R is scalar. We will take
the previous discussion a step further and realize that the existence of the relaxation periodic
orbit does not depend on the dynamics of the fast system itself, but only on the static shape of
the set of equilibria and its relationship with the slow flow nullcline g(y, z) = 0. More precisely,
only the relative positions of the input-output characteristic y = k(z), which captures the value
of y on the set of equilibria, and the nullcline g(y, z) = 0 set up the necessary geometry for
the existence of a relaxation periodic orbit. From this there is only a small step to realizing
the characteristic y = k(z) as a nullcline in a planar system

ẏ = k−1(y)− z,(2.6)

ż = εg(z, y),

where we replaced the first equation in (1.1) by a scalar equation involving just the output
variable y of (2.2). Notice that since k(z) is multivalued, we need to use its inverse which we
assume is single-valued. We will use this planar system as a toy system that captures all the
essential parts of the system (1.1) needed to establish existence of a relaxation periodic orbit
in (1.1).

For Example 1, since k−1(y) = −y(y2 − 3), we construct the toy system (2.6) as

ẏ = −y(y2 − 3)− z,

ż = ε(4y − z).

A qualitative description of the dynamics of this system is shown in Figure 1.
The remaining two assumptions are the negative feedback ∂f

∂z < 0 and the monotonicity of
(2.2). The first is used to establish that the multivalued characteristic is weakly nonincreasing
[10] in section 3 and therefore has a shape similar to that of Figure 1. The second key ingredient
is the monotonicity of (2.2); as we noted in the introduction, this is essential to proving that
the solutions coming off of the knees of the manifold of equilibria reach the remaining branch
of the equilibria.

We now briefly review essentials of the monotone system theory and then proceed to
precise formulation of the assumptions that we have just outlined. For more background on
monotone systems we refer the reader to [2, 35]. A cone is a closed, convex set with nonempty
interior and with αK ⊂ K for α ∈ R+ and K ∩ (−K) = {0}. If a space X is endowed with a
cone Kx, we will write

x � y iff x− y ∈ Kx, x 	 y iff x � y, x 
= y, and x 		 y iff x− y ∈ intKx.

We say that two points x, y ∈ X are order related if either x 	 y or y 	 x with respect to
cone Kx. We assume that the input space Z, the state space X, and the output space Y each
has a distinguished cone Kz ∈ Z, Kx ∈ X, and Ky ∈ Y . Since both Z, Y ⊂ R, the cones Kz

and Ky may be either R+ or R−, and we assume that both are R+.
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We say that the controlled dynamical system (2.2) is a monotone system with outputs if
the following two implications hold:

z1(t) � z2(t) ∀t, x1 � x2 =⇒ ψ(t, x1, z1) � ψ(t, x2, z2),

x1 � x2 =⇒ h(x1) � h(x2),

where ψ is the flow generated by (2.2) and the � is with respect to appropriate cones. We
say that the controlled dynamical system is strongly monotone if it is monotone and

z1(t) � z2(t) ∀t and x1 	 x2 =⇒ ψ(t, x1, z1) 		 ψ(t, x2, z2) ∀t > 0.

Infinitesimal characterizations of monotonicity, which are more suitable for verification, can
be found in [2] and [35].

Our assumptions come in three groups. The first set will establish the existence of a
cubic-like set of equilibria and is placed on the multivalued characteristic y = k(z). The
second set of assumptions are assumptions on the monotonicity and the general structure of
the system. Only the last set of assumptions is placed directly on the full system (1.1). With
one exception, these assumptions hold for a generic function f , that is, for an f in an open
and dense subset of C2 functions Rn+1 → Rn in the compact-open topology. Since we are
interested in the existence of a stable periodic orbit we impose a nongeneric assumption that
the equilibria on the branches analogous to the upper and lower branches in Figure 1 are
stable.

Assumption 1. Assume that the characteristic k(z) satisfies the following:
• There are values 0 < zmin < z1 < z2 < zmax in Z such that the characteristic y = k(z)

is single-valued in [zmin, z1) and (z2, zmax] and multivalued in [z1, z2].
• For each z ∈ [zmin, zmax] the values k(z) are order-related with respect to the cone Ky.
• Two branches Vtop := maxz∈[zmin,z2){k(z)} and Vbot := minz∈(z1,zmax]{k(z)} satisfy

g(z, Vbot) < 0 and g(z, Vtop) > 0.

• The set of values k(z) is connected, and k−1(z) is single-valued.
Assumption 1 implies that k(z) has a shape similar to the cubic-like curve in Figure 1 with

some important differences. We assume only that between z1 and z2 the system is multistable
and thus it may have more than the three equilibria depicted in Figure 1.

It follows from (2.5) that in Example 1 we have z1 = −2, z2 = 2, and for all z ∈ (−2, 2)
there are three equilibria of the form (2y1, y1), (2y2, y2), (2y3, y3), where y1 ≤ y2 ≤ y3 solve
z = −y(y2− 3). It follows that the equilibria are ordered with respect to the positive orthant.
This verifies the first two subassumptions. Since the slow nullcline z = 4y intersects the cubic-
like set C (2.5) only at the point (0, 0, 0), the third subassumption follows by inspection. Since
k−1(z) = −y(y2 − 3) the last subassumption holds as well.

Assumption 2. Assume that the following hold:
• For all z the system (2.1) is strongly monotone, ∂f

∂z < 0, and its solutions are bounded.
• We denote by kx(z) the input-state characteristic of (2.1). We assume that h is injective

on the set of equilibria kx(z), u ∈ [zmin, zmax].
• The matrix dF (x∗, z∗) with F = (f, εg)T and (x∗, z∗) an equilibrium in Mtop :=
h−1(Vtop) or in Mbot := h−1(Vbot) is irreducible.
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In Example 1 the off-diagonal entries in the Jacobian of the fast system are positive for
any z. This implies that the fast system is cooperative and irreducible and therefore strongly
monotone [35]. The rest of the subassumptions are straightforward to verify.

Assumption 3. Assume that for the system (2.1) the following hold:
• There is δ > 0 such that for all z ∈ [z1−δ, z2) the upper branch Mtop consists of stable

equilibria and for all z ∈ (z1, z2+δ) the lower branchMbot consists of stable equilibria.
• At z = z1 and at z = z2 the set of equilibria kx(z) undergoes a generic saddle-node

bifurcation.
• Homoclinic orbits, if they exist, are isolated.
• Solutions of (2.1) with z = z1 and z = z2 on the unstable manifold of the semistable

equilibrium at the limit-point bifurcation converge to the set of equilibria. Recall that
by [35, Theorem 4.3] in a strongly monotone system for a generic x ∈ Rn, ω(x) is
contained in the set of equilibria. Therefore this subassumption is generic in the class
of functions satisfying Assumption 1.

In Example 1, the stability analysis reveals that the equilibria corresponding to the upper
and lower branches of the cubic z = −y(y2 − 3) are stable and the middle equilibrium is
unstable. This verifies the first subassumption, which is the only nongeneric subassumption
in this set.

Theorem 2.2. Assume Assumptions 1, 2, and 3. Then the original system (1.1) admits a
periodic orbit for all sufficiently small ε.

