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1 Introduction

Inflation [1, 2, 3] is a successful paradigm for describing the early universe, but it is sensitive

to the physics of the ultraviolet completion of gravity. This motivates pursuing realizations

of inflation in string theory, a candidate theory of quantum gravity. Considerable progress

has been made on this problem in recent years, so much so that the most pressing task,

particularly in view of upcoming CMB experiments, is to learn how to distinguish various

incarnations of inflation in string theory from each other and from related models constructed

directly in quantum field theory.

Fortunately, the additional constraints inherent in realizing inflation in an ultraviolet-

complete framework can leave imprints in the low-energy Lagrangian, and hence ultimately in

the cosmological observables. In favorable cases, a given class of models may make distinctive

predictions for a variety of correlated observables, allowing one to exclude this class of models

given adequate data.

One decisive observable for probing inflation is the tensor-to-scalar ratio, r. A promising

class of string inflation models producing a detectable tensor signature are those involving

monodromy [4], in which the potential energy is not periodic under transport around an

angular direction in the configuration space. The first examples [4] involved monodromy

under transport of a wrapped D-brane in a nilmanifold, and a subsequent class of examples

invoked monodromy in the direction of a closed string axion [5].

The axion monodromy inflation scenario of [5] is falsifiable on the basis of its tensor signa-

ture, r ≈ 0.07. However, primordial tensor perturbations have not been detected at present,

while the temperature anisotropies arising from scalar perturbations have been mapped in

great detail [6]. One could therefore hope to constrain axion monodromy inflation more ef-

fectively by understanding the signatures that it produces in the scalar power spectrum and

bispectrum. Characterizing these signatures is the subject of the present paper.

As we shall explain, the potential in axion monodromy inflation is approximately linear,

but periodically modulated: each circuit of the loop in configuration space can provide a

bump on top of the otherwise linear potential. Modulations of the inflaton potential with

suitable frequency and amplitude can yield two striking signatures: periodic undulations in

the spectrum of the scalar perturbations, and resonant enhancement [7] of the bispectrum.

Let us stress that the presence of some degree of modulations of the potential is automatic,

and is an example of the situation described above in which traces of ultraviolet physics

remain in the low-energy Lagrangian. We do not introduce modulations in order to make

the scalar perturbations more interesting. However, it is important to examine the typical

amplitude and frequency of modulations in models that are under good microphysical control,

in order to ascertain whether well-motivated models produce signatures that can be detected

in practice.

To achieve this, we first investigate in detail the realization of axion monodromy inflation

in string theory. We compute the axion decay constants in terms of compactification data,
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we assess the importance of higher-derivative terms, and we estimate the amplitude of mod-

ulations for the case of Euclidean D1-brane contributions to the Kähler potential. We also

identify a potentially-important contribution to the inflaton potential, arising from backre-

action in the compact space, and we present a model-building solution that suppresses this

contribution.

We find that detectable modulations of the scalar power spectrum and bispectrum are

possible in models that are consistent with all current data and that are under good mi-

crophysical control. In fact, we find substantial parameter ranges that are excluded not by

microphysics, but by observational constraints on modulations of the scalar power spectrum.

The organization of this paper is as follows. We begin in §2 by describing the classical

evolution of the homogeneous background in axion monodromy inflation with a modulated

linear potential. We then solve, in §3, the Mukhanov-Sasaki equation governing the evolution

of scalar perturbations, giving an analytical result for the spectrum in terms of the frequency

and amplitude of the modulations of the potential. Next, we briefly discuss the bispectrum

and express the amplitude of the non-Gaussianity in terms of the model parameters. We then

present, in §4, an analysis of the constraints imposed on axion monodromy inflation by the

WMAP5 data (for prior work constraining similar oscillatory power spectra, see e.g. [8, 9, 10,

11, 12, 13, 14]). Then, in §5 and §6, we present a comprehensive analysis of the constraints

imposed by the requirements of computability and of microphysical consistency, including

validity of the string loop and α′ perturbation expansions, successful moduli stabilization,

and bounds on higher-derivative terms. In §7 we combine the observational and theoretical

constraints, with results presented in figure 7.

1.1 Review of axion monodromy inflation

In this section we will briefly review the motivation for axion monodromy inflation, as well as

the most salient phenomenological features. We will postpone until §5 a more comprehensive

discussion of the realization of this model in string theory.

Inflation is sensitive to Planck-scale physics: contributions to the effective action arising

from integrating out degrees of freedom with masses as large as the Planck scale play a

critical role in determining the background evolution, and hence the observable spectrum of

perturbations (see [15] for a review of this issue). A central problem in inflationary model-

building is establishing knowledge of Planck-suppressed terms in the effective action with

accuracy sufficient for making predictions. The most elegant solution to this problem is to

provide a symmetry that forbids such Planck-suppressed contributions. Because invoking

such a symmetry amounts to forbidding couplings of the inflaton to Planck-scale degrees of

freedom, it is important to understand this issue in an ultraviolet-complete theory, such as

string theory.

One promising mechanism for inflation in string theory involves the shift symmetry of

an axion. Axions are numerous in string compactifications and generally enjoy continuous
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shift symmetries a → a + constant that are valid to all orders in perturbation theory, but

are broken by nonperturbative effects to discrete shifts a → a + 1. As noted in [5], the

shift symmetries of axions descending from two-forms are also broken by suitable space-filling

fivebranes (D5-branes or NS5-branes) wrapping two-cycles in the compact space.

In axion monodromy inflation [5], an NS5-brane wrapped on a two-cycle Σ breaks the

shift symmetry of the Ramond-Ramond two-form potential C2, inducing a potential that is

asymptotically linear in the corresponding canonically normalized field φ,

V = µ3φ , (1.1)

with µ a constant mass scale. Inflation begins with a large expectation value for the inflaton,

φ ∝
∫

Σ
C2 ≫ 1, and proceeds as this expectation value diminishes; note that the NS5-brane,

like any D-branes that may be present in the compactification, remains fixed in place during

inflation. As argued in [5], this gives rise to a natural model of inflation, with the residual

shift symmetry of the axion protecting the potential from problematic corrections that are

endemic in string inflation scenarios.

In this paper we perform a careful analysis of the consequences of nonperturbative ef-

fects for the axion monodromy scenario. Such effects are generically present: specifically,

Euclidean D-branes make periodic contributions to the potential in most realizations of axion

monodromy inflation. However, the size of these contributions is model-dependent. It was

shown in [5] that there exist classes of examples in which nonperturbative effects are practi-

cally negligible, but we expect – as explained in detail in §6.5 – that in generic configurations,

periodic terms in the potential make small, but not necessarily negligible, contributions to

the slow roll parameters.

Therefore, it is of interest to understand the consequences of small periodic modulations

of the inflaton potential in axion monodromy inflation. In this paper we address this question

in two ways: first, in §2-§4, by studying a phenomenological potential that captures the

essential effects; and second, in §5 and §6, by investigating the ranges of the phenomenological

parameters that satisfy all known microphysical consistency requirements dictated by the

structure of string compactifications in which axion monodromy inflation can be realized.

2 Background Evolution

In this section we will study the background evolution of the inflaton in the presence of small

periodic modulations of the potential. We will focus on modulations in axion monodromy

inflation with a linear potential, but our derivations are easily modified to account for other

models with a modulated potential. We will denote the size of the modulation by Λ4, and

write our potential as in [5],

V (φ) = µ3φ+ Λ4 cos

(
φ

f

)
= µ3

[
φ+ bf cos

(
φ

f

)]
, (2.1)
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where we defined the parameter b ≡ Λ4

µ3f
. The equation of motion for the inflaton is then

φ̈+ 3Hφ̇+ µ3 − µ3b sin

(
φ

f

)
= 0 . (2.2)

To solve (2.2), we begin with two approximations. Monotonicity of the potential requires1

b < 1, and as we will see in §4, for the case b < 1 observational constraints in fact imply b≪ 1.

This suggests treating the oscillatory term in the potential as a perturbation. Furthermore,

the COBE normalization implies that φ ≫ Mp during the era when the modes that are

observable in the cosmic microwave background exit the horizon. This allows us to drop

terms of higher order in Mp/φ.

Under these conditions, it is straightforward to solve for the evolution of the homogeneous

background. Expanding the field as φ = φ0 + bφ1 + O(b2), the equations of motion of zeroth

and first order in b become

φ̇0 = −
√

µ3

3φ0

, (2.3)

φ̈1 +
√

3µ3φ0φ̇1 −
µ3

2φ0

φ1 = µ3 sin

(
φ0

f

)
, (2.4)

where we have neglected terms of higher order in Mp/φ and we have made use of the slow

roll approximation for φ0.
2 Using equation (2.3), we can rewrite equation (2.4) with φ0 as an

independent variable instead of t, yielding

φ′′
1 − 3φ0φ

′
1 −

3

2
φ1 = 3φ0 sin

(
φ0

f

)
. (2.5)

where primes denote derivatives with respect to φ0. For the period of interest, in which the

modes now visible in the CMB exit the horizon, it is a good approximation to neglect the

motion of φ0 everywhere except in the driving term. The inhomogeneous solution is then

given by

φ1(t) = f
6fφ∗

(2 + 3f 2)2 + 36f 2φ∗
2

[
−(2 + 3f 2) sin

(
φ0(t)

f

)
+ 6fφ∗ cos

(
φ0(t)

f

)]
, (2.6)

1The case of non-monotonic potentials may also be interesting. On the one hand, for sufficiently large

b > 1, it may be possible to realize chain inflation [16, 17, 18] in our model. In this scenario, the inflaton

would tunnel from minimum to minimum, with the universe expanding by less than one third of an e-fold

per tunneling event. This requires a more careful analysis, and we will leave this for future studies. On the

other hand, for b & 1 the model essentially turns into a small-field model of inflation because the inflaton gets

trapped at the peaks for a large number of e-folds. It seems hard to distinguish this from other models of

small field inflation, but it may be interesting to take a closer look at this as well.
2In approximating sin (φ/f) ≃ sin (φ0/f) on the right hand side of (2.4), we have assumed not only that

b ≪ 1 but also that bφ1/f ≪ 1. As we will see from the solution (2.7), φ1 is of order f2φ∗. Hence the mild

assumption bfφ∗ ≪ 1 justifies this approximation.
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where φ∗ denotes the value of the field φ0 at the time at which the pivot scale k∗ exits the

horizon. Assuming 60 e-foldings of inflation, this happens around φ∗ ≃ 11Mp. For decay

constants f obeying f & Mp/10, there is less than one oscillation in the range of modes that

are observable in the cosmic microwave background, leading to an uninteresting modulation

with very long wavelength. We will thus make the additional assumption that f ≪ Mp.

Assuming that φ0 ≫Mp and f ≪ 1, using the slow roll approximation for φ0(t), and working

to first order in b, the solution thus becomes

φ(t) = φ0(t) + bφ1(t) = φ0(t) + bf
3fφ∗

1 + (3fφ∗)2

[
− sin

(
φ0(t)

f

)
+ 3fφ∗ cos

(
φ0(t)

f

)]
, (2.7)

with φ0(t) given by

φ0(t) =

[
φ3/2
∗ −

√
3

2
µ3/2(t− t∗)

]2/3

. (2.8)

In the absence of oscillations, i.e. for b = 0, axion monodromy provides a model of large

field inflation that is easily studied using the slow roll expansion. Assuming for concreteness

that the CMB scales left the horizon 60 e-foldings before the end of inflation, we are interested

in the perturbations around φ∗ ≃ 11Mp. After imposing the COBE normalization, one finds

that CMB perturbations are produced at a scale V 1/4 ≃ 7 · 10−3Mp ≃ 1.7 · 1016 GeV with

a spectral tilt ns ≃ 0.975 and a tensor-to-scalar ratio r ≃ 0.07. For reference, the Hubble

constant during inflation is then H ≃ 2.8 · 10−5Mp ≃ 6.8 · 1013 GeV.

One can then ask what happens once the oscillations are switched on, i.e. when b 6= 0.

It turns out that the effect on the number of e-foldings is negligible as long as b ≪ 1. Hence

the inflationary scale is well-approximated by the slow roll analysis. On the other hand, the

detailed properties of the perturbations are very different from the slow roll case and cannot

be calculated in that expansion. We turn to this issue in the next section.