We now outline the proof of the main result. In section 3 using geometrical techniques
we show that if the characteristic satisfies Assumption 1, the model system (2.6) admits a
positively invariant set in the shape of an annulus. Existence of such a set together with
a Poincaré section implies existence of a periodic orbit in R2. There is a generalization of
this result to higher-dimensional spaces, based on the Conley index theory, due to McCord,
Mischaikow, and Mrozek [26]. We will use the existence of the positively invariant set in R2 to
construct such a set in Rn+1 (the phase space of the full system (1.1)) and verify the assump-
tions of McCord’s result. We first identify a two-dimensional manifold in the neighborhood of
the equilibria of the system (2.1) which can be mapped diffeomorphically to a neighborhood
of the set of equilibria of the model problem. This map is an extension of the output map h
and respects the direction of the flow. We can extend this map to a neighborhood of the
connecting orbits from the knee of Mtop to Mbot and from the knee of Mbot to Mtop. The
key fact that these connections exist in Rn uses Assumptions 2 and 3. The inverse image by
this map takes the annular neighborhood of the equilibria of the model problem (2.6) to a
set, which can be extended to a neighborhood of the equilibria of (2.1). We show that for
all ε small enough this neighborhood is an isolating neighborhood for system (1.1), and we
compute its Conley index. After verifying that the neighborhood admits a Poincaré section,
we conclude that there is a periodic orbit in the neighborhood for all sufficiently small ε.

3. The model problem. We now consider a planar problem (2.6) and its fast subsystem
(4.1). Let V := {(y, z) ∈ R2 | z = k−1(y)}. When we view the curve V as a set of equilibria
of (4.1), at z = z1 and z = z2 (z1 < z2) this system undergoes limit-point bifurcations. Let
(y1, z1) and (y2, z2) be the corresponding points on V . Since the multivalued characteristic
y = k(z) arises from a negative feedback system, it is weakly nonincreasing [10]. It follows that
Vtop = {(y, z) ∈ V | y > y2, z ∈ [zmin, z2)} and Vbot = {(y, z) ∈ V | y < y1, z ∈ (z1, zmax]}.
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Since (y1, z1) is a limit-point bifurcation point, there is another branch of equilibria, which
we denote V 1

mid, that joins Vbot and terminates at (y1, z1). Similarly, in the neighborhood of
(y2, z2) there is a branch of equilibria V 2

mid that joins Vtop and terminates at (y2, z2). We do
not need to assume that V 2

mid is a part of the same branch as V 1
mid, even though in our figures

we will do so. We need only existence of these branches near the points (yi, zi), i = 1, 2. In
order to ease the notation we will denote both local manifolds V 1

mid and V 2
mid by Vmid. We

define

Mmid := h−1(Vmid).

We denote by Z a curve in R2, depicted in Figure 2(a), that consists of Vbot ∪ Vtop and the
two vertical connecting pieces. Let

G := {(y, z) ∈ R2 | g(z, y) = 0}.

By Assumption 1 the set G does not intersect Vtop ∪ Vbot.

Z

z
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G H
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M

N

y

G

k−1(y) + η

k−1(y)− η

A B

Figure 2. (a) The Z curve. (b) The set N in the neighborhood of the Z curve that is positively invariant
under the flow of (2.6).

We now recall a classical construction, which can be found in Lefschetz [24] and Hale [21].

Lemma 3.1. For any δ > 0 there exist an ε0 > 0 and an open set N , lying within a distance
δ of Z, that is positively invariant for (2.6).

Proof. The construction is seen most easily with the aid of a picture; see Figure 2(b). We
construct the boundary of the set N . Draw graphs of z = k−1(y) ± η for some constant η;
take a point A on the graph of z = k−1(y) + η just above (in y-coordinate) the right turning
point (z2, y2) of z = k−1(y) + η. Note that for sufficiently small η the point A is above G; we
assume that η has this property. Now we draw a line with negative slope to a point B on the
curve G, and then draw a vertical line to a graph z = k−1(y) at point C. This is followed by
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a horizontal line to a point D on the graph of z = k−1(y) − η and then a piece of the graph
of z = k−1(y) − η to a point E just below the left turning point (z1, y1) of z = k−1(y) − η.
Here we again assume that η is sufficiently small so that E is below the curve G. This point is
symmetric to the point A, and we finish the construction in a symmetric way by constructing
points F , G, and H. This finishes the outer boundary of N . The inner boundary consists of
two pieces of graphs z = k−1(y) ± η, two vertical pieces, and two pieces with positive slope
(Figure 2(b)).

Now we show that the flow of (2.6) is pointing inward on the outer boundary of N . As
a guide we will use the vector field generated by (4.1); if it points inward on the boundary
of N , so does the vector field of (2.6) for small ε. On the segment AB the slope is negative,
and the vector field of (4.1) is vertical and pointing down so it points in on AB. Analogous
reasoning applies for segments CD and DE, using the fact that E is below the left turning
point of z = k−1(y) − η. By symmetry, the vector field points in on EF , GH, and HA. The
argument for BC and FG cannot be made using (4.1), since these lines are vertical. However,
by Assumption 1 the second equation in (2.6) causes the vector field to point left along BC
and right along FG, as desired.

Analogous arguments can be used for the inner boundary, and by choosing η sufficiently
small, we can make N to be in a δ neighborhood of Z for any δ > 0.

4. Relating (2.1) to the toy problem. In this section we investigate the relationship
between dynamics of the parameterized system (2.1) in Rn and the scalar parameterized
system

(4.1) ẏ = k−1(y)− z, ż = 0.

An immediate observation is that the multivalued input-state characteristic of (4.1) with
input z is y = k(z) since we made the output y of (2.6) the state of the system (4.1). Hence
the input-state characteristic x = kx(z) of (2.6) is related to the input state characteristic of
k(z) = h(kx(z)) of (4.1) by the output map h. We now analyze the consequences of these
observations and Assumption 1 for the fast subsystem (2.1).

Lemma 4.1. Assume all assumptions of Theorem 2.2.
1. The pair (x∗, z∗) is an equilibrium of (1.1) if and only if the pair (y∗, z∗), y∗ = h(x∗),

is an equilibrium of (2.6).
2. The pair (x∗, z∗), for some x∗ ∈ kx(z

∗), is an equilibrium of (2.1) if and only if the
pair (y∗, z∗) with y∗ = h(x∗) is an equilibrium of (4.1).

3. The system (4.1) undergoes a limit-point bifurcation at z = z∗ if and only if (2.1)
undergoes a limit-point bifurcation at the same value of z = z∗.

4. Mbot ∩Mtop = ∅.
Proof. 1. The equilibria of (1.1) satisfy f(x,−z) = 0, g(z, y) = 0, and y = h(x). By

the definition of the input-state characteristic kx, which takes z to a set of equilibria of
ẋ = f(x,−z), this is equivalent to

f(x,−k−1
x (x)) = 0, y = h(x), g(z, y) = 0.

Using the first two equations we have

z = k−1
x (x) = k−1

x (h−1(y)) = k−1(y).
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These, together with g(z, y) = 0, are the equations for the equilibria of (2.6).
2. The proof follows from the same argument.
3. The proof follows by applying the output function h to the set of equilibria kx(z) of

(1.1). Since h is C2 and 1-1 on the set of equilibria, it maps the set kx(z), z ∈ [zmin, zmax],
diffeomorphically onto the set k(z), z ∈ [zmin, zmax].

4. The proof follows from the fact that h is a homeomorphism on the set of equilibria,
once we show that Vbot ∩ Vtop = ∅. To show this claim observe that by Assumption 1 there
are multiple ordered equilibria for z ∈ [z1, z2]. Thus the maximal equilibrium is disjoint from
the minimum equilibrium for each z ∈ [z1, z2]. Since only Vtop is defined for z ∈ [zmin, z1) and
Vbot is defined for z ∈ (z2, zmax], the sets Vbot and Vtop are disjoint.

The essential step in the description of the correspondence between (4.1) and (2.1) is a
definition of special coordinates in the neighborhood of the set of equilibria of (2.1). We start
by using the Lyapunov–Schmidt reduction [20] at the limit-point bifurcation (z1, x1). Since
the limit-point bifurcation at z1 is generic, by [20, Proposition 9.1] in the neighborhood U1 of
the point (z1, x1) there are local coordinates (z, q1, q2) ∈ R×R ×Rn−1 in which the flow of
(2.1) has the form

q̇1 = (z − z1)− q21,(4.2)

q̇2 = A1(z)(q1, q2)
T + h1(z, q1, q2),

where h1(q, z) = O(||q||2) as ||q|| → 0. Since we assume that Mbot consists of stable equilibria
(Assumption 3) all eigenvalues of A1(z) are negative and bounded away from zero.

Similarly, near (z2, x2) there are local coordinates (z, w1, w2) ∈ R×R×Rn−1 in a neigh-
borhood U2 of (z2, x2) in which the flow of (2.1) has the form

ẇ1 = (z2 − z)− w2
1,(4.3)

ẇ2 = A2(z)(w1, w2)
T + h2(z, w1, w2),

with h2 and A2 having the same properties as h1 and A1, respectively. By taking U1 and U2

smaller, if necessary, we can assure that Ui∩G = ∅ for i = 1, 2. Further, since the bifurcations
at z1 and z2 are generic, and equilibria on Mtop andMbot are stable in U2 and U1, respectively,
we can assume without a loss of generality that all equilibria in (U1 ∪ U2) ∩ Mmid have a
one-dimensional unstable manifold. Now we prove a global result which uses in an essential
way the fact that for each fixed z the system (2.1) is monotone. This result has been proved
in [19], but since it is the key to the results of this paper, we reprint it here for completeness.

Lemma 4.2. Assume all assumptions of Theorem 2.2. Take x in the branch of the unstable
manifold of a point w ∈Mmid∩U2 that leaves U2 in finite time. Then ω(x) ⊂Mbot. Similarly,
for x in the branch of the unstable manifold of a point w ∈Mmid ∩U1 that leaves U1 in finite
time, we have ω(x) ⊂Mtop.

Proof. We prove only the first part, since the proof of the second part is analogous. Let

π : U2 ×Rn → U2

be the coordinate projection. The system (2.1) generates a parameterized flow ψ; that is, for
each fixed z, the flow preserves the z-slice of the phase space. We denote the induced flow
by ψz. Let (μ, z2] be the set of all values of z in π(U2) smaller than z2.
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Take arbitrary z ∈ (μ, z2]. Then by (4.3) there are two equilibria wz
mid and wz

top in U2,
the second being stable and the first with a one-dimensional unstable manifold. Further,
one branch of the unstable manifold of wz

mid connects to wz
top. We denote by Ξz the other

branch of W u(wz
mid). By Assumption 1 and continuity, for sufficiently small μ there is a single

additional equilibrium of ψz; it lies on Mbot, and we denote it by wz
bot.

We now show that there is an interval (ν, z2] ⊂ (μ, z2] such that for all z ∈ (ν, z2] and all
xz ∈ Ξz, ω(xz) = wz

bot.

First, for a generic f (Assumption 3) and all xz2 ∈ W u(wz2
mid) = Ξz2 the omega-limit set

ω(xz2) is contained in the set of equilibria. Further, by assumption the flow ψz is strongly
monotone. It follows from [35, Theorem 4.3] that for a generic x ∈ Rn, ω(x) is contained in
the set of equilibria. Therefore there is μ1 < z2 such that for all z ∈ (μ1, z2] and all xz ∈ Ξz,
ω(xz) is contained in the set of equilibria.

Since the bifurcation at z = z2 is generic (Assumption 3), there are no homoclinic orbits to
wz2
mid. Further, for a generic f (Assumption 3), the homoclinic orbits are isolated. Therefore

there is a μ2 with μ1 ≤ μ2 < z2 such that for all z ∈ (μ2, z2] and any xz ∈ Ξz, the omega-limit
set ω(xz) 
= wz

mid.

Finally, since by Assumption 2 all solutions of (2.1) are bounded, for all z ∈ (μ2, z2] and
all xz ∈ Ξz either ω(xz) = wz

top or ω(xz) = wz
bot. We first note that these conditions are open;

that is, if ω(xz0) = wz0
bot, then for all z with |z − z0| sufficiently small we have ω(xz) = wz

bot

for all x ∈ Ξz. Therefore either there is a ν with μ2 ≤ ν < z2 such that for all z ∈ (ν, z2]
and all xz ∈ Ξz we have ω(xz) = wz

bot, or there is a sequence {ζn}∞n=1 ⊂ (μ2, z2] such that

limn→∞ ζn = z2 such that for all xζn ∈ Ξζn , ω(xζn) = wζn
top.

We assume the second case and show that this leads to a contradiction. Observe that
in the second case all solutions on both branches of W u(wζn

mid) converge to the point wζn
top,

and this is true for all n. By continuity and by the fact that the bifurcation at z2 is generic,
there exists a periodic orbit for z > z2, with z − z2 � 1; see Figure 3. Since the branch Mtop

consists of stable equilibria, this periodic orbit must be stable for z > z2, with z − z2 � 1.
This contradicts the fact that the stable periodic orbits do not exist in monotone dynamical
systems [35, Theorem 4.3]. Therefore there is an interval (ν, z2] such that for all z ∈ (ν, z2] and
all xz ∈ Ξz, ω(xz) = wz

bot. The result now follows if we choose U2 satisfying π(U2) ⊂ (ν,∞).

A similar argument proves the statement for the neighborhood U1.

Let

M := Mtop ∪Mbot ∪ (Mmid ∩ (U1 ∪ U2)).

We extend the local coordinates defined around the bifurcation points to a neighborhood
of M.

Lemma 4.3. There is a neighborhood U of M with U1 ∪U2 ⊂ U and coordinates (z, p, q) ∈
R×R×Rn−1 in U in which the flow (2.1) has the form

ṗ = h(z, p),

q̇ = A(z)(p, q)T +H(z, p, q)

such that

1. in U1 the coordinates (p, q) agree with the local coordinates (q1, q2) defined in (4.2);
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zz2

Figure 3. Limit-point bifurcation gives rise to a stable periodic orbit.

2. in U2 the coordinates (p, q) agree with the local coordinates (w1, w2) defined in (4.3);
3. H(z, p, q) = O(||(p, q)||2) as ||(p, q)|| → 0;
4. all eigenvalues of A(z) are negative and bounded away from zero.
Proof. We outline the proof; for details see [19]. The main task is to extend the coordi-

nates (w1, w2) ∈ U2 to a neighborhood of Mbot and the local coordinates q1, q2 from U2 to a
neighborhood of Mtop.

We first note that if Aw is a linearization of (2.1) at w = Mbot ∩ π−1(λ), then the map
x→ Awx is monotone with respect toKX [3, Lemma 6.4] and the matrix Aw admits a Perron–
Frobenius eigenpair (μw, ew). Since the equilibrium w is stable, the eigenvalue μw ≤ 0. Since
by Assumption 2 matrices Aw are irreducible, by Corollary 3.2 of [35] the real part of the
rest of the spectrum is strictly smaller than μw. Since the spectrum of A(z) contains all
eigenvalues of Aw except μw, the last statement follows. We use a result of Brunovský [7] to
select a one-dimensional stable manifold that is tangent to the eigenvector ew, which changes
continuously with the base point w. The technical difficulties are related to the fact that
such a manifold is not necessarily unique and some care has to be applied to its construction;
see [19].