3 Spectrum of Scalar Perturbations

Having understood the background evolution, we are now in a position to calculate the power

spectrum in axion monodromy inflation. One might be tempted to do this by brute-force

numerical calculation, but we find it more instructive to have an analytic result. We will

show that under the same assumptions made in calculating the background evolution, i.e.

slow roll for φ0(t), φ0 ≫Mp, f ≪Mp, and to first order in b, the scalar power spectrum is of

the form

∆2
R(k) = ∆2

R(k∗)

(
k

k∗

)ns−1 [
1 + δns cos

(
φk
f

)]
≈ ∆2

R

(
k

k∗

)ns−1+ δns
ln(k/k∗)

cos
“

φk
f

”

, (3.1)

where the quantity ∆2
R(k∗) parameterizes the strength of the scalar perturbations and will be

introduced in detail in the next subsection. The second equality is valid as long as δns ≪ 1,
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and δns is given by

δns =
12b√

(1 + (3fφ∗)2)

√
π

8
coth

(
π

2fφ∗

)
fφ∗ , (3.2)

where

φk =
√
φ2
∗ − 2 ln k/k∗ ≃ φ∗ −

ln k/k∗
φ∗

(3.3)

is the value of the scalar field at the time when the mode with comoving momentum k exits

the horizon.

In §3.1 we will give a derivation of this result that makes no further approximations. In

§3.2 and §3.3 we will present two additional derivations of (3.1) that are valid only as long as

fφ∗ ≪ 1 but that lead to a better understanding of the relevant physical effects behind the

power spectrum (3.1). Let us at this point briefly summarize the scales that will be relevant

for our discussion in the next subsections.

Given the potential (2.1), the time frequency of the oscillations of the inflaton is ω = φ̇/f .

This is also the time frequency of the oscillations of the background. Perturbations around

this background can be quantized in terms of the solutions of the Mukhanov-Sasaki equation,

assuming an asymptotic Bunch-Davies vacuum. Every perturbation mode with comoving

momentum k oscillates with a time frequency k/a that is redshifted by the expansion of the

universe until the mode exits the horizon and freezes when k = aH.

Then, if H < ω < Mp, every mode will at a certain time resonate with the background,

as stressed by Chen, Easther, and Lim in [7]. Using the slow roll equation of motion and the

COBE normalization,

3Hφ̇ ≃ −V ′(φ) , φ̇2 ≃ 2

3
ǫV , V ≃ 5 · 10−7 ǫM4

p , (3.4)

the requirement H < ω < Mp can be re-expressed as

ω

H
≃ M2

p

φf
≃

√
2ǫ
Mp

f
> 1 , (3.5)

ω

Mp

≃
√

2ǫV

3

1

fMpl

< 1 , (3.6)

hence defining a range of values for the axion decay constant f for which resonances occur.

Using
√

2ǫ ≃Mp/φ∗ ≃ .09, we obtain 2.4 · 10−6 < f
Mpl

< 0.09. We will show in §5 and §6 that

f falls in this range in a class of microphysically well-controlled examples.

Going beyond our approximations, the model also predicts a small amount of running of

the scalar spectral index, of order 10−4, from terms of higher order in the Mp/φ expansion.

Furthermore, δns develops a very mild momentum dependence. We will neglect these effects

because these will most likely not be observable in current or near-future CMB experiments.
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3.1 Analytic solution of the Mukhanov-Sasaki equation

We begin our study of the spectrum by choosing a gauge such that the scalar field is unper-

turbed, δφ(x, t) = 0, and the scalar perturbations in the spatial part of the metric take the

form

δgij(x, t) = 2a(t)2R(x, t)δij . (3.7)

The quantity R(x, t) is a gauge-invariant quantity and in the case of single-field inflation is

conserved outside the horizon. It is closely related to the scalar curvature of the spatial slices,

but we will not need its precise geometric interpretation at this point.

The translational invariance of the background and thus the equations of motion govern-

ing the time evolution of the perturbations make it convenient to look for solutions of the

linearized Einstein equations in Fourier space. One defines

R(x, t) =

∫
d3k

(2π)3/2

[
Rk(t)e

ik·xα(k) + Rk(t)
∗e−ik·xα∗(k)

]
, (3.8)

where k is the comoving momentum, and k is its magnitude. The rotational invariance

of the background ensures that Rk(t) can depend only on the magnitude of the comoving

momentum but not on its direction. Directional dependence can only be contained in the

stochastic parameter α(k) that parameterizes the initial conditions and is normalized so that

〈α(k)α∗(k′)〉 = δ(k − k′) , (3.9)

where the average denotes the average over all possible histories. With this ansatz, the

Einstein equations turn into an ordinary differential equation, the Mukhanov-Sasaki equation,

governing the time evolution of Rk(t). We will use it in the form3

d2Rk

dx2
− 2(1 + 2ǫ+ δ)

x

dRk

dx
+ Rk = 0 , (3.10)

where x ≡ −kτ , with the conformal time τ given as usual by τ ≡
∫ t dt′

a(t′)
. Outside the horizon,

i.e. for x ≪ 1 or equivalently k/a ≪ H, the quantity Rk(x) approaches a constant which

we denote by R(o)
k . In terms of R(o)

k we define the primordial power spectrum for the scalar

modes as
∣∣∣R(o)

k

∣∣∣
2

= 2π2 ∆2
R(k)

k3
. (3.11)

To evaluate this quantity, it will again turn out to be sufficient to solve to first order in b. We

therefore expand the slow roll parameters,

ǫ = ǫ0 + ǫ1 + O(b2) , (3.12)

3We use the same definitions for the slow roll parameters as in [19], i.e. ǫ ≡ − Ḣ
H2 , δ ≡ Ḧ

2HḢ
. δ is related to

the Hubble slow-roll parameters η ≡ ǫ̇/ǫH by δ = η/2− ǫ. The other slow-roll parameters that are sometimes

used are ǫV ≡ (V ′/V )2/2 and ηV ≡ V ′′/V . When the slow roll expansion is valid they are related to the

Hubble slow-roll parameters by ǫV = ǫ and ηV = 4ǫ − η.
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δ = δ0 + δ1 + O(b2) . (3.13)

For the background solution (2.7), the first-order terms are given by

ǫ1 = − 3bf

φ∗[1 + (3fφ∗)2]

[
cos

(
φ0

f

)
+ (3fφ∗) sin

(
φ0

f

)]
, (3.14)

δ1 = − 3b

[1 + (3fφ∗)2]

[
sin

(
φ0

f

)
− (3fφ∗) cos

(
φ0

f

)]
. (3.15)

We now consider an ansatz of the form

Rk = R(o)
k,0

[
i

√
π

2
xν0H(1)

ν0
(x) + g(x)

]
. (3.16)

Here the index ν0 on the Hankel function, H
(1)
ν0 (x), is given by ν0 = 3

2
+ 2ǫ0 + δ0, g(x) is a

perturbation of order b, and R(o)
k,0 is the value of Rk(t) outside the horizon in the absence of

modulations, i.e. for b = 0. To be explicit, it is given by4

R(o)
k,0 = ∓i

√
µ3φ3

k

6

1

k3/2
, (3.17)

where φk ≈ φ∗ − ln k/k∗
φ∗

once again is the value of the scalar field at the time the mode with

comoving momentum k exits the horizon. The quantity of interest to first order in b is then

∣∣∣R(o)
k

∣∣∣
2

=
∣∣∣R(o)

k,0

∣∣∣
2 [

1 + 2 Re g(0)
]
≈
∣∣∣R(o)

k,0

∣∣∣
2

e2 Re g(0) =
∣∣∣R(o)

k,0

∣∣∣
2
(
k

k∗

) 2 Re g(0)
ln(k/k∗)

. (3.18)

Our ansatz automatically solves the equation of order b0. To first order in b and in the slow

roll parameters, the Mukhanov-Sasaki equation leads to an equation for g(x) of the form

d2g

dx2
− 2

x

dg

dx
+ g = 2eix(2ǫ1 + δ1) . (3.19)

In writing this equation, we have dropped terms of order O(bǫ0, bδ0), which amounts to setting

ν0 = 3/2. Next, we notice that ǫ1 is suppressed relative to δ1 by a factor f
φ∗

. Since we are

interested in the regime f
φ∗

≪ 1, we can thus drop the term proportional to ǫ1 on the right

hand side of equation (3.19). Furthermore, it turns out to be convenient to rewrite δ1 using

trigonometric identities. Ignoring an unimportant phase, one finds

δ1 = − 3b√
1 + (3fφ∗)2

cos

(
φ0

f

)
. (3.20)

4As mentioned earlier, we will ignore the running of the scalar spectral index, but it may be worth pointing

out that the information about the running is contained in this formula.
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It will be convenient to write φ0(x) as φ0(x) = φ∗ − ln(k/k∗)
φ∗

+ lnx
φ∗

= φk + lnx
φ∗

. Introducing

r(x) ≡ Re (g(x)), equation (3.19) becomes

d2r

dx2
− 2

x

dr

dx
+ r = − 6b√

1 + (3fφ∗)2
cos(x) cos

(
φk
f

+
lnx

fφ∗

)
. (3.21)

The solution to this equation can be found e.g. using Green’s functions. We are particularly

interested in the inhomogeneous solution at late times, i.e. in the limit of vanishing x. Using

more trigonometric identities, we find that the solution in this limit can be brought into the

form

r(0) =
6b|I(fφ∗)|√
1 + (3fφ∗)2

cos

(
φk
f

+ β(fφ∗)

)
, (3.22)

where β(fφ∗) is an unimportant phase that we will ignore, and I is the integral

I(fφ∗) =
π

2

∫ ∞

0

dxJ 3
2
(x)J− 1

2
(x)x

i
fφ∗ . (3.23)

Written in this form, the integral can be recognized as a Weber-Schafheitlin integral and can

be done analytically (see e.g. [20]). One finds

|I| =

√
π

8
coth

(
π

2fφ∗

)
fφ∗ . (3.24)

Combining equations (3.18), (3.22) and (3.24), we finally obtain an expression for δns,

δns =
2r(0)

cos
(
φk

f

) =
12b√

1 + (3fφ∗)2

√
π

8
coth

(
π

2fφ∗

)
fφ∗ . (3.25)

Once again, this derivation is valid to first order in b and assumes slow roll for φ0(t), φ0 ≫Mp,

and f ≪ Mp. In particular, it makes no use of an fφ∗ ≪ 1 expansion, although this

approximation will be needed in the derivations in §3.2 and §3.3. A comparison between our

analytical result for δns as a function of fφ∗ for a fixed value of b and the result of a numerical

calculation using a slight modification of the code described in [21] is shown in Figure 1.

3.2 Saddle-point approximation

As we have seen in the last subsection, it is possible to calculate the power spectrum ana-

lytically to first order in b, assuming slow roll for φ0(t), φ0 ≫ Mp, and f ≪ Mp, but the

derivation sheds little light on the physics behind the results. To get a better understanding,

it is instructive to look at the integral (3.23) more explicitly. For this purpose, it is convenient

to separate I into its real and imaginary parts, I = Ic + iIs, with

Ic =

∫ ∞

0

dx
(sinx− x cosx) cosx

x2
cos

(
lnx

fφ∗

)
, (3.26)

Is =

∫ ∞

0

dx
(sinx− x cosx) cosx

x2
sin

(
lnx

fφ∗

)
. (3.27)
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Figure 1: The solid line is the analytical result for δns as a function of f , for b = 0.08, while

the dots are the numerical result obtained from an adaptation of the code used in [21].

For ranges of the axion decay constant such that fφ∗ ≪ 1, these integrals can be done in

a stationary phase approximation. Using trigonometric identities to rewrite the products

of trigonometric functions appearing in the integrands into sums of trigonometric functions

with combined arguments, one finds that the stationary phase occurs at x̄ = 1
2fφ∗

. Expanding

around the stationary point and performing the integral as usual, one finds to leading order

in fφ∗

Ic =

√
π

8
fφ∗ sin

[
1 + ln(2fφ∗)

fφ∗
− π

4

]
, (3.28)

Is =

√
π

8
fφ∗ cos

[
1 + ln(2fφ∗)

fφ∗
− π

4

]
, (3.29)

which leads to

|I| =
√
Ic2 + Is2 =

√
π

8
fφ∗ . (3.30)

This agrees with our previous result, equation (3.24), as long as fφ∗ ≪ 1. We have not

only reproduced our earlier results, however: we also learn that at least for small fφ∗, the

integral is dominated by a period of time around τ̄ = − 1
2kfφ∗

. Up to the factor of two in

the denominator, this corresponds to the period when the frequency of the oscillations of

the scalar field background equals the frequency of the oscillations of a mode with comoving

momentum k.5 The stationary phase approximation thus captures a resonance between the

oscillations of the background and the oscillations of the fluctuations, and is good as long as

fφ∗ ≪ 1, i.e. as long as the resonance occurs while the mode is still well inside the horizon.

5This factor of two can be understood from momentum conservation, as will become clear in §3.3.
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One might suspect that this has an interpretation in terms of particle production, and we

shall make this more precise in what follows.