Definition 4.4. Using the coordinates of Lemma 4.3, we define a two-dimensional manifold
in the neighborhood U of M (see Figure 4):

U := {(z, p, q) ∈ U | q = 0}.
Having defined local coordinates in the neighborhood U of M, we relate them to local

coordinates in the neighborhood of V via the map h. Recall that ψ denotes the parameterized
flow of (2.1), and let ϕ denote the parameterized flow of (4.1).

Define a mapping F : U → R2 in two stages. First, since (4.1) undergoes a generic limit-
point bifurcation at z = z1 and the parameterization of M is continuous, the map h induces
a diffeomorphism F taking M to V in such a way that Mtop, Mbot, and Mmid map to Vtop,
Vbot, and Vmid. Take an arbitrary wz0

top ∈Mtop. Let B be a neighborhood of z0 in (zmin, zmax),
and let UB := {(z, p, q) ∈ U | z ∈ B, q = 0} be a two-dimensional manifold that is foliated by
one-dimensional stable submanifolds W s(wz

top), z ∈ B. There is also a neighborhood Ū ∈ R2

of F (wz0
top) that is foliated by the stable manifolds of points F (wz

top), z ∈ B. We extend F
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Figure 4. Map F maps the two-dimensional manifold in the neighborhood of the set M to its image in
R2. The flow ψ (left), generated by (2.1), is orbit equivalent to the flow ϕ (right), generated by (4.1). The
neighborhoods U1 and U2 of the turning points on M are also indicated.

to UB in such a way that it maps flow lines of ψ on UB to flow lines of ϕ on Ū and preserves the
direction of the flow. By a similar argument we can define the map F on a neighborhood UB

of an arbitrary point wz0
bot.

Since both systems undergo generic limit-point bifurcations, the map F can be defined in
the union U1 ∪ U2.

Definition 4.5 (see [23]). Two Cr flows, ϕ on M and ψ on N , are Cm orbit equivalent
(m ≤ r) if there is a Cm diffeomorphism h :M → N such that χ(t) = h ◦ψ(t) ◦h−1 is a time
reparameterization of the flow ϕ.

We summarize our previous construction in the following lemma.

Lemma 4.6. The flow ψ restricted to U is orbit equivalent to the flow ϕ in the neighborhood
of V := F (U), via the map F .

Note that the set V does not contain a full neighborhood of the curve Z from Figure 2(a).
We now extend the map F so that it is defined on neighborhoods of trajectories starting at
the knees of M and connecting to the other branches of M. By Lemma 4.2 the omega-limit
set of x ∈ U ∩ U1 lies in Mtop, and the omega-limit set of x ∈ U ∩ U2 lies in Mbot. In a
straightforward way the flows ψ and ϕ can be used to extend the map F to the set

⋃
x∈U2∪U1

⋃
t≥0

ψ(t, x).

We call the resulting map, defined on

H := U ∪
⋃

x∈U2∪U1

⋃
t≥0

ψ(t, x),

again F . Observe that F (H) contains a neighborhood of the curve Z in Figure 2.

4.1. Lifting of the planar problem. Let ψε denote the flow of (1.1), and let ϕε denote the
flow of (2.6).

A set N is an isolating neighborhood if InvN ⊂ intN , that is, if the maximal invariant
set S in N lies in the interior of N .
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An isolating neighborhood N is an isolating block if ∂N = N+ ∪ N−, where N− is the
immediate exit set

N− := {x ∈ N | ϕ([0, t], x) 
⊂ N ∀t > 0},
N+ is the immediate entrance set

N+ := {x ∈ N | ϕ([t, 0], x) 
⊂ N ∀t < 0},
and both N+ and N− are subsets of local sections of the flow.

Lemma 4.7. Let N ′ := F−1(N) ⊂ H, where N ⊂ R2 is the neighborhood of the Z-curve
constructed in Lemma 3.1.

Then there are a neighborhood N of N ′ in Rn+1 and ε0, such that N is positively invariant
under ψε for all ε < ε0 and ε0 sufficiently small. In particular, N is an isolating block under ψε.

Proof. We will extend the set N ′ ⊂ H to its neighborhood N ∈ Rn+1, i.e., a set with a
nonempty interior, in such a way that the flow ψε on the boundary is transversal inward. This
will imply that N is an isolating block.

There are two main ingredients to the construction. The first is to construct a neigh-
borhood of Mtop and Mbot; the second is the construction of the neighborhood along the
connections between the knee of Mtop and Mbot and the knee of Mbot and Mtop. To do the
first part we use the local coordinates in U1 of Lemma 4.3. Since the matrix A1 has spectrum
bounded away from zero, there are η > 0 and

K1 := {(q1, q2) ∈ U1 | q1 ∈ N ′ ∩ U1, |q2| ≤ η1},
such that ψε points inward on the part of the boundary ∂K1 given by

{(q1, q2) ∈ U1 | q1 ∈ N ′ ∩ U1, |q2| = η1}.
Now we need to check the other parts of the boundary. Lemma 4.6 and continuity imply that
for sufficiently small η the flow ψε for small ε points inward on ∂K1 ∩F−1(FE); see Figure 2.
Since ż < 0 on ∂K1 ∩ F−1(ML), the flow ψε points inward on ∂K1 ∩ F−1(ML).

Since W u(Mmid) ∩ ∂K1 
= ∅, there is a neighborhood B1 of W u(Mmid) ∩ ∂K1 such that
the vector field of (1.1) points outward in B1. Finally, we extend K1 along Mbot to

K̄1 := {(q1, q2) ∈ U | q1 ∈ N ′, |q2| ≤ η′1},
which coincides with K1 in U1. Since by Lemma 4.3 A(z) has negative eigenvalues bounded
away from zero, we can choose η′1 small enough so that ψε points inward on ∂(K1∪K ′

1) except
for the set B1 ⊂ ∂K1.

A similar construction can be done in the neighborhood U2 of the other bifurcation point
to construct K2 and then extend K2 to a neighborhood K̄2 of Mtop ∩ N ′. Then flow ψε

points inward along the boundary ∂(K2 ∪ K ′
2), except for a neighborhood B2 ⊂ ∂K2 of

W u(Mmid) ∩ ∂K2. This finishes the first step of the construction.
The second step in the construction of the set N is to extend N ′ along the preimages by F

of the vertical connections from the turning points to the other branch of V .
Take the set B1 ⊂ K1 and flow it forward by the flow ψ. By choosing η smaller, if necessary,

we can assure that ψ(x, t(x)) ∈ int K̄2 for all x ∈ B1 and some t(x), which depends on x. The
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flow ψ between B1 and the arrival in K̄2 is a parallelizable flow. Take B̄1 a neighborhood of
the set B1 and set

X̄1 :=
⋃

x∈B̄1, t∈[0,t(x)]
ψ(t, x), X1 :=

⋃
x∈B1, t∈[0,t(x)]

ψ(t, x).

We shave the set X̄1 in the way indicated in Figure 5 (right) in such a way that the flow ψ
points inward along its boundary. The same property then holds for ψε for small ε.

B1

B1

B̄1

X1

X̄1

B2
K̄2

K1

K ′
1

K̄1

K̄2

K2

K ′
2

p

q

Figure 5. Left: A projection of various sets into a two-dimensional manifold Ū. Right: Shaving between
flow boxes X1 and X̄1. The picture on the right is in complementary directions to the picture on the left.

We call this set K ′
1 and construct an analogous set K ′

2 by flowing the exit set B2 of K2

until it enters K̄1. Let
N := K1 ∪K ′

1 ∪ K̄1 ∪K2 ∪K ′
2 ∪ K̄2.

By construction the flow ψε points inward along the boundary ∂N .

5. The Conley index theory. We recall basic definitions of the Conley index theory [9].
Recall that a set N is an isolating neighborhood if InvN ⊂ intN , that is, if the maximal
invariant set S in N lies in the interior of N . Such a set S is an isolated invariant set.

The pair of compact sets L ⊂ N is an index pair for an isolated invariant set S if
1. S = Inv(cl(N \ L)) and N \ L is a neighborhood of S;
2. L is positively invariant in N , i.e., if x ∈ L and ϕ([0, t], x) ⊂ N , then ϕ([0, t], x) ⊂ L;
3. L is an exit set for N ; i.e., given N and T > 0 such that ϕ(T, x) /∈ N , there is t ∈ [0, T ]

such that ϕ([0, t], x) ⊂ N and ϕ(t, x) ∈ L.
Observe that if N is an isolating block, then (N,N−) is an index pair.

The cohomological Conley index CH(N ) of an isolating neighborhood N is defined as a
cohomology

CH(N ) := H∗(N,L).

It can be shown [9] that the index is independent of the choice of the index pair and the
choice of the isolating neighborhood. In fact, it depends only on the maximal invariant set
S := InvN , and thus we use the notation CH(S) and talk about the Conley index of an
isolated invariant set S.

Given the isolating neighborhood N and the flow ϕ, we say that Σ is a Poincaré section
for ϕ in N if Σ ∩N is closed and for every x ∈ N

ϕ(x, (0,∞)) ∩ Σ 
= ∅.
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Now we are ready to recall a theorem relating the Conley index of N to the existence of a
periodic orbit in N .

Theorem 5.1 (see [26, Theorem 1.3]). Assume that X is an absolute neighborhood retract
and Ψ : X × [0,∞) → X is a semiflow with compact attraction. If N is an isolating neigh-
borhood for ψ which admits a Poincaré section Σ and either

dimCH2n(N,Ψ) = dimCH2n+1(N,Ψ) for n ∈ Z

or

dimCH2n(N,Ψ) = dimCH2n−1(N,Ψ) for n ∈ Z,

where not all the above dimensions are zero, then Ψ has a periodic trajectory in N .

6. Proof of Theorem 2.2. We apply Theorem 5.1 to the neighborhood N ∈ Rn+1 and
the flow ψε for a sufficiently small ε. First we observe that Rn+1 is an absolute neighborhood
retract and all flows ψε are trivially semiflows with compact attraction.

Next we verify that N admits a Poincaré section. We start with the set B1 defined in
Lemma 4.7. All trajectories starting at B1 must enter the set K̄2 in finite time. Since u̇ > 0
in K̄2 and the flow on the boundary of N points inward, these solutions have to enter K2 in
finite time. In K2 we still have u̇ > 0, so there is no invariant set in K2. Since B2 is the exit
set of K2, all the trajectories entering K2 have to leave through B2 in finite time. Therefore
all trajectories starting at B1 arrive at B2 in finite time. A symmetric argument starting
at B2 finishes the proof that B1 is a Poincaré section of N .

We can make a cohomology calculation for the flow (2.6). Since N is an annulus in the
plane,

H∗(N) =

{
Z for ∗ = 0, 1,
0 otherwise.

Now we compute the Conley index of N . By Lemma 4.7 N is an isolating block, and the
flow on the boundary is inward. It follows that (N , ∅) is an index pair. Therefore

CH∗(N ) = H∗(N , ∅).

By construction of N this set is a topological product of the set N ′ and a small (n − 1)-
dimensional disc Dn−1 in the q-directions (Lemma 4.3). Therefore

H∗(N , ∅) = H∗(N ) = H∗(N ′ ×Dn−1) = H∗(N ′) = H∗(F−1(N)).

Finally, since F is a homeomorphism, we have

H∗(F−1(N)) = H∗(N).

Therefore CH∗(N ) = H∗(N), and the Conley index satisfies the assumptions of Theorem 5.1.
Therefore N contains a periodic orbit for all sufficiently small ε.

7. Cell cycle model in Xenopus. Over the last 15 years great strides have been made to-
ward understanding of a cell cycle oscillator both experimentally [30] and using mathematical
models [31, 32, 29, 37]. Several experimental papers [31, 32] suggest that the abrupt change
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Figure 6. Schematic description of the cell cycle engine with names of model variables indicated. Cdc2
(rectangle) and cyclin (oval) form a heterodimer, which can be phosphorylated on two distinct residues, Tyr15
and T161. Phosphorylation on the Tyr15 residue is catalyzed by the dephosphorylated form of a kinase Wee1,
while the opposing phosphatase is the phosphorylated form of Cdc25. The active Cdc2-cyclin dimer (y4) is
phosphorylated on Thr161, but not on Tyr15. It phosphorylates both Cdc25 and Wee1, activating Cdc25 and
deactivating Wee1. In addition, the active form of Cdc2-cyclin activates ubiquitin ligase APC through an
intermediary Plx. APC degrades cyclin, which causes destruction of all forms of Cdc2-cyclin dimers. For the
sake of clarity, we show the full regulation of Cdc25 and Wee1 only on the top part of the phosphorylation
square and destruction of Cdc2-cyclin dimer in only one of its forms.

that signals entry into the M-phase of the cycle is caused by the bistability generated by
the positive feedback loops, while the negative feedback loop supplies the recovery feedback
necessary for a periodic oscillation. A model incorporating these ingredients was proposed
and numerically analyzed by Novak and Tyson [29] and used later by Pomerening and others
(see [31, 32]). Tyson and his collaborators [29, 37] developed a series of models that corre-
late the observed progression through the checkpoints along the cell cycle to the bifurcation
diagrams of the dynamics. Bifurcation diagrams capture the essential dynamics but do not
provide a rigorous connection between the periodic orbit and the bistable set of equilibria.
The approach developed in this paper links the cell cycle oscillation directly to the relaxation
oscillation on a bistable curve of equilibria.

We now review basic biological building blocks that underlie the control of the cell cycle
[37] in Xenopus embryos; see Figure 6. The central player is a heterodimer Cdc2-cyclin, whose
activity is regulated by a synthesis and degradation of cyclin and by a phosphorylation and
dephosphorylation of Cdc2.

The activity of Cdc2-cyclin is regulated by three phosphorylation sites: activation site
Thr161 and two inhibitory phosphorylation sites Thr14 and Tyr15. Since the latter sites
are always dephosphorylated simultaneously, it is sufficient to track the state of Tyr15. In
Xenopus Thr161 is phosphorylated by CAK and dephosphorylated by PP2c; the kinase that
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phosphorylates Tyr15 is Wee1, and the corresponding phosphatase is Cdc25. The active form
of Cdc2-cyclin is phosphorylated on Thr161 but not on Tyr15. The rapid onset of the M-phase
transition is brought on by rapid conversion of the doubly phosphorylated Cdc2-cyclin to its
Thr161 phosphorylated active form. There are two positive feedback loops: Cdc2-cyclin
upregulates activity of the phosphatase Cdc25 and downregulates activity of the kinase Wee1.
Since phosphatase Cdc25 promotes the active form of Cdc2-cyclin, and the kinase promotes
the inactive form of Cdc2-cyclin, both of these constitute positive feedback loops. Cdc2-
cyclin dimers are broken up by cyclin degradation, which is promoted by ubiquitin ligase
APC. Since Cdc2-cyclin activates APC, this forms a negative feedback loop. Since APC
action is significantly delayed, it is very likely that the activation of the APC is accomplished
through an intermediary.