Recall that our ansatz for Rk was given in (3.16), where g(x) is the solution of the equation

d2g

dx2
− 2

x

dg

dx
+ g = 2eixδ1 , (3.31)

with δ1 again given by

δ1 = − 3b√
1 + (3fφ∗)2

cos

(
φk
f

+
lnx

fφ∗

)
, (3.32)

and initial conditions given by lim
x→∞

g(x) = 0 and lim
x→∞

g′(x) = 0. As we have just learned,

the effect of the driving term can be ignored long after the resonance has occurred, i.e. for

x ≪ 1
2fφ∗

.6 This implies that at late times, g(x) must be a solution of the homogeneous

equation which can be written as

g(x) = c
(+)
k

(
i

√
π

2
x

3
2H

(1)
3/2(x)

)
+ c

(−)
k

(
−i
√
π

2
x

3
2H

(2)
3/2(x)

)
, (3.33)

where c
(±)
k are momentum dependent coefficients. The solution for equation (3.31) can also

be written explicitly as

g(x) = (x cosx− sin x)

∞∫

x

2eiy(cos y + y sin y)

y2
δ1 (3.34)

+(cosx+ x sin x)

∞∫

x

2eiy(sin y − y cos y)

y2
δ1 .

For x≪ 1
2fφ∗

we can take the lower limit in the integrals to zero and this can be brought into

the form

g(x) =
1

2
(I2 + iI1)

(
i

√
π

2
x

3
2H

(1)
3/2(x)

)
+

1

2
(I2 − iI1)

(
−i
√
π

2
x

3
2H

(2)
3/2(x)

)
, (3.35)

where the integrals I1 and I2 are given by

I1 = − 6b√
1 + (3fφ∗)2

∞∫

0

eiy(cos y + y sin y)

y2
cos

(
φk
f

+
lnx

fφ∗

)
, (3.36)

I2 = − 6b√
1 + (3fφ∗)2

∞∫

0

eiy(sin y − y cos y)

y2
cos

(
φk
f

+
lnx

fφ∗

)
. (3.37)

6One should note that this is not because the driving term goes to zero, but because its frequency becomes

too high for the system to keep up with it.
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In the saddle point approximation these evaluate to

I1 = iI2 = − 6b√
(1 + (3fφ∗)2)

√
π

8
fφ∗e

−i
“

φk
f
− 1+ln 2fφ∗

fφ∗
+π

4

”

. (3.38)

Combining equations (3.16), (3.35), and (3.38), we finally find that the curvature perturbation

for x≪ 1
2fφ∗

takes the form

Rk = R(o)
k,0

(
i

√
π

2
xν0H(1)

ν0
(x) − c

(−)
k i

√
π

2
xν0H(2)

ν0
(x)

)
, (3.39)

with c
(−)
k given, up to an unimportant momentum-independent overall phase, by

c
(−)
k =

6b√
(1 + (3fφ∗)2)

√
π

8
fφ∗e

−i
“

φk
f

”

. (3.40)

One might now interpret the coefficient c
(−)
k of the negative frequency mode as a Bogoliubov

coefficient that measures the amount of particles with comoving momentum k being produced

while this mode is in resonance with the background. It seems hard to make this precise as

one really is comparing mode solutions of different backgrounds rather than mode solutions

of different asymptotically Minkowski regions in the same background.

Equation (3.39) also shows that instead of starting in the Bunch-Davies state and then

following the mode through the resonance, one may start the evolution after the resonance

has occurred but use a state that is different from the Bunch-Davies state, which is similar

to what is considered in [22, 23, 8, 9, 10]. The departure from the Bunch-Davies state is of

course quantified by c
(−)
k .

3.3 Particle production and deviations from the Bunch-Davies state

Here we will deal with a conceptual question that generically arises in inflationary models

with oscillations in the scalar potential. Driven by the background motion of the inflaton, the

oscillating contributions constitute a time-oscillating perturbation to the Hamiltonian of the

system. Now, perturbations oscillating in time will generically induce transitions, in our case

from the original vacuum state to some excited states. This implies that the vacuum state of

the full system will deviate from the Bunch-Davies vacuum of the homogeneous background

inflationary evolution. We will now estimate the resulting quantity of particle production

and relate the result to the derivation of the scalar power spectrum given in the preceding

sections.

To lowest order the oscillating perturbation is given by

∆H(2) =
1

2
V ′′(φ0(t)) · δφ2 , (3.41)
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implying that the lowest-order transitions will be from the vacuum |0〉 to two-particle states

|~p,−~p〉. As the physical momentum ~p = ~k/a corresponding to a given comoving momentum
~k is exponentially decaying in the inflationary regime, any two-particle state with given co-

moving momentum |~k,−~k〉 will be in resonance with the oscillating perturbation only for a

short period of time which we will have to estimate in due course.

In transforming the Hamiltonian of the fluctuations into Fourier space

H[δφ~p] =
1

2
δφ̇2

~p +
1

2
~p 2δφ2

~p +
1

2
V ′′(φ0(t)) · δφ2

~p , (3.42)

we find that the system takes the form of a perturbed harmonic oscillator with eigenfrequency

ωp = p ≡ |~p| for each momentum mode δ~p separately,

H[δφp] =
1

2
δφ̇2

p +
1

2
ω2
pδφ

2
p +

1

2
V ′′(φ0(t)) · δφ2

p
︸ ︷︷ ︸

∆H(2)[δφp]

. (3.43)

Now we compare this to the perturbed harmonic oscillator in one-dimensional quantum

mechanics,

H =
1

2
ẋ2 +

1

2
ω2

0x
2 +

1

2
δω(t)2x2 . (3.44)

In going to dimensionless variables q, p we can write this as

H =
1

2
ω0

(
p2 + q2

)
+
δω(t)2

2ω0

q2

︸ ︷︷ ︸
∆H(2)

, (3.45)

where for our case of a periodic perturbation periodic with frequency ω we have

δω(t)2 = δω2 cos(ωt) . (3.46)

We want to determine the time-dependent transition matrix element in time-dependent per-

turbation theory for a periodic perturbation. To do so, we first write the perturbation in

standard form for time-dependent perturbation theory as

∆H(2)(t) =
δω(t)2

2ω0

q2 =
δω2

4ω0

q2(eiωt + e−iωt) ≡ F (eiωt + e−iωt) , (3.47)

in the notation of equations (40.1) through (40.9) of [24]. The Hamiltonian and the transition

matrix elements can be written in terms of creation and annihilation operators a and a† using

q = (a + a†)/
√

2 and p = −i(a − a†)/
√

2. Then, canonical quantization of the unperturbed

part yields a discrete spectrum |n〉 of eigenstates with energy spectrum En = ω0(n+ 1/2).

If we compare this with our actual case above, we see that for each momentum mode δφ~p,

q and p are replaced by appropriate dimensionless fields δϕ~p and Πδϕ~p
. In complete analogy

14



to the simple quantum mechanical oscillator, there will be a tower of discrete states |n〉p with

energies En,p = ωp(n + 1/2) = p(n + 1/2). In particular, |2〉p labels the two-particle state

|p,−p〉 which has energy difference ∆E2,p = 2ωp = 2p with respect to the ground state. We

thus have for the perturbation in our actual case

∆H(2)(t) =
δω(t)2

2ωp
δϕ2

~p =
δω2

4ωp
δϕ2

~p (eiωt + e−iωt) ≡ F (eiωt + e−iωt) . (3.48)

For the transition matrix element one then finds

〈p,−p|∆H(2)|0〉 = F20(e
iωt + e−iωt) with F20 =

δω2

4ωp
〈0| a

2

√
2

(
a+ a†√

2

)2

|0〉 =
δω2

4
√

2ωp
.(3.49)

Here we have used that

|p,−p〉 =
(a†)2

√
2
|0〉 , (3.50)

and

〈0|a2(a+ a†)2|0〉 = 〈0|a2(a†)2|0〉 = 2 . (3.51)

If the energy of the two-particle state E2p = 2k/a were not too close to the perturbation

frequency ω, we could use time-dependent perturbation theory with the above matrix element

and obtain the first order transition probability P0→2k,

P0→2k =

∣∣∣∣−i
∫ t

dt′〈k,−k|∆H(2)(t′)|0〉eiω20t′
∣∣∣∣
2

= 2|F20|2
(

2k
a

)2
+ ω2 +

[(
2k
a

)2 − ω2
]
cos(2ωt)

[(
2k
a

)2 − ω2
]2

=
δω4

16(k/a)2

(
2k
a

)2
+ ω2 +

[(
2k
a

)2 − ω2
]
cos(2ωt)

[(
2k
a

)2 − ω2
]2 , (3.52)

where ω20 = E2,p=k/a − E0,p=k/a = 2k/a. This gives the resonance line feature characteristic

of transition processes.

However, as for any given k the physical momentum and frequency k/a will decrease

extremely rapidly with 1/a, we can approximate the amount of transition happening in the

short time interval ∆tres during which the two-particle state of given k is in near-resonance

ω ≈ 2k/a. Close to resonance, time-dependent perturbation theory breaks down (visible in

the singularity of the above result for ω = 2k/a); however, for periodic perturbations one can

solve the Schrödinger equation of the coupled two-state system exactly [24]. One finds that

on resonance the transition probability is

P0→2k =
1

2
[1 − cos (2Ωt)] =

1

2

[
1 − cos

(
δω2

2
√

2k/a
t

)]
, where Ω ≡ F20 . (3.53)
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That is, near resonance the system effectively oscillates with frequency 2Ω = 2 δω2

4
√

2ωp
= δω2

2
√

2k/a

between the vacuum and the two-particle state.

We now have to estimate the time ∆tres during which a two-particle state of comoving

momentum k stays in near-resonance. We will follow the analysis in [7] and look at the

interference terms induced between the cos(ωt) perturbation and the exp(iω02t) periodicity

of the interaction matrix element in (3.52). We note that, on the one hand, the two-particle

state with frequency 2k/a = ω−∆ω stays in resonance with the perturbation with frequency

ω only for a time roughly estimated to be (for the relative phase shifting from −π to π)

∆t1 ∼
2π

∆ω
. (3.54)

On the other hand, in the inflating universe it takes very roughly a time

∆t2 ∼
2∆ω

ωH
(3.55)

to change the frequency of the two-particle state from, say, ω+ ∆ω to ω−∆ω. Equating the

two provides us with the effective duration of near-resonance,

∆tres ≡ ∆t1 = ∆t2 ∼ 2

√
π
H

ω
H−1 . (3.56)

Plugging this into the above transition result and remembering that near resonance k/a ≈
ω/2, we get

P0→2k ≃
1

2

[
1 − cos

(
√

2
δω2

ω

√
π
H

ω
H−1

)]
. (3.57)

Now, in our case above we see that p = k/a in terms of comoving momenta k, and further

δω(t)2 = V ′′(φ0(t)) =
Λ4

f 2
cos

(
φ0(t)

f

)
= δω2 cos(ωt) , ω =

H

fφ0

. (3.58)

Noting that in our scenario of interest we have H < ω and that δω ≪ H, we can expand

the argument of the cosine around zero. If we then plug in the microscopic definitions of the

quantities δω2 = Λ4/f2 and ω = H/(fφ), we get

P0→2k ≃
π

2

Λ8

f 4ω2H2
· H
ω

=
π

2

Λ8fφ3
∗

f 2H4
=
π

2

9Λ8fφ3
∗

f 2µ6φ2
∗

=
36π

8
b2fφ∗ , (3.59)

where φ∗ ≃ 11Mp denotes the vev of the inflaton field around 60 e-foldings before the end of

inflation.

Next, because P0→2k characterizes the transition probability to the two-particle states,

it may be related to the negative frequency Bogoliubov coefficient c(−) that relates the out-

vacuum to the in-vacuum. Specifically, the out-vacuum is specified by the modes

uk(out) = c(−)u−k + c(+)uk , (3.60)
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whereas the original Bunch-Davies in-vacuum had modes

uk(in) = uk , c(+)(in) = 1 . (3.61)

We therefore find that

|c(−)| ≃
√
P0→2k = 6b

√
π

8
fφ∗ . (3.62)

In comparing these results with the general treatment of the Mukhanov-Sasaki equation

above, we see by looking at (3.39) and (3.18) that we can identify

uk = i

√
π

2
xν0H(1)

ν0
(x) (3.63)

u−k = −i
√
π

2
xν0H(2)

ν0
(x) (3.64)

and thus from (3.18) we conclude that

δns =
2Re g(x)

cos
(
φk

f

) =
x→0

2Re(c(+)c(−))

cos
(
φk

f

) ≃ 2|c(−)| ≃ 12b

√
π

8
fφ∗ (3.65)

which agrees with the general result (3.25) in the appropriate limit ω > H and δω ≪ H,

corresponding to fφ∗ < 1, where coth (π/2fφ∗) → 1.