7.1. Model development. Our model is based on the model of Pomerening, Kim, and
Ferrell [32], which has 13 variables. Three of these variables describe a Cdc2-cyclin complex
that cannot be phosphorylated at the T161 position. These represent particular mutants
used in the experiments in [32]. The remaining variables represent concentrations of cyclin
(= s), a Cdc2-cyclin weakly active [1] nonphosphorylated complex (= y1), an inactive Tyr15-
phosphorylated Cdc2-cyclin complex (= y2), an inactive Tyr15- and T161-phosphorylated
Cdc2-cyclin complex (= y3), and, finally, an active T161-phosphorylated complex (= y4).
Further, the model tracks the concentration of Cdc2 (= y5), the active form of Cdc25 (= w),
Wee1 (= u), Plx (= v), and APC (= z). The Plx is the putative intermediary in the negative
APC-mediated feedback loop. The system of equations takes the form

ṡ = ksynth − kdestsz − kay5s+ kdy1,

ẏ1 = kay5s− kdy1 − kdesty1z − kwee1uy1 − kwee1basal(wee1tot − u)y1 + kcdc25wy2

+ kcdc25basal(cdc25tot − w)y1,

ẏ2 = kwee1uy1 + kwee1basal(wee1tot − u)y1 − kcdc25wy2 − kcdc25basal(cdc25tot − w)y2 − kcaky2

+ kpp2cy3 − kdesty2z,

ẏ3 = kcaky2 − kpp2cy3 − kcdc25wy3 − kcdc25basal(cdc25tot − w)y3 + kwee1uy4

+ kwee1basal(wee1tot − u)y4 − kdesty3z,

ẏ4 = kcdc25wy3 + kcdc25basal(cdc25tot − w)y3 − kwee1uy4 − kwee1basal(wee1tot − u)y4 − kdesty4z,

ẏ5 = kdestz(y1 + y2 + y3 + y4) + kdy1 − kay5s,

ẇ = kcdc25on
y44

e4cdc25 + y44
(cdc25tot − w)− kcdc25offw,

u̇ = −kwee1off
y44

e4wee1 + y44
u+ kwee1on(wee1tot − u),

v̇ = kplxon
y34

e3plx + y34
(plxtot − v)− kplxoff v,

ż = kapcon
v3

e3apc + v3
(apctot − z)− kapcoff z.

(7.1)
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The constants and their values (below) were taken from a supplement of the paper of
Pomerening, Kim, and Ferrell [32]). Since the period of the resulting oscillation after removal
of the three equations representing species that do not occur in the wild type was T = 200,
we rescaled the time in such a way that the period changed to the experimentally observed
value T = 80. Equivalently, this can be achieved by appropriately rescaling all rate constants
below by 200/80:

ksynth = 0.4 cyclin synthesis rate kdest = 0.006 cyclin destruction rate
kwee1 = 0.05 active Wee1 kwee1basal = 0.05/15 basal Wee1

phosphorylation rate phosphorylation rate
kcdc25 = 0.1 active Cdc25 kcdc25basal = 0.1/15 basal Cdc25

dephosphorylation rate dephosphorylation rate
kcdc25on = 1.75 Cdc25 activation rate kcdc25off = 0.2 Cdc25 deactivation rate
kwee1on = 0.2 Wee1 activation rate kwee1off = 1.75 Wee1 deactivation rate
kplxon = 1 Plx activation rate kplxoff = 0.15 Plx deactivation rate
kapcon = 1 APC activation rate kapcoff = 0.15 APC deactivation rate
wee1tot = 15 total Wee1 concentration cdc25tot = 15 total Cdc25 concentration
plxtot = 50 total Plx concentration apctot = 50 total APC concentration
ecdc25 = 40 Cdc25 half-activation ewee1 = 40 Wee1 half-activation
eapc = 40 APC half-activation eplx = 40 Plx half-activation

The initial data are s = 0, y1 = y2 = y3 = y4 = y6 = y7 = y8 = w = u = v = 0 and
y5 = 230, z = 15. We will simplify the model in three steps.

1. Since according to [1, 27] (see also [16]) the nonphosphorylated Cdc2-cyclin complex y1
is weakly active, we try to simplify the equations by lumping together the inactive Tyr15
phosphorylated forms y2 and y3 and active Tyr15 nonphosphorylated forms y1 and y4. We
will replace them by new variables

y := y2 + y3 and η := y1 + y4.

Here η represents the active Cdc2-cyclin complexes, and y represents the inactive Cdc2-cyclin
complexes. Observe that this is not a simple change of variables because the weak activity
of y1 is not reflected in the system (7.1) and therefore we must replace y4 in the last four
equations and y1 in the first equation by η = y1 + y4:

ṡ = ksynth − kdestsz − kay5s+ kdη,

η̇ = kay5s− kdη − kdestηz − kwee1uη − kwee1basal(wee1tot − u)η + kcdc25wy

+ kcdc25basal(cdc25tot − w)y,

ẏ = kwee1uη + kwee1basal(wee1tot − u)η − kcdc25wy − kcdc25basal(cdc25tot − w)y − kdestyz,

ẏ5 = kdestz(y + η) + kdη − kay5s,

ẇ = kcdc25on
η4

e4cdc25 + η4
(cdc25tot − w)− kcdc25offw,

u̇ = −kwee1off
η4

e4wee1 + η4
u+ kwee1on(wee1tot − u),
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Figure 7. Comparison of the dynamics of the full model (7.1) in (a) and the reduced model (7.2) in (b).
In order to compare the appropriate variables we graph in (a) y1 + y4 (dashed green), y2 + y3 (dotted black),
u (red dash-dot), and z (solid blue), and in the reduced model we graph q (dashed green), x− q (dotted black),
u (red dash-dot), and z (solid blue).

v̇ = kplxon
η3

e3plx + η3
(plxtot − v)− kplxoff v,

ż = kapcon
v3

e3apc + v3
(apctot − z)− kapcoff z.