Note that in calculating the transition probability we lose information about the phase

of the transition matrix element as given in (3.49). Therefore, if we estimate the population

coefficient c(−) from
√
P0→2k, we get only an estimate for |c(−)| without the phase information.

A more complete derivation using the full information in the transition matrix element should

also yield the information about the phase as derived in the previous subsection.

Thus, we see that in the regime of rapid oscillations, fφ∗ < 1, the induced δns is due to

a time-localized deviation from the Bunch-Davies state, which may be interpreted as being

due to resonant bursts of particle production happening well before a given mode leaves the

horizon during inflation.

3.4 Bispectrum of scalar perturbations

We start by reviewing how resonance can drive the production of large non-Gaussianity during

inflation, as proposed in [7]. We then present an estimate for the size of the non-Gaussianity

for the model (2.1).

The three-point function can be calculated as [25]

〈R(τ,k1)R(τ,k2)R(τ,k3)〉 = −i
∫ τ

τ0

〈[R(τ,k1)R(τ,k2)R(τ,k3), HI(τ
′)]〉 a dτ ′ , (3.66)
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where HI is the interacting part of the Hamiltonian. HI was calculated for a generic potential

(see e.g. [25, 7]) at cubic order in the perturbations; it takes the form

HI = −
∫
d3x
[
aǫ2RR′2 + aǫ2R(∂R)2 − 2ǫR′(∂R)(∂χ)

+
a

2
ǫη′R2R′ +

ǫ

2a
(∂R)(∂χ)(∂2χ) +

ǫ

4a
(∂2R)(∂χ)2

]
, (3.67)

where ∂ denote space derivatives,

χ ≡ a2ǫ∂−2Ṙ , (3.68)

and we used the Hubble slow-roll parameter η ≡ ǫ̇/(ǫH) = 2(ǫ + δ) because formulas in this

subsection are simpler in terms of η than in terms of δ.

We would like to stress that (3.67) is exact for arbitrary values of the slow roll parameters

ǫ and η. Substituting HI into (3.66) produces six terms, plus an additional term coming from

a field redefinition. For the modulated linear potential (2.1), ǫ is small, as in standard slow

roll inflation. On the other hand, contrary to the standard slow-roll approximation, η̇ can

be much larger than ǫ2. This suggests that the leading term comes from the ǫη̇ term in the

Hamiltonian.7 Hence we have [11, 7]

〈R(t,k1)R(t,k2)R(t,k3)〉 ≃ i

(
∏

i

ui(τend)

)
×

∫ τend

−∞
dτǫη′a2

(
u∗1(τ)u

∗
2(τ)

d

dτ
u∗3(τ) + sym

)
δ3(K)(2π)3 + c.c. . (3.70)

As in [7], we parameterize the non-Gaussianity as

〈R(τ,k1)R(τ,k2)R(τ,k3)〉 ≡
G(k1, k2, k3)

(k1k2k3)3
δ3(K) ∆4

R(2π)7 , (3.71)

where K = k1 + k2 + k3. We take as an ansatz for the shape of the non-Gaussianity for our

modulated linear potential

G(k1, k2, k3)

k1k2k3

= fres sin

(
2

φf
lnK + phase

)
(3.72)

Following [7] and comparing (3.70), (3.71) and (3.72), we obtain the estimate

fres ≃
3 η̇1

8H
√
φf

, (3.73)

7In (3.9) of [25] this term was written as

φ̇2

ρ̇2
e3ρṘR2

d

dt

(
φ̈

2φ̇ρ̇
+

φ̇2

4ρ̇2

)
, (3.69)

which can be reduced to the term in (3.67) using H ′ = −φ̇2/2.
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where we have again used the notation η = η0 + bη1 + . . . . Using the background solution

obtained in §2, it is straightforward to find

η̇1 ≃ 2δ̇1 ≃ −
√

µ3

3φ∗

6b

f [1 + (3fφ∗)2]

[
cos

(
φ0

f

)
+ (3fφ∗) sin

(
φ0

f

)]
. (3.74)

It is not hard to convince oneself that in the region of parameter space where fres > 1 and

b ≪ 1, the second term in (3.74) is always negligible, i.e. 3fφ ≪ 1. Hence our estimate for

the non-Gaussianity is

fres ≃
9b

4(fφ)3/2
=

9

4
b
( ω
H

)3/2

. (3.75)

where we remind the reader that ω = φ̇/f . As we will often refer to this equation, let us

pause and comment on it. The resonant non-Gaussianity vanishes when the modulation is

switched off, i.e. for b = 0. It is inversely proportional to some power of f (depending on

which quantity is held fixed). Hence the smaller the axion decay constant f , the larger the

non-Gaussianity. On the other hand, as we will see in §5, there are theoretical lower (as well

as upper) bounds on f , so that the non-Gaussian signal cannot be made arbitrarily large.

No complete analysis of the observational constraints on resonant non-Gaussianity has

been performed to date (however, see [26]), and such an analysis is beyond the scope of

the present work. Based on a rough comparison with known shapes of non-Gaussianity,

we estimate that fres & 200 might be at the borderline of being excluded by the current

data, while fres . 1 would be difficult to detect in the next generation of experiments. A

comprehensive analysis of the detectability of resonant non-Gaussianity is a very interesting

topic for future research.

4 Observational Constraints

In the last section, we derived the theoretical predictions of axion monodromy inflation for

the primordial power spectrum. We will now use these predictions to compare the model with

the five-year WMAP data [6]. While the data in principle allows for a variety of statistics

to be extracted, we will limit ourselves to the most fundamental one, the angular power

spectrum. The reason for this is that the data is not now adequate for the polarization data

or the three-point correlations to place meaningful additional constraints on the model. This

will change as soon as the Planck data becomes available, and will be an interesting problem

especially given the unusual shape of the non-Gaussianities the model predicts.

For the benefit of the less cosmologically-inclined reader, we now briefly summarize the

basic observables relevant to our analysis. In the ideal scenario, in which a full-sky map is

available, the temperature of the cosmic microwave background as a function of the position

in the sky can be expanded in spherical harmonics as

T (n̂) =
∑

ℓm

aℓmYℓm(n̂) (4.1)
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The theoretical counterparts of these measured expansion coefficients, which we will denote

athℓm, should be thought of as random variables satisfying a (possibly only nearly) Gaussian

distribution. Each realization of these coefficients corresponds to a possible history of the

universe. In the Gaussian case, all the information about the theory is contained in the two-

point correlations of these, as the odd n-point functions vanish, and the even n-point functions

are sums of products of the two-point functions. Assuming an isotropic background, the two-

point correlations must take the form

〈athℓmath ∗ℓ′m′〉 = Cℓδℓℓ′δmm′ , (4.2)

where the brackets denote an average over all possible histories or equivalently (by the ergodic

theorem) all possible positions. The athℓm’s themselves, being random variables encoding initial

conditions, cannot be predicted from a given cosmological model, and only the multipole

coefficients, Cℓ, encoding their correlations are of interest. These multipole coefficients Cℓ
can be estimated from the measured expansion coefficients aℓm via

Csky
ℓ =

1

2ℓ+ 1

∑

m

|aℓm|2 . (4.3)

For noiseless, full-sky CMB data, these provide an unbiased estimate of the true power spec-

trum in the sense that the average of the analogously defined quantity for the athℓm’s satisfies

〈Csky,th
ℓ 〉 ≡ 1

2ℓ+ 1

〈
∑

m

|athℓm|2
〉

= Cℓ . (4.4)

Since there are only 2ℓ+ 1 modes per ℓ, even for the ideal noiseless full-sky map the estimate

of the multipole coefficient has the cosmic variance uncertainty
〈(

Csky,th
ℓ − Cℓ
Cℓ

)2〉
=

2

2ℓ+ 1
. (4.5)

In a more realistic setting with noise and sky cuts, this estimator is no longer unbiased

and more sophisticated estimators have to be used. The current state of the art is to use a

pixel-based maximum likelihood estimator for low ℓ (specifically, for ℓ ≤ 32), and a pseudo-Cℓ
estimator for higher ℓ. For details we refer the reader to [27] and references therein.

After this quick review of the basic relevant quantities, let us describe our analysis. We

work on a grid of model parameters. For each point on the grid, we compute the theoretical

angular power spectrum with the publicly-available CAMB code [28, 29]8, using the primordial

power spectrum derived in the previous section in the form

∆2
R(k) = ∆2

R(k∗)

(
k

k∗

)ns−1+ δns
ln(k/k∗)

cos
“

φk
f

+∆ϕ
”

. (4.6)

8Of course, we modify the CAMB code to calculate all the multipole coefficients rather than calculating

some and interpolating.

20



The likelihood for a given theoretical power spectrum is calculated with a modified version

of the WMAP five-year likelihood code that is now available on the LAMBDA webpage [30].

The power spectrum in our model contains additional parameters beyond those of the WMAP

five-year ΛCDM fit (namely, {ΩBh
2,Ωch

2,ΩΛ, τ, ns,∆
2
R} and the marginalization parameter

{ASZ}). The additional parameters are δns, f and a phase ∆ϕ. This phase parameterizes both

our uncertainty in the number of e-folds needed, which originates in our poor understanding

of reheating, and a microscopically determined phase offset in the sinusoidal modulation of

the scalar potential arising in the string theory construction.

We fix the value of the scalar spectral index ns = 0.975. As in any model of large-field

inflation, the spectral index is a prediction of the model that depends only on the physics of

reheating and, correspondingly, on the total amount of inflation since the observable modes

exited the horizon. The value we choose corresponds to the situation in which the pivot

scale exits the horizon 60 e-folds before the end of inflation. The results turn out to be fairly

independent of the precise value chosen for the scalar spectral index and we could have chosen

the value corresponding to any number of e-folds between 50 and 60. We fix {Ωch
2,ΩΛ, τ, ASZ}

to the WMAP five-year best-fit values for the ΛCDM fit. We allow f, δns,ΩBh
2,∆ϕ to vary

on the grid, and we also marginalize over the scalar amplitude {∆2
R} in the likelihood code. To

obtain Figure 2, we thus marginalize over {ΩBh
2,∆2

R} and over the unknown phase ∆ϕ, while

we fix {Ωch
2,ΩΛ, τ, ASZ}, as we expect at most mild degeneracies between these parameters

and the primordial ones.

The grid consists of 16 equidistantly spaced points in ΩBh
2 between ΩBh

2 ≈ 0.0212 and

ΩBh
2 ≈ 0.0266, 128 equidistantly spaced points in δns between δns = 0 and δns = 0.44,

512 logarithmically spaced points in the axion decay constant f between f = 9 × 10−5 and

f = 10−1, as well as 32 points for the phase ∆ϕ between ∆ϕ = −π and ∆ϕ = π. This leads

to a grid with a total of 33,554,432 points. The analysis was run on 64 of the compute nodes

of the Ranger supercomputer at the Texas Advanced Computing Center. The compute nodes

are SunBlade x6420 blades, and each of the nodes provides four AMD Opteron Quad-Core

64-bit processors with a core frequency of 2.3 GHz.

The resulting 68% and 95% contours in the δns − f plane are shown in the left plot of

Figure 2. To convert the resulting observational constraints on δns as a function of f into

constraints on the microscopic parameter bf as a function of f , we make use of equation (3.25).

The resulting 68% and 95% contours in the bf -f plane are shown in the right plot of Figure 2.

Roughly, the results can be summarized as bf . 10−4 for f . 0.01 at 95% confidence level.

Our best fit point is at a rather small value of the axion decay constant, f = 6.67× 10−4, and

a rather large amplitude for the oscillations, δns = 0.17. The fit improves by ∆χ2 ≃ 11 over

the fit in the absence of oscillations. The corresponding angular power spectrum is shown in

Figure 3.
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Figure 2: This plot shows the 68% and 95% likelihood contours in the δns-f , and bf -log10 f

plane, respectively, from the five-year WMAP data on the temperature angular power spec-

trum.
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Figure 3: The left plot shows the angular power spectrum for the best fit point f = 6.67×10−4,

and δns = 0.17. The right plot shows the angular power spectrum for the best fit point

together with the unbinned WMAP five-year data.

The improvement can be traced to a better fit to the data around the first peak. We

would like to stress, however, that we do not take this as an indication of oscillations in

the observed angular power spectrum. Similar spikes in the likelihood function occur quite

generally when fitting an oscillatory model to toy data generated with the conventional power

spectrum without any oscillations, because the oscillations fit some features in the noise. The

polarization data could provide a cross check, but we find that it is presently not good enough

to do so in a meaningful way.
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Let us say a few words motivating the necessity of marginalizing over ΩBh
2 and ∆ϕ. There

is a known degeneracy in the angular power spectrum between ΩBh
2 and ns, as changing ΩBh

2

changes the ratio of the power in the first and second acoustic peaks, which to some extent

can be undone by changing the spectral tilt ns. In our case we do not vary ns, but we add a

sinusoidal contribution to the standard power spectrum. It is intuitively clear that by doing

so we can change the ratio of power in the first and second acoustic peak by choosing the

right oscillation frequency (controlled by f) and phase ∆ϕ, leading to a degeneracy between

ΩBh
2 and δns at least for a certain range of f .

The most straightforward way to demonstrate this degeneracy between ΩBh
2 and δns

arising for certain ‘resonant’ values of f is to present a likelihood plot in the ΩB-δns plane for

a value of f for which the degeneracy is clearly visible. An example is shown in the plot on

the left side of Figure 4. It shows that marginalizing over ΩBh
2 is necessary to obtain correct

exclusion contours on δns and f . That marginalization over the phase is necessary can easily
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Figure 4: These plots show the 68% and 95% likelihood contours for the five-year WMAP

data on the temperature angular power spectrum in the δns - ΩBh
2 plane and δns - ∆φ plane

for an axion decay constant of f = 3 × 10−2 and f = 1.5 × 10−2, respectively.

be seen from a likelihood plot in the δns-∆ϕ plane. This is shown in the plot on the right

side of Figure 4.

We have also performed a Markov chain Monte Carlo analysis for the model using the

publicly available CosmoMC code [31], [32]. While the Monte Carlo has the advantage that

it is less computationally intensive than a grid when varying all cosmological parameters, the

likelihood function for oscillatory models turns out to be rather spiky, making the Monte

Carlo hard to set up, because the chains tend to get trapped in the spikes.

To some extent this can be overcome by taking out the problematic regions or increasing

the temperature of the Monte Carlo. When run on parts of the parameter space where the
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Monte Carlo runs reliably, we found agreement with the grid-based results shown above.
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Figure 5: This figure shows a triangle plot for some of the parameters that were sampled in

a Markov chain Monte Carlo for an axion decay constant of f = 10−2. The contours again

represent 68% and 95% confidence levels.

The most problematic direction to sample is that of the axion decay constant, f . We show

the result of one of our chains for f = 0.01 in Figure 5. The plot shows marginalized one-

dimensional distributions and two-dimensional 68% and 95% confidence level limits for the
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most important ΛCDM parameters as well as δns and ∆φ. In the Monte Carlo, we sampled

the parameters δns, ∆φ, all parameters of the ΛCDM except the scalar spectral index, as well

as the Sunyaev-Zel’dovich amplitude.

5 Microphysics of Axion Monodromy Inflation

In §1.1 we briefly reviewed the properties of axion monodromy inflation, focusing on the

description in effective field theory. For a general characterization of the signatures of the

scenario, the phenomenological model of §1.1 was sufficient. However, the phenomenological

parameters f, µ,Λ are in principle derivable from the data of a string compactification, and

as such they obey nontrivial microscopic constraints: the ranges and correlations of these

parameters are restricted by microphysics.

We should therefore determine the values of the phenomenological parameters allowed in

consistent, computable string compactifications. We will begin by reviewing the string theory

origin of axion monodromy inflation, both to set notation and to highlight the properties

most relevant in constraining the parameters f, µ,Λ. For concreteness we will restrict our

attention to a specific realization of the scenario, in O3-O7 orientifolds of type IIB string

theory, with the Kähler moduli stabilized by nonperturbative effects. Our considerations

could be generalized to other compactifications, but the numerical results would differ.

5.1 Axions in string theory

Let us first review the origin of the relevant axions. Our conventions and notation are sum-

marized in appendix A. Consider type IIB string theory compactified on an orientifold of a

Calabi-Yau threefold X. Let the forms ωI be a basis of the cohomology H2(X,Z), normalized

such that
∫

ΣI
ωJ = δ J

I (2π)2α′, where ΣI are a basis of the dual homology H2(X,Z). The RR

two-form C2 gives rise to a four-dimensional axion via the ansatz9

C2 =
1

2π
cI(x)ω

I , (5.1)

where x is a four-dimensional spacetime coordinate. The ten-dimensional Einstein-frame

action [33] that follows is

∫
d10x

gs
√−gE

2(2π)7α′4 |dC2|2 =

∫
d10x

gs
√−gE

12(2π)9α′4 g
µν
E ∂µcI∂νcJω

I
ijω

J
i′j′g

ii′

E g
jj′

E . (5.2)

Notice that the axions only have derivative couplings, and hence enjoy a continuous shift

symmetry at the level of the classical action. In §5.2.3 we will recall the origin of this

9The factor of 2π is introduced so that the four-dimensional axions cI have periodicity 2π, as can be seen

via S-duality from the world-sheet coupling i
∫

B2/(2πα′). Notice that in our conventions C2 and ωI have the

dimensions of length-squared, while cI are dimensionless.
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symmetry and explain how it persists to all orders in perturbation theory and is broken

by nonperturbative effects.

Upon dimensional reduction, one finds a relation between the four-dimensional reduced

Planck mass Mp and α′,

α′M2
p =

VE
π
, (5.3)

where VE is the Einstein-frame (dimensionless) volume of the Calabi-Yau X measured in units

of ls ≡ 2π
√
α′. The decay constant of the canonically normalized axion is then

f 2

M2
p

=
gs

48π2VE

[∫
ω ∧ ∗ω

(2π)6α′3

]
. (5.4)

The present definition of the axion decay constant differs by a factor of 2π from that in [5],

i.e. fhere = 2πf there. As a consequence our canonically normalized axion has periodicity 2πf ,

consistent with (2.1).

5.2 Dimensional reduction and moduli stabilization

5.2.1 Four-dimensional data of O3-O7 orientifolds

Now we consider how to stabilize the compactification in a setup that will allow inflation. We

focus on the KKLT scenario for moduli stabilization [34]. We assume that the complex struc-

ture moduli, the dilaton, and any open string moduli have been stabilized at a higher scale,

and we concentrate on the remaining closed string moduli (specifically, the remaining moduli

are those descending from hypermultiplets). The N = 1 supersymmetric four-dimensional

theory resulting from dimensional reduction of type IIB orientifolds was worked out in detail

in [35]. We are interested in orientifold actions under which the holomorphic three-form Ω

of the Calabi-Yau manifold is odd, so that the fixed-point loci are O3-planes and O7-planes.

The cohomology decomposes into eigenspaces of the orientifold action,

H(r,s) = Hr,s
+ ⊕Hr,s

− . (5.5)

We therefore divide the basis ωA, A = 1, . . . , h1,1 into ωα, α = 1, . . . h1,1
+ and ωa, a = 1, . . . h1,1

− .

Working out the sign of the orientifold action on the physical fields, one finds that the two-

forms C2 and B2 are odd, and should be expanded in terms of the ωa. Grimm and Louis

[35] have derived the Kähler coordinates on the corresponding moduli space, i.e. the proper

complex combinations of fields that appear as the lowest components of chiral multiplets:10

Ga ≡ 1

2π

(
ca − i

ba

gs

)
(5.6)

Tα ≡ iρα +
1

2
cαβγv

βvγ +
gs
4
cαbcG

b(G− Ḡ)c (5.7)

10We use the same notation as [35] with two exceptions: we rescale Tα as There
α = (2/3)T there

α , and we add

a factor of (2π)−1 in the definition of Ga such that the fields ca and ba have periodicity 2π. See appendix A

for more details on our conventions.
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where ρα comes from the RR four-form C4 integrated over some orientifold-even four-cycle

Σα, with α = 1, . . . , h1,1
+ ; and ca and ba come from the RR and NS-NS two-forms C2 and B2

integrated over some orientifold odd two-cycle Σa with a = 1, . . . , h1,1
− . The tree-level Kähler

potential is given by11

K = log
(gs

2

)
− 2 logVE (5.8)

where the (dimensionless) Einstein-frame volume VE of the Calabi-Yau manifold is defined in

(A.4). The dependence of this Kähler potential on the multiplets (5.6) and (5.7) cannot be

written down explicitly for a generic choice of the intersection numbers cIJK . The implicit

dependence is given by writing the (Einstein-frame) volume in terms of two-cycle volumes vα

K = log
(gs

2

)
− 2 log

[
1

6
cαβγv

α(T,G)vβ(T,G)vγ(T,G)

]
. (5.9)

Then one has to solve (5.7) for vα and substitute the result into the above Kähler potential.

The Kähler potential is a function of VE, and hence is a function of vα, and in turn of

τα ≡ ReTα and ImG, but does not depend on ReG and ImTα (as can be seen by taking the

real part of (5.7)). One might be tempted to conclude that c enjoys a shift symmetry but

that b does not, but, as we will explain in §5.2.3, both fields have shift symmetries.

The tree-level superpotential W0 does not depend on the multiplets (5.6) and (5.7). In fact

it depends on the complex structure moduli and the dilaton, which we assume have already

been stabilized by fluxes. Therefore we will take W0 to be a discretely tunable constant.

5.2.2 Nonperturbative stabilization of the Kähler moduli

Let us now proceed to consider nonperturbative effects. We follow the KKLT strategy [34] for

the construction of a de Sitter vacuum. We assume that each four-cycle Tα is wrapped either

by a Euclidean D3-brane or by a stack of D7-branes giving rise to a four-dimensional gauge

theory that undergoes gaugino condensation.12 This results in the following four-dimensional

superpotential:

W = W0 +

h1,1
+∑

α=1

Aαe
−aαTα , (5.10)

where Aα will be treated as constants, as they depend on the complex structure moduli,

which we have assumed to be stabilized; aα ≡ 2π/Nα, with Nα the number of D7-branes in

11We assume that the axio-dilaton τ = C0 + ie−φ is already stabilized by fluxes at τ = i/gs and we write

down the dilaton-dependent part of the Kähler potential only to keep track of factors of gs.
12In general, Euclidean D3-branes or D7-branes will wrap some linear combinations T̃α of the cycles ap-

pearing in (5.7), rather than the basis cycles Tα themselves, but for simplicity we will suppress this issue.
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the stack; and Nα = 1 for the case of a Euclidean D3-brane. We can find a supersymmetric

minimum by solving for the vanishing of all the F-terms: for the h1,1
+ even Kähler moduli via

0 = DαW ≡ ∂TαW +W∂TαK = −Aαaαe−aαTα − 2W
∂TαVE
VE

= −Aαaαe−aαTα −W
vα

2VE
, (5.11)

and for the h1,1
− odd moduli via

0 = DaW ≡ ∂GaW +W∂GaK = −iW cαacv
αbc

4πVE
(5.12)

where in both cases in the last step we used the chain rule and the definitions of Ga and Tα
in terms of two-cycle volumes vα. The condition (5.11) is simplified if we first solve for ImTα,

which gives

aαImTα = θAα − θW0 + kαπ , kα ∈ Z . (5.13)

Then we are left with the set of real equations for each α,

(±1)α|Aα|aαe−aατα = ∂TαK

(
|W0| +

∑

β

(±1)α|Aβ|e−aβτβ

)
, (5.14)

where (±1) depends on the value of k in (5.13). As long as the orientifold-even four-cycle

Kähler moduli are defined as in (5.7), then ∂TαK = −vα/(2VE) < 0 for every α. Now we prove

that in (5.14) the minus sign has to be chosen for every α in order to have a supersymmetric

solution. First we notice that the sign of the right hand side does not depend on α, so kα
and hence (±1)α have to be the same for every α. If we choose the positive sign in (5.14),

the quantity in brackets in the right hand side is manifestly positive. Then the two sides

of the equation have opposite signs and no (compact) solution exists. To summarize, the

minimization of ImTα boils down to taking all Aα real and negative and W0 real and positive

or the other way around.13

Concerning (5.12), an obvious solution is given by ba = 0 for every a. As argued in [5],

an inflationary model with a b-type axion as the inflaton will generically suffer from an eta

problem, and we will therefore focus on a c-type axion.

5.2.3 Nonperturbative breaking of axionic shift symmetries

Axionic shift symmetries are central to this paper, so we will now explain how they originate

and how they are ultimately broken by nonperturbative effects. First, let us recall the classic

13We notice that if one chooses as Kähler variable a linear combination of the Tα defined in (5.7), as is done

e.g. in the large volume scenario with Swiss-cheese Calabi-Yau manifolds, then the sign of ∂Tα
K can depend

on α. In this case, the minimization of ImTα boils down to taking W0 real and positive and Aα real with

Sign(Aα) = Sign(∂Tα
K), up to multiplying W by an overall phase.
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result [36, 37] establishing the shift symmetry to all orders in perturbation theory. Consider

the axion b =
∫

Σ
B/(2πα′), where B is the NS-NS two-form potential and Σ is a two-cycle

in the Calabi-Yau manifold. The vertex operator representing the coupling of b to the string

worldsheet is [36]

V (k) =
1

2πα′

∫

Σ

d2ξ exp
(
ik ·X(ξ)

)
ǫαβ∂αX

µ∂βX
νBµν(X) . (5.15)

At zero momentum, this coupling is seen to be a total derivative in the worldsheet theory.