2. In the second step we add the first two equations and set q := s + η. We replace each
occurrence of η in the resulting sum by the new variable q. Since this addition removes the
only dependence on y5 in all equations except the y5 equation, we can drop the y5 equation.
These changes imply that we will not track separately free cyclin (s), free Cdc2 (y5), and their
active complex Cdc2-cyclin (represented by η); rather we assume that the active Cdc2-cyclin
complex is synthesized directly with the rate ksynth. This is consistent with the observation
that the free Cdc2 is constitutively expressed in excess of the available cyclin [8]. We note that
most of the experimental and modeling papers graph cyclin levels against active Cdc2-cyclin
levels to illustrate the hysteresis in the system. Therefore most of the discussion of the role
of bistability in the literature is illustrated on this particular two-dimensional projection of
the set of equilibria. The theoretical work in the first part of this paper suggests that the
proper projection should involve the negative feedback variable and the output variable of the
monotone system. The fact that combining cyclin and active Cdc2 variables does not change
the dynamics of the system (Figure 7) underscores the conclusion that the phosphorylation
of the Cdc2-cyclin complex is the central part of the cell cycle engine. With this change of
variables, the equations become

q̇ = ksynth − kdestqz − kwee1uq − kwee1basal(wee1tot − u)q + kcdc25wy

+ kcdc25basal(cdc25tot − w)y,

ẏ = kwee1uq + kwee1basal(wee1tot − u)q − kcdc25wy − kcdc25basal(cdc25tot − w)y − kdestyz,



OSCILLATIONS IN MONOTONE SYSTEMS WITH A NEGATIVE FEEDBACK 105

ẇ = kcdc25on
q4

e4cdc25 + q4
(cdc25tot − w)− kcdc25offw,

u̇ = −kwee1off
q4

e4wee1 + q4
u+ kwee1on(wee1tot − u),

v̇ = kplxon
q3

e3plx + q3
(plxtot − v)− kplxoff v,

ż = kapcon
v3

e3apc + v3
(apctot − z)− kapcoff z.

3. Our final simplification is a simple change of variables: instead of tracking q (active
Cdc2-cyclin) and y (inactive Cdc2-cyclin), we will track the total Cdc2-cyclin x := y + q and
the active compound q. This transformation considerably simplifies the second equation. The
final system is

q̇ = ksynth − kdestqz − kwee1uq − kwee1basal(wee1tot − u)q + kcdc25w(x− q)

+ kcdc25basal(cdc25tot − w)(x− q),

ẋ = ksynth − kdestxz,

ẇ = kcdc25on
q4

e4cdc25 + q4
(cdc25tot − w)− kcdc25offw,(7.2)

u̇ = −kwee1off
q4

e4wee1 + q4
u+ kwee1on(wee1tot − u),

v̇ = kplxon
q3

e3plx + q3
(plxtot − v)− kplxoff v,

ż = kapcon
v3

e3apc + v3
(apctot − z)− kapcoff z.

We compare the dynamics of the full model (7.1) and the reduced model (7.2) in Figure 7.
Note that the only visible change is a slightly shorter period of the oscillation in the reduced
model.

7.2. Input-output characteristic. The system (7.2) is amenable to the analysis using the
input-output characteristic. We first identify the negative feedback in the system. There
is an obvious negative feedback from APC (z variable) on the q and x variables. The term
kcdc25basal(cdc25tot−w)x seems to provide an additional negative feedback in the first equation.
However, since kcdc25basal < kcdc25, combining the two terms gives

kcdc25wx+ kcdc25basal(cdc25tot − w)x = kcdc25basalcdc25tot +wx(kcdc25 − kcdc25basal),

which has a positive derivative with respect to w and x. So both w and x increase the
production rate of q. Therefore the only negative feedback in the system is caused by the
APC degradation of Cdc2-cyclin.

In order to prove that the cell cycle oscillation disappears for weak negative feedback we
review the theory linking multivalued input-output characteristics and Morse decompositions
developed in [18].
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7.2.1. Multivalued characteristics and the global attractor. We consider the system
(7.2) as an open loop system

(7.3) Ẋ = F (X,α), z = h̄(X),

where we replace the negative feedback −z in the first two equations in (7.2) by a parameter α:

q̇ = ksynth + kdestqα− kwee1uq − kwee1basal(wee1tot − u)q + kcdc25w(x− q)(7.4)

+ kcdc25basal(cdc25tot − w)(x − q),

ẋ = ksynth + kdestxα.

In (7.3) we setX := (q, x, w, u, v, z). The output function h̄ projects vector X to the z variable.
We recover the original system (7.2) as a closed loop system with a negative feedback α = −z.
The multivalued input-state characteristic k̄X(α) of (7.3) assigns to each α the set of equilibria
of the system, while the input-output characteristic is α = k̄(α) = −h̄(k̄X(α)). In [18] there
is an explicit construction of an interval [a, b] ⊂ R on the α-axis using the open loop system
(7.3) such that the projection of the global attractor of the closed loop system onto the α-axis
lies within [a, b]. In particular, if this interval is degenerate (i.e., a = b), then the long-
term behavior of the closed loop system Ẋ = F (X,−z) is the same as that of the system
Ẋ = F (X, a) at the value α = a. We will use this fact below to prove that if the negative
feedback is too weak, the cell cycle oscillator stops.

7.2.2. Multivalued characteristic and periodic orbits. We now change (7.2) to the frame-
work discussed in this paper, which is slightly different from the one we have just introduced.
We let x := (q, s, w, u, v) and rewrite the system (7.2) as

ẋ = f(x,−kdestz), ż = g(z, v),

where the function f comprises the first five equations and g(z, v) is the last equation in (7.2).
Since the key parameter affecting the strength of the negative feedback, kdest = 0.006, is small,
we introduce a new variable, ζ := kdestz. The system becomes

(7.5) ẋ = f(x,−ζ), ζ̇ = kdestg

(
ζ

kdest
, v

)
.

Even though kdest � 1, this is not a singular perturbation problem since the function g depends
on kdest. We apply the methods developed in this paper to a related class of problems where
we rename the first (but not the second) kdest in the last equation by ε. We arrive at

(7.6) ẋ = f(x,−ζ), ζ̇ = εg

(
ζ

kdest
, v

)
.

Note that while (7.5) is equivalent to (7.2), the system (7.6) is equivalent to (7.2) only when
kdest = ε. Since the theory developed in this paper is based on singular perturbation theory,
when we apply it to (7.6), we will prove the existence of the periodic orbit only for sufficiently
small ε. Such an argument does not show that the periodic orbit persists all the way to
ε = kdest, that is, to system (7.5). In fact we will show, using the theory developed in [18],
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that when kdest is two orders of magnitude smaller than the value kdest = 0.006 listed above,
the system (7.2) does not have a periodic orbit. Therefore we conclude that there is an interval
of values kdest, that does not contain zero, which is compatible with the existence of the cell
cycle oscillation. This suggests that for the proper functioning of the cell cycle the strength
of negative feedback cannot be too low or too high.

To study the system (7.6) following the construction leading to (2.6) we construct a model
planar system

(7.7) v̇ = k−1(v)− ζ, ζ̇ = εg

(
ζ

kdest
, v

)
,

where v = k(ζ) is a multivalued input-output characteristic of f in (7.6). To compute k(ζ) we
first compute the input-output characteristic that associates to each ζ the set of equilibria of
the system ẋ = f(x,−ζ) in (7.6). The input-output characteristic k(ζ) is then the value of v
on this set of equilibria.

7.2.3. Construction of the characteristics k̄(α) and k(ζ). We first compute the equi-
libria of (7.2) with the first two equations replaced by (7.4). We set the left-hand side of the
equations to zero and solve the resulting system to get

q =
ksynth + kcdc25wx+ kcdc25basal(cdc25tot − w)x

kwee1u+ kwee1basal(wee1tot − u) + kcdc25w + kcdc25basal(cdc25tot −w) + kdestα
,

x =
ksynth
kdestα

,

w = cdc25totkcdc25on
q4

kcdc25off e
4
cdc25 + (kcdc25off + kcdc25on)q4

,(7.8)

u = wee1totkwee1on
e4wee1 + q4

kwee1one4wee1 + (kwee1off + kwee1on)q4
,

v = plxtotkplxon
q3

kplxoff e
3
plx + (kplxoff + kplxon)q3

,

z = apctotkapcon
v3

kapcoff e3apc + (kapcoff + kapcon)v3
.