Therefore, the axion b can only have derivative couplings (which vanish at zero momentum),

to any order in sigma-model perturbation theory. Notice that the genus of the worldsheet did

not enter in this argument, so the axion shift symmetry is also valid to all orders in string

perturbation theory.

This argument fails in the presence of worldsheet boundaries (i.e., D-branes), and also

fails once worldsheet instantons, or D-brane instantons, are included. In axion monodromy

inflation, both sorts of breaking play an important role, as we shall now explain.

First, the introduction of an NS5-brane wrapping a curve Σa creates a monodromy for

the axion ca, spoiling its shift symmetry and inducing an asymptotically linear potential [5].

Specifically, the potential induced by the Born-Infeld action of the NS5-brane (obtained by

S-dualizing the Born-Infeld action of a D5-brane) is

V (ca) =
ǫ

gs(2π)5α′2

√
ℓ4 + (2πgsca)2 , (5.16)

where ℓ
√
α′ is the size of Σa and ǫ captures the possibility of suppression due to warping. For

ca ≫ 1, this potential is linear in ca, or in the corresponding canonically normalized field,

which we denoted by φ in the preceding sections. Let us remark that the square root form of

the potential can be important at the end of inflation and also makes a small change in the

number of e-foldings produced for given parameter values, so that in a model that includes

a specific scenario for reheating, the square root structure should be incorporated as well.

As we have not invoked a concrete reheating scenario, for our purposes the linear potential

suffices, but one must still bear in mind that this form is not valid for small φ.

As we will explain in detail, the D-brane instantons involved in moduli stabilization in-

troduce sinusoidal modulations to the linear potential. We will work exclusively in a regime

in which the breaking by wrapped branes dominates over the nonperturbative breaking, al-

though we remark in passing that the complementary regime might be interesting for realizing

models involving repeated tunneling.

The breaking of the b shift symmetry by Euclidean D-branes (or by gaugino condensation

on D7-branes) is slightly subtle, so we will address it briefly. As we remarked above, b appears

quadratically in the classical Kähler potential, which seems to contradict the statement that it

enjoys a shift symmetry at the perturbative level in the absence of boundaries. However, there

is no contradiction: the shift symmetry of b is true at constant two-cycle volumes v and not
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at constant four-cycle volumes T . To see this, suppose that there is a single Kähler modulus

T , so that the superpotential is of the form (5.10) with h1,1
+ = 1. The Kähler potential is then

[35]

K = −3M2
p log (T + T̄ − d b2) , (5.17)

with d a constant. In the absence of a nonperturbative superpotential, a suitable simultaneous

shift of T + T̄ and b is a symmetry of the scalar potential of this system; under such a shift,

the two-cycle volumes v are invariant. However, this symmetry is spoiled by the nonpertur-

bative term in W , because the superpotential and the scalar potential are no longer invariant.

Therefore, in a scenario in which the four-cycle volumes are stabilized nonperturbatively, the

b axion receives a mass in a stabilized vacuum.

At this stage the mass-squared m2
b of b is proportional to the vacuum energy and hence is

negative in the supersymmetric AdS minimum. The minimum of the potential will be the final

point of the inflationary dynamics, and hence we would like it to have a very small positive

cosmological constant to be consistent with the current accelerated expansion of the universe.

Thus, we need to include an uplifting term. In the uplifted minimum, m2
b ∝ VdS > 0. This

relation is the origin of the eta problem that was found in [5] choosing b as an axion: for a

generic uplifting,14 V ′′(b) ∼ V (b), so that η ∼ O(1) and slow roll inflation does not take place.

This is completely analogous to the eta problem of D-brane inflation found in [39] and can

be intuitively understood in the same way. Here we will take b = 0 as the stabilized value 15

of b and concentrate on c as a candidate inflaton.

Let us now turn to consider c, which does not appear in the Kähler potential or superpo-

tential at any order in perturbation theory. To assess c as an inflaton, one should determine

the leading nonperturbative effects, either in the superpotential or in the Kähler potential,

that do introduce a potential for c, i.e. one should identify the leading breaking of the shift

symmetry. Euclidean D3-branes carrying vanishing D1-brane charge do not induce a poten-

tial for c, but Euclidean D3-branes supporting worldvolume fluxes (and hence nonvanishing

D1-brane charge) give rise to a dependence on c, via the Chern-Simons coupling
∫
F2 ∧ C2.

As observed in [5], it follows that when the Kähler moduli are stabilized by Euclidean D3-

branes, c receives a mass in the stabilized vacuum: one must sum over Euclidean D-brane

contributions to the superpotential, including summing over the amount n =
∫
F2 of magne-

tization, and this generically introduces an eta problem for c. The solution, as explained in

[5], is to stabilize the Kähler moduli via gaugino condensation on D7-branes, which leads to

an exponentially smaller (and hence negligible) mass for c.

14Notice that the proportionality constant in m2

b ∝ VdS depends on the volume-dependence of the uplifting

term and could be made small for particular choices of the latter as proposed in [38].
15It is easy to check that b = 0 is still the stabilized value after the inclusion of nonperturbative corrections

to the Kähler potential, cf. §6.5.
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5.3 Axion decay constants in string theory

We now turn to the important task of expressing the axion decay constant, f , in terms

of the data of a compactification. As we reviewed in §5.1, the decay constant of an axion

C2 = c(x)ω/(2π) is given by

f 2

M2
p

=
gs

48π2VE

[∫
ω ∧ ∗ω

(2π)6α′3

]
, (5.18)

so that the primary task is to compute the norm
∫
ω ∧ ∗ω. (This problem has been studied

in a wide range of examples in [40].) We will first recall, in §5.3.1, how to express the axion

kinetic term, and hence also the axion decay constant, in terms of N = 1 data. This will

lead us to a simple expression for the decay constant in terms of intersection numbers of the

Calabi-Yau. We will then propose a class of models in which the decay constant is rather

small, motivated by the fact that with other parameters held fixed, decreasing f increases

the amplitude of the resonant non-Gaussianity. Next, in §5.3.2, we will present a concrete

example that illustrates the geometry of a configuration that leads to small f .

5.3.1 Decay constants in terms of N = 1 data

In §5.2.1 we have reviewed, following [35], the four-dimensional N = 1 description of Type IIB

O3-O7 orientifolds. The multiplets relevant for us are the orientifold-odd chiral multiplets

Ga and the orientifold-even chiral multiplets Tα. The tree-level Kähler potential given in

(5.9) determines the kinetic terms for Ga and hence the decay constants of the axions ba and

ca. First let us notice that the Kähler metric in the space of the chiral multiplets Tα and

Ga factorizes in two blocks, KTαT̄β
and KGaḠb . The reason is that off-diagonal terms such as

KTαḠa are proportional to intersection numbers cαβa with one odd index and two even indices,

which are forbidden by the orientifold action [35]. We are interested in one particular mode

from among the Ga, which we will denote by G−; Σ− is then the orientifold-odd two-cycle

that supports our candidate inflaton c−. We now choose a basis for Ga such that KGaḠb is

block diagonal with a 1 × 1 block KG−Ḡ− . The kinetic term for c− is then given by

− 1

2
f 2
(
∂c−

)2
= M2

pKG−Ḡ−
1

(2π)2

(
∂c−

)2 ⊂M2
pKG−Ḡ−

∣∣∂G−∣∣2 , (5.19)

where

KG−Ḡ− =
∂2K(G, T )

∂G−∂Ḡ− = −gs
cα−−v

α

4VE
, (5.20)

and we used

cαβγv
βvγ = 2τα + gs cαbc ImGb ImGc . (5.21)
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Hence we can express the decay constant of the axion c− as

f 2

M2
p

=
gs
8π2

cα−−v
α

VE
. (5.22)

As promised, we have expressed the norm
∫
ω ∧ ∗ω in terms of the intersection numbers

∫
ω ∧ ∗ω

(2π)6α′3 =
2

3
cα−−v

α . (5.23)

In §6.4 we will discuss the constraints that follow from the result (5.22). First, in the following

subsection we provide some geometrical intuition for (5.22).

5.3.2 An example: a complex plane of fixed points

An instructive example arises from considering an orbifold that is locally C
2/Z2 × C, i.e. an

Eguchi-Hanson space fibered over a base Σ of complex dimension one. Let ω be the two-form

dual to the blowup cycle of the orbifold, and let Σ be the two-manifold of fixed points, i.e. the

base over which the Eguchi-Hanson space is fibered.16 We are interested in the decay constant

of the axion C2 = 1
2π
c(x)ω, so we must compute

∫
ω ∧ ∗ω. In the local approximation, this is

straightforward, as we shall see. However, far from the fixed-point locus, the fiber may deviate

substantially from the Eguchi-Hanson geometry, in a complicated and model-dependent way,

and moreover the fixed-point locus Σ may be embedded in the compact space in a nontrivial

manner. Happily, the integral
∫
ω ∧ ∗ω has its primary support near the fixed-point locus,

where the local approximation is excellent.

We recall, following the useful summary in Appendix B of [41], that the Eguchi-Hanson

space has a unique homology two-cycle of radius a/2, where r = a defines the location of the

coordinate singularity; here r is the standard radial coordinate. The two-form ω corresponding

to this cycle may be written

ω = 2πα′a
2

r2

(dr
r

∧ dψ + cos θ
dr

r
∧ dφ+

1

2
sin θ dθ ∧ dφ

)
(5.24)

in terms of r and the angular coordinates ψ, θ, φ. By observing that ∗4ω = −ω and that∫
ω ∧ ω = −(2π)4α′2/2, one finds

∫
EH

ω ∧ ∗4ω

(2π)4α′2 =
1

2
. (5.25)

Clearly, given the form of ω, this integral has its support in a region a ≤ r . few × a.

This justifies the local approximation as long as the compact space has a radius that is large

16Concretely, we are imagining that Σ extends into a warped throat region, and that an NS5-brane wraps

the blowup cycle at a particular location in the throat. The warping is invoked in order to suppress the energy

density of the wrapped NS5-brane. See [5] for further details, and for an example of a suitable orbifold action

in a Klebanov-Strassler throat.
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compared to a. Next, we observe that

∫
ω ∧ ∗6ω

(2π)6α′3 =

∫
EH

d4xω ∧ ∗4ω

(2π)4α′2 ×
∫

Σ

√
g

(2π)2α′ =
1

2
Vol(Σ) (5.26)

Substituting this in (5.18), we recover the parametric scaling of §5.3.1.

6 Microscopic Constraints

We now turn to determining the ranges of our phenomenological parameters that are allowed

in a consistent and computable microphysical model.

Let us first remark that, as usual in string theory model building, computability imposes

stringent constraints on the compactification parameters. Because large-field inflation in-

volves substantial energy densities and requires correspondingly steep moduli barriers, the

compact space needs to be reasonably small, so that the Kaluza-Klein scale and the (neces-

sarily lower) scale of moduli masses can be large enough to prevent runaway moduli evolution.

Clearly, one must then carefully check that the compactification is still large enough for the

supergravity approximation to be valid; furthermore, backreaction of the inflationary energy

on the compact space is a serious issue, particularly when this space is not large in string

units. Incorporating these requirements then leads to severe restrictions on the allowed values

of the decay constant f .

We will begin in §6.1 by considering the constraints from computability, then give, in §6.2,

a qualitative description of the constraints from backreaction, deferring details to appendix B.

Next, in §6.3, we will verify that a two-derivative action suffices to describe this system. This

is not obvious, as rapid oscillations in the potential could enhance the importance of generic

higher-derivative terms; however, we will show that the specific terms emerging from string

theory are negligible in our solution. We then apply these constraints in §6.4 to determine

the range of the decay constant f . Finally, we estimate the size bf of the modulations; as

this is rather model-dependent, in §6.5, we will restrict our attention to a specific example in

which a periodic contribution is generated by Euclidean D1-brane corrections to the Kähler

potential.

6.1 Constraints from computability

In this subsection we will list several constraints coming from the consistency of the string

theory setup. We will first require the validity of the string and α′ perturbation expansions,

and the validity of neglecting higher-order corrections to the nonperturbative superpotential,

and then we will require that the inflaton potential does not destabilize the compactification.

First of all we require the validity of string perturbation theory, i.e. we require gs ≪ 1. We

must also ensure the validity of the α′ expansion. To do this including a reasonable estimate

of numerical factors such as 2π, it is convenient to use worldsheet instantons as a proxy for
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perturbative α′ corrections, because the normalization is easily determined. To get the correct

coefficient, we start from the string-frame ten-dimensional metric gstring and impose that the

worldsheet instanton action obeys e−SWS . e−2, or

1

2πα′

∫ √
gstring & 2 , (6.1)

which using gstring = gEinstein
√
gs is converted to Einstein frame

2 <

√
gs

2πα′

∫

Σα

J =
√
gsv

α2π ⇒ vα >
1

π
√
gs
, (6.2)

and we used that
∫

Σα ω
β = (2π)2α′δ β

α .

As we invoked nonperturbative corrections to the superpotential, we must also require

that any further superpotential corrections, e.g. from multi-instantons, are negligible. For

this purpose it suffices to impose

e−aαTα < e−2 ≪ 1 ⇒ τα >
Nα

π
. (6.3)

Additional constraints come from the moduli stabilization process. To use the single-field

inflationary analysis we have developed in §2 and §3, we need to require that the uplifted

minimum is only slightly perturbed by the inflationary dynamics. In particular, the linear

potential that we have represented as µ3φ actually depends on the compactification volume,

and hence shifts the minimized value of the volume. In four-dimensional Einstein frame, the

leading term in the inflaton potential is

V (φ,VE) ≈
(〈VE〉

VE

)2

µ3φ (6.4)

where 〈VE〉 is the expectation value of the volume. To ensure that the resulting contribution

to the potential for the volume is unimportant, we will insist that the inflaton potential

induced by the NS5-brane, V (φ), is smaller than the moduli potential Umod.
At the supersymmetric minimum we have

VAdS = −gs
2

3|W |2
V2
E

. (6.5)

Without specifying the details of the uplifting mechanism, we assume that an uplifting to

a small and positive cosmological constant is possible, and that the height of the potential

barrier Umod that separates the uplifted minimum from decompactification is of the same

order as Umod ∼ |VAdS|. Now, the COBE normalization tells us that

V (φCMB) = ǫ ( 0.027Mp)
4 ≃ 2.4 · 10−9M4

p . (6.6)
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Hence we obtain the constraint

gs
2

3|W |2
V2
E

= |VAdS| ≃ Umod ≫ 2.4 · 10−9M4
p . (6.7)

To extract a useful form of the above constraints, let us substitute for W the solution of

any of the equations (5.11)

W = +|Aα|aα e−aατα
2VE
vα

, (6.8)

with no sum over α. We will also assume |Aα| ∼ 1 (see [5] for a discussion of this point).

After some manipulations we find

τα ≪ −Nα

2π
log

(
Nα10−5 vα

π
√
gs

)
, (6.9)

again with no summation over α. Finally, we should limit the number of D7-branes in each

stack; although there plausibly exist examples with Nα quite large, we will impose Nα ≤ 50.

This gives us

τα ≪ 73 − 8 log

(
vαπ

√
gs

2gs

)
. (6.10)

We notice that vα(π
√
gs) > 1 was the condition in (6.2) that enabled us to neglect α′ cor-

rections, so that as long as gs 6 0.5 the second term on the right hand side of (6.10) is

negative.

6.2 Constraints from backreaction on the geometry

Another important constraint comes from the requirement that the backreaction of the infla-

tionary energy density on the compact space is small. In this section we will give a qualitative

description of the problem and will briefly sketch a model-building solution; the interested

reader is referred to appendix B for a more complete treatment.

At the time that the CMB perturbations are produced, the inflaton has a large vev in

Planck units, φ ∼ 11Mp, corresponding to a configuration of the two-form potential threading

the two-cycle Σ− of the form

1

(2π)2α′

∫

Σ−

C2 ≡ Nw =
φ

2πf
≫ 1 (6.11)

In the absence of an NS5-brane wrapping Σ, there would be no energy stored in this configu-

ration, as C2 enjoys a shift symmetry. However, inflation is driven by the substantial energy

stored in this system by the Born-Infeld action of the wrapped NS5-brane. Moreover, there is

a corresponding D3-brane charge induced by the Chern-Simons coupling
∫
C2∧C4. Note that

the net induced D3-brane charge in the total compactification is zero, as required by Gauss’s
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law, because we have arranged for an additional, tadpole-canceling NS5-brane that wraps a

distant cycle Σ′
− homologous to Σ−, but does so with opposite orientation. Therefore, the

Chern-Simons coupling induces a dipole configuration of D3-brane charge, with F5 flux lines

stretching from Σ− to Σ′
−.

It is essential to ensure that the inflationary energy, which is effectively localized in the

compact space in the vicinity of the wrapped NS5-brane, does not substantially correct the

remainder of the compact geometry. Heuristically, one can imagine that the increased tension

of the NS5-brane, as well as the induced charge, is represented by Nw D3-branes dissolved in

the NS5-brane. We must therefore estimate the effect of Nw D3-branes in a warped throat

(recall that we have situated each wrapped NS5-brane in a warped region in order to suppress

its energy density below the string scale, as required e.g. by the COBE normalization).

Clearly, this backreaction will be reasonably small if Nw ≪ N , with N the D3-brane charge

of the background throat.

However, we must be careful about the effect of even a modest distortion of the geometry

on the moduli stabilization and therefore on the four-dimensional potential. Let us first recall

that in scenarios of D3-brane inflation in nonperturbatively-stabilized vacua, even a single D3-

brane moving slowly in a throat can affect the warp factor, and correspondingly the warped

volumes of four-cycles bearing nonperturbative effects, to such a degree that this interaction

is the leading contribution to the inflaton potential [42, 43].

This sensitivity originates in two facts: first, D3-branes perturb the warped metric in a

manner that is not suppressed by the background warp factor at the location of the D3-

branes, because D3-branes are BPS with respect to a throat generated by D3-brane charge,

and hence their contributions to the metric may simply be superposed on the background.

Second, nonperturbative effects on a four-cycle are exponentially sensitive to changes in the

four-cycle volume. Both these facts appear threatening for a situation such as ours in which

the moduli are stabilized nonperturbatively and substantial D3-brane charge is induced in a

throat: one can anticipate that as inflation proceeds and the D3-brane charge diminishes, the

four-cycle volume changes, leading to an unanticipated, and possibly steep, contribution to

the inflaton potential.

To understand this concretely, we will first consider a simpler system: an anti-D3-brane

in a warped throat generated by N D3-branes, or equivalently a warped throat generated by

N − 1 D3-branes, together with a brane-antibrane pair. Furthermore, from the result of [44]

one learns that at long distances, the effect of the brane-antibrane pair on the supergravity

solution is strongly suppressed by the warp factor at the location of the pair, i.e. at the tip of

the throat. In contrast, the effects of D3-branes are not suppressed in this manner. Therefore,

for the purpose of computing perturbations to the bulk compact space, we may replace an

anti-D3-brane in a warped throat generated by N D3-branes with a warped throat generated

by N − 1 D3-branes, up to exponentially small corrections.

Equipped with this approximation, we may represent the configuration of interest as fol-

lows: two warped throats, carrying the charge of N1, N2 D3-branes respectively, are perturbed
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to N1 +Nw, N2 −Nw by the inclusion of the NS5-brane in (say) the first throat, and the anti-

NS5-brane in the second throat. Here we are ignoring the warping-suppressed correction

indicated above, and we are approximating the NS5-branes by the D3-brane charge and ten-

sion that they carry, which is an excellent approximation for Nw ≫ 1. Other effects due to the

NS5-brane that do not depend on its induced D3-brane charge, i.e. on its world-volume flux,

are independent of the inflaton and hence do not correct its potential. One can now easily see

that the volume of a four-cycle at a generic location in the compact space will be corrected

by the inclusion of the NS5-branes. If the four-cycle happens to enter one or both throats,

the change in the volume is easily computed, and is seen to be substantial (cf. appendix B).

To control this problem, we situate the NS5-brane and the anti-NS5-brane, together with

the family of homologous cycles connecting them, in a single warped region. The idea is

that from the bulk of the compact space, the NS5-brane configuration will appear to be a

distant dipole whose net effect, integrated over a four-cycle, averages out to be small. This

setup allows us to parametrically suppress the backreaction by a small factor given by the

ratio of the dipole length, i.e. the distance between two NS5-branes, to the distance between

the NS5-branes and the four-cycle in question. This small factor comes in addition to the

suppression by the small ratio Nw/N .17

In appendix B we give more details about the above setup. We show, through two explicit

models of increasing complexity, the robustness of the above suppression mechanism.

6.3 Constraints from higher-derivative terms

The analysis presented thus far has used the two-derivative action, which is an approximation

with a limited range of validity. In general, one expects an infinite series of higher-derivative

terms, possibly including multiple derivatives as well as powers of the first derivative. Our

background solution involves rapid oscillations, so it is reasonable to ask whether these high

frequencies enhance the role of higher-derivative terms and render the two-derivative approxi-

mation invalid. To check this, one should evaluate the higher-derivative terms on the solution

and compare to the two-derivative action. We will now show that the two-derivative ap-

proximation is valid in the scalar sector; analogous considerations apply to the gravitational

action.

Rather than write down the most general higher-derivative corrections to the scalar sector,

we give here the terms that end up being present in the string theory examples. In string the-

ory, we can directly compute the leading higher-derivative terms in the action for b, extending

the result to c using S-duality. To get the leading terms, one considers the α′3 corrections to

the effective action due to Gross and Sloan [45] (at the four-point level) and Kehagias and

Partouche [46] (up to the eight-point level). These corrections are of the same lineage as the

17A further suppression can be achieved with a carefully-chosen embedding of the four-cycle, e.g. one that

is symmetric with respect to the two NS5-branes. However, this requires fine-tuning, whereas the dipole

suppression on which we have focused is parametric.
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famous Riemann4 term, but involve NS-NS three-form flux. This yields corrections to the

axion kinetic terms. Following [46], the ten-dimensional Einstein-frame action including the

leading (α′3) corrections is

S10D,E =
1

(2π)7α′4

∫
d10x

√
gE

(
RE − 1

12gs
HKMNH

KMN +
ζ(3)

3 × 26
g−3/2
s α′3R̄4 + . . .

)
.(6.12)

where

R̄ PQ
MN = R PQ

MN +
1

2
g−1/2
s ∇[MH

PQ
N ] − 1

4
g−1
s H

C[P
[M H

Q]
N ]C + . . . (6.13)

and the square brackets are defined without the combinatorial factor 1/2 in front. Hence,

the terms that are relevant for our axion at order α′3 are proportional to H8 and (∇H)4. To

estimate the importance of these terms, we will consider a special case in which the internal

space is a T 2 × T 4, with the NS-NS two-form field only along the T 2 directions 8 and 9, i.e.

B89 = −B98 = b. Furthermore, since the background dynamics involves large frequencies

but not large spatial gradients, we are primarily interested in terms containing only time

derivatives, and can therefore take b to be homogeneous in the noncompact spatial directions.

In this special case, making use of (2.13) in [45], and using S-duality to determine the action

for c from that for b, we find that after dimensional reduction the corrected action for c is

S4D =

∫
d4x

[
−M2

p

gs
2
ċ2g88g99 +

ζ(3)

26g
3/2
s

V3
E

π3M4
p

(
1

2
ċ8g4

s(g
88g99)4 +

1

24
c̈4g2

s(g
88g99)2

)]
(6.14)

Now we use φ = cf to make the kinetic term canonical, yielding the action in terms of φ,

S4D =

∫
d4x

[
−1

2
φ̇2 +

ζ(3)

26g
3/2
s

V3
E

π3

(
1

2

φ̇8

M12
p

+
1

24

φ̈4

M8
p

)]

≡
∫
d4x

[
−1

2
φ̇2 +

φ̇8

M12
I

+
φ̈4

M8
II

]
, (6.15)

where we can now calculate the scale of the higher derivative terms MI and MII to be

MI = Mp
g

1/8
s

V1/4
E

(
π327

ζ(3)

)1/12

(6.16)

and

MII = Mp
g

3/16
s

V3/8
E

(
π3210

ζ(3)

)1/8

(6.17)

To determine whether these higher-derivative terms will become important, we compute the

dimensionless quantity ω
MI,II

, where ω = φ̇
f

(3.5) is the physical frequency of oscillations; we

obtain
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ω

MI

≃ 5 · 10−3

(
f

10−3

)−1 ( gs
0.2

)−1/8
( VE

120

)1/4

, (6.18)

ω

MII

≃ 6 · 10−3

(
f

10−3

)−1 ( gs
0.2

)−3/16
( VE

120

)3/8

. (6.19)

For the ranges of f and VE that will be of interest to us (cf. §7), the higher-derivative terms

are not important and our two-derivative approximation is justified.

6.4 Constraints on the axion decay constant

In this section, we discuss direct constraints on the axion decay constant f . We first recall a

rather general (conjectured) upper bound f < Mp [47], and we then describe and incorporate

a novel lower bound, specific to our setup, that arises from combining the requirements that

α′ perturbation theory should be valid and that the inflationary energy should not drive

decompactification.