Our goal is to compute the output z as a function of α (to get z = k̄(α)) and the output v as
a function of ζ = kdestz = −kdestα (to get v = k(ζ)). To this end we insert the second,
third, and fourth equations into the first and then solve this equation for q. There are
multiple solutions of this equation that correspond to multiple equilibria. It follows that
the input-state characteristic is multivalued. To finish the computation we obtain the value
of v = k(α) = k(ζ/kdest) by taking the resulting values of q and inserting them into the
fifth equation. Finally, we get the value of z = k̄(α) by inserting this value of v into the
last equation and computing z. Note that both k̄ and k are multivalued as long as the first
four equations have multiple solutions for q. We note that these first four equations describe
the positive feedback subnetwork consisting of active Cdc2-cyclin (q), total Cdc2-cyclin (y),
Cdc25 (w), and Wee1 (u). This clearly shows that the multistability originates from the
positive feedback subnetwork.
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Figure 8. (a) Two nullclines for the system (7.7) in the plane: v = k(α) in solid red, and g(α, v) = 0 in
dashed blue. (b) The input-output characteristic of (7.2) in solid red. The dashed blue curve is the diagonal,
and the green dotted square is R ×R (see the text). The corresponding periodic orbit is shown in Figure 7(b).
(c) Detail of (b): the horizontal axis has been rescaled to showcase the multivalued characteristic.

We will analyze the mutual position of nullclines v = k(ζ) and g(ζ/kdest, v) = 0 of (7.7) as
a function of the parameter kdest. To facilitate this analysis we will use coordinates (v, α) =
(v, ζ/kdest) in which the curve g(α, v) = 0 does not depend on the parameter kdest.

7.2.4. Results. 1. The wild type kdest = 0.006. The input-output characteristic v =
k(ζ) = k(−kdestα) and the nullcline g(v, z) = 0 of the system (7.6) are shown in Figure 8(a).
Notice that in the region α ∈ [1.17, 1.85] the characteristic v = k(α) is multivalued. Since the
nullcline g(α, v) = 0 intersects k(α) along the middle branch, Assumption 1 of Theorem 2.2
is satisfied. It is straightforward to check the strong monotonicity of the system (7.6) for a
fixed value of α. Since the k(α) has no self-intersections, the function v = h(x) is injective on
the set of equilibria. Since linearization of the system of differential equations (7.6) is clearly
irreducible, Assumption 2 holds. Since Assumption 3 is generic (except for the stability
assumption, which we have checked numerically), we can conclude from Theorem 2.2 that the
system (7.6) admits a periodic orbit for sufficiently small ε. The simulation of the dynamics of
the full system (7.2) suggests that this periodic orbit persists until ε = kdest; see Figure 7(b).

In Figure 8(b) we graph an input-output characteristic k̄(α) of (7.2). The projection of
the global attractor of (7.2) onto the α variable falls within a bounded closed interval R,
which is the base of the green dashed square in Figure 8(b). Since the cubic-like characteristic
intersects the diagonal only along the middle branch, the theory developed in [18] shows that
there is no nontrivial Morse decomposition (i.e., with more than one Morse set) of the global
attractor. This suggests (but does not prove) that the cell cycle periodic orbit is globally
stable. A review of the concept of a Morse decomposition can be found in the introduction.

2. kdest = 0.0006. We lower kdest by an order of magnitude to kdest = 0.0006. The
characteristic k(α) shifts to the right; see Figure 9(a). Since g(α, v) = 0 still intersects k(α)
along the middle branch, we can verify the assumptions of Theorem 2.2 in the same way as
above. We conclude from Theorem 2.2 that there is a periodic orbit for (7.6) for sufficiently
small ε. The simulation of the dynamics of the full system (7.2) again shows that this periodic
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Figure 9. (a) Two nullclines of the planar system (7.7). (b) The input-output characteristic of the model
with kdest = 0.0006. The dashed curve is the diagonal. (c) The corresponding dynamics. The color legend is
the same as in Figure 8.
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Figure 10. (a) The input-output characteristic k̄ of the model with kdest = 0.00006. The legend is the same
as in Figure 8. (b) The corresponding dynamics. The color legend is the same as in Figure 7.

orbit persists until ε = kdest; see Figure 9(c). The input-output characteristic k̄(α) and the
global projection interval (dashed square in Figure 9(b)) suggest that all solutions converge
to this periodic orbit.

We also note that the characteristic Figure 9(a) has a larger α projection than that in
Figure 8(a). Since the periodic orbit should be a relaxation orbit on this nullcline, we expect
gentler oscillations in the dynamics. This is confirmed by comparing Figures 7(b) and 9(c).

3. kdest = 0.00006. We lower kdest another order of magnitude to kdest = 0.00006. In
Figure 10(a) we graph the characteristic k̄(α) and the interval in α that contains the projection
of the global attractor. This interval is degenerate and contains a single value α0 = −z0 ≈ 39.5.
This value is the projection of the intersection of the diagonal and the characteristic along the
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Figure 11. kdest = 0.06: (a) input-output characteristic k̄(α); (b) the intersections of the nullclines is along
the middle branch; (c) the system (7.2) does not exhibit oscillations; (d) oscillations are recovered in system
(7.6) for ε = 0.01. The color code in (a) and (b) matches that of Figure 8, and in (c) and (d) it matches that
of Figure 7.

upper branch. The theory in [18] predicts global convergence to an equilibrium with the value
of z = z0. This is confirmed by a numerical simulation of the dynamics of (7.2) in Figure
10(b). There is no cell cycle periodic orbit in (7.2) for kdest = 0.00006.

4. kdest = 0.06. In this case the bistability in k̄(α) occurs in a very narrow range α ∈
[0.116, 0.185], which on the scale of Figure 11(a) can be seen as a vertical line on the left side of
the picture. However, the attracting square contains this bistable region (Figure 11(a)), and
the nullclines k(α) and g(z, v) = 0 intersect along the middle branch of k(α); see Figure 11(b).
As before, by Theorem 2.2 the system (7.6) has a periodic orbit for ε small enough. However,
numerical simulation of the system (7.2) shows the convergence to an equilibrium (Figure
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11(c)). This case illustrates the gap between systems (7.6) and (7.2) and the limitations of
the singular perturbation argument. In Figure 11(d) we find the periodic orbit when we set
ε = 0.01 in (7.6), which does not persist until ε = kdest = 0.06 (Figure 11(c)). This confirms
that for strong negative feedback (high values of kdest) the relationship between the dynamics
of (7.2) and the nullclines k(α) and g(z, v) = 0 disappears.

8. Conclusions. We have developed a new theory based on multivalued input-output
characteristics that can be used to provide a rigorous proof of the existence of relaxation
periodic orbits in monotone systems coupled to a scalar differential equation providing a
negative feedback. Our construction can be used to prove the existence of periodic orbits in
slow-fast systems of arbitrary dimension.

We applied our theory to a model of a cell cycle in Xenopus embryos. Abrupt changes in
signals upon entry to mitosis suggest that the cell cycle is generated by a relaxation oscillation.
Our results show that the cell cycle orbit is not a relaxation oscillator. However, we construct
a closely related system that exhibits relaxation oscillations and that approximates the cell
cycle oscillator for an intermediate range of negative feedback strengths. We show that the
cell cycle oscillation disappears if the negative feedback is too weak or too strong.
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