Despite many attempts, at the time of writing there is no known, controllable string theory

construction that provides f > Mp. In particular, the authors of [47] have scanned several

classes of string theory models and found sub-Planckian axion decay constants in every case.

However, this upper bound on f is of relatively little importance for the phenomenological

signatures we are considering in this paper.

On the other hand, a potential lower bound on f is of considerable importance for our

analysis. Considering oscillations in the CMB spectrum, in the regime f ≪ Mp one can

easily find models that range from being observationally excluded to giving undetectably

small modifications, depending on the amplitude of the ripples in the inflationary potential.

Furthermore, the resonant non-Gaussianity becomes large only for small f (e.g. we will find

that f < 3 · 10−3 is a necessary condition to give a reasonable prospect of detectability).

Hence we will move on to consider possible lower bounds on f .

As discussed in [5] and in the preceding section, a direct lower bound on f comes from

the requirement of small backreaction. In particular, the radius of curvature induced by

the energy localized on the wrapped NS5-brane should be smaller than the smallest radius

of curvature R⊥ in a direction transverse to the NS5-brane in the compactification. This

requires

Nw ≪ R4
⊥X

4πgs
⇒ f

Mp

≫ 2φgs
R4

⊥X
, (6.20)

where we have defined X ≡ Vol(X5)/π
3, with X5 the base of the cone forming the warped

throat. We remark that X ≤ 1, as S5 is the Sasaki-Einstein manifold with the largest volume,

in the sense defined above. We can estimate R⊥ as being comparable to the AdS radius R of

the throat containing the NS5-brane. Given that the volume18 V of the Calabi-Yau has to be

18We always refer to the warped volume, calculated with the whole warped metric.
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larger than the volume of any throat it includes, one finds that

V > Vthroat =
π3

2
XR6 , (6.21)

where for simplicity we have assumed that the UV cutoff of the throat is at r ∼ R where the

warp factor becomes of order unity. Putting together (6.20) and (6.21), we find

f

Mp

>
π221/3φgs
X1/3V2/3

≃ 137gs
X1/3V2/3

=
0.09

X1/3V2/3
E

. (6.22)

Although the above constraint substantially restricts our parameter space, an even stronger

constraint comes from demanding the validity of α′ perturbation theory: using (5.22) for f

and combining this with the lower bound on two-cycle volumes given in (6.2), we obtain

f 2

M2
p

=

√
gs

(2π)3VE
(cα−−v

α√gsπ) >

√
gs

(2π)3VE
, (6.23)

where we have assumed that cα−− ≥ 1. (6.23) turns out to give the strongest microphysical

lower bound on f . An upper bound is harder to determine from this formula. Assuming

again that cα−− ≥ 1, assuming that no precise cancellations occur, and using (6.2), we find

f

Mp

< gs

√
3

2
. (6.24)

6.5 Constraints on the amplitude of the modulations

So far we have seen that with the Kähler potential and superpotential given in (5.9) and

(5.10), the axion c persists as a flat direction after moduli stabilization.19 As explained in [5],

the presence of an NS5-brane wrapping the two-cycle that defines c introduces a monodromy

and results, for large c, in the linear potential in (5.16). In this section we will consider

further nonperturbative corrections that will in general induce small modulations of this

linear potential. These are precisely the modulations whose phenomenology we have studied

in the first part of this paper.

Nonperturbative corrections could appear both in the Kähler potential and in the superpo-

tential. We focus on the first possibility and comment at the end of this section on the second.

Consider the type IIB orientifolds with O3-planes and O7-planes. As we have remarked, the

RR two-form C2 is odd under the orientifold projection and therefore a four-dimensional ax-

ion that survives projection comes from integrating C2 over an odd two-cycle v−. Such an

odd cycle can be thought of as v− = v1 − v2, where v1 and v2 represent two two-cycles in

the parent Calabi-Yau manifold that are mapped into each other by the orientifold action.

19As we have remarked, the axion b has its flat direction lifted by nonperturbative stabilization of the

Kähler moduli.
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Now consider a Euclidean D1-brane wrapping the even cycle v+ = v1 + v2. Such an instanton

feels the local N = 1 supersymmetry of the orientifolded theory, and it breaks this super-

symmetry completely.20 Hence this is a non-BPS instanton with four universal fermionic zero

modes, namely the goldstini of the broken N = 1 supersymmetry. If the Euclidean D1-brane

wraps a minimum-volume cycle in the homology class v+ then it has the right total number

of fermionic zero modes (four) to contribute to a D-term and in particular to the Kähler

potential.

More specifically, in [49] it was argued that nonperturbative contributions from worldsheet

instantons and their SL(2,Z) images, Euclidean (p, q) strings, give rise to corrections to the

prepotential of the N = 2 theory of the parent Calabi-Yau compactification. Such corrections

are most naturally expressed inside the logarithm of the Kähler potential,

K = −2 log
[
VE + g(G, Ḡ)

]
, (6.25)

where g is an appropriate function. Invariance under SL(2,Z), or more generally under a

subgroup Γ ⊂ SL(2,Z), is naturally achieved if g is the sum of some individual correction g̃

over an orbit of Γ.

At the time of writing, the nonperturbative correction g is not known explicitly, but

a modular-invariant result has been conjectured in [50]. Inspired by the structure of this

result (which we will not reproduce here), we will make a simple educated guess based on

the following criteria: the non-perturbative correction should go to zero exponentially for

large two-cycle volume v+; it should break the continuous shift-symmetry of c to a discrete

shift-symmetry c → c + 2π; and it should be invariant under whatever discrete subgroup

Γ ⊂ SL(2,Z) of the ten-dimensional SL(2,Z) symmetry is preserved by the compactification.

The subgroup Γ may well be trivial, and we will assume this for simplicity; note, however,

that one can plausibly obtain a more constrained result when some or all of the symmetry

is preserved, as in [50]. Moreover, notice that along the orbits of Γ, the instanton action

generally increases compared to that of a single worldsheet instanton or Euclidean D1-brane;

thus, when the volume v+ is not too small, only a few terms make an important contribution,

with the remainder enjoying further exponential suppression.

A reasonable guess satisfying these criteria, for Γ trivial, is

K = −2 log
[
VE + e−SED1 cos(c)

]
= −2 log

[
VE + e

− 2πv+
√

gs cos(c)

]
. (6.26)

In light of this corrected Kähler potential, we should revisit the moduli stabilization before

proceeding to calculate the size b of the periodic contribution to the scalar potential.

20To see this, note that (cf. [48]) the instanton action depends on a two-cycle volume, but the proper Kähler

coordinates are four-cycle volumes. Therefore, the instanton action cannot be holomorphic, so the instanton

cannot contribute to a superpotential, and must instead be non-BPS.
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We begin by noticing the following implication





DTαW = O
(
e−2SED1

)

DGaW = O
(
e−SED1

)

WGa = 0

⇒
{
∂TαV = 0 + O

(
e−2SED1

)

∂GaV = −2 eK |W |2KGa + O
(
e−2SED1

) (6.27)

which can be verified by direct computation. This allows us to use the F-flatness condition

to find the minimum in the Tα-directions even when one of the F-terms, namely DG−W , does

not vanish. Equipped with this knowledge we repeat, mutatis mutandis, the steps of §5.

First, the phases of the Tα are stabilized as in (5.13), with k being odd as explained below

(5.14). The reason is that the sign of ∂TαK is not changed by the small nonperturbative

correction e−SED1 . Second, ImG is again stabilized at 0. Given (6.27), the equation one needs

to solve is DGaW = 0, which reduces to

0 = W∂GaK ∝ ∂GaVE − e−SED1

[
π sin(c) + cos(c)

2π√
gs
∂Gav+

]
= 0 , (6.28)

where we made use of (5.6) to perform the derivative on c. Since VE and v+ only depend on

ImG implicitly as in (5.21), we can take the imaginary part of (6.28),

1

2
(∂ImG−vα)cαβγv

βvγ − e−SED1 cos(c)
2π√
gs
∂ImG−v+ = 0 . (6.29)

But from (5.21) we know that

cαβγ(∂ImG−vβ)vγ = gscαa−ImGa , (6.30)

which means that ImGa = 0 (for every a) is a solution to (6.29). The real part of (6.28)

is nonvanishing and of order e−SED1 . Again because of (6.27), the minimization in the τα
is obtained by imposing DTαW = 0. These equations depend on the inflaton c, appearing

explicitly in (6.26), and hence the minimum in the Tα directions will be a function of c.

Integrating out the Tα leads to a contribution in the effective potential V [T (c), c] for c which

is of the same order as the contribution coming from the explicit c-dependence in the Kähler

potential. Therefore this effect cannot be neglected. To take it into account, we solve the

DTαW = 0 equations perturbatively in e−SED1 .

We define the coefficients of the minimum in the τα directions in a perturbative expansion

in e−SED1 by

τα,min ≡ τα,(0) + cos(c) e−Sτα,(1) + . . . , (6.31)

and so on for all other variables. The zeroth-order equations are

(DTαW )(0) = (∂TαW )(0) +W(0)(∂TαK)(0) = 0 , (6.32)
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which can be solved numerically once the model is specified. The first-order equations are

(DTαW )(1) = (∂TαW )(1) +W(1)(∂TαK)(0) +W(0)(∂TαK)(1) = 0 , (6.33)

which again can be solved numerically using the solutions of (6.32). We turn now to estimate

the parameter b defined in (2.1). One finds

bf ≡ V(1)µ
−3e−SED1 =

Umod φ
µ3φ

e−SED1

(
K(1) + 2Re

W(1)

W(0)

)
, (6.34)

where we have defined Umod as the moduli stabilization barrier at zeroth order in e−SED1 , i.e.

Umod =
gs
2

(
3|W |2
V2
E

)

(0)

. (6.35)

More explicitly, using (6.26) and (5.10),

bf =
Umod φ

2.4 · 10−9M4
p

e−SED1

[
8π√
gs

(∂ταv
+)(0)

vα(0)
− 2aατα,(1) −

2vα(1)
vα(0)

]

=
Umod φ

2.4 · 10−9M4
p

2e−SED1

[∑
β(∂Tβ

W )(0)τβ,(1)

W(0)

− VE,(1) + 1

VE,(0)

]
, (6.36)

where the first line is valid for any α and the second line (obtained using (6.33)) shows that

the expression for b is independent of α. Notice that ∂Tαv
+ = 1

2
∂ταv

+ is given implicitly by

cαβγ(∂τρv
γ)vβ = ∂τρτα = δ ρ

α . (6.37)

Some comments are in order. The size of the ripples in the potential is proportional to the

ratio of the moduli stabilization barrier to the scale of inflation, which has to be large for the

self-consistency of the estimate. We have used the value of the potential at the would-be AdS

minimum to estimate the moduli stabilization barrier once an uplifting term is included. Due

to the exponential suppression e−SED1 , the size of bf is extremely sensitive to gs and v+.

An upper bound can be derived from (6.36) using the following considerations. In the

KKLT construction, perturbative corrections to the Kähler potential can be neglected as long

as W0 ≪ 1, and generically W ∼ W0. For larger values of W0, perturbative corrections have

to be included, as in the large volume scenario [51]. In the present work, we focused on

the former setup and we leave an investigation of the latter for the future. The exponential

suppression in (6.36) can be bounded by (6.2). Finally, we denote the model-dependent term

in square brackets in (6.36) by c0. Putting things together leads to the bound

bf < 2c0 · 107 gs
V2
E

e−2/gs

(
W

0.1

)2

. (6.38)

Even imposing all the model-independent constraints we have described in the previous

sections, one can still have bf > 10−4, which, as shown in §4, is roughly the upper bound

imposed by measurements of the scalar power spectrum. Therefore, in certain parameter

ranges the primary constraint on modulations of the potential comes from the data, not from

microphysics.
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7 Combined Theoretical and Observational Constraints

We now summarize our results, combining the observational constraints from §4 with the the-

oretical constraints from §6. As an aid to the reader, we will now briefly recall the qualitative

properties of those results.

Axion monodromy can produce characteristic signatures in the CMB: the oscillations in

the axion potential generated by nonperturbative effects source resonant contributions to the

scalar power spectrum and bispectrum. The amplitude and frequency of the oscillations in

the potential can therefore be bounded by comparison to observations. We recall from §4
that the observational constraints take the form of exclusion contours in the space of the

phenomenological parameters, after marginalization over additional model parameters that

have important degeneracies with those displayed. For convenience, we have chosen to display

constraints in terms of the parameters f and bf defined in (2.1), marginalizing over the phase

∆φ and over ΩBh
2.

The first new step is to combine the exclusion contours based on the temperature two-

point function with estimates of constraints from the three-point function. Based on the

rough estimates described in §3.4, we present, in figure 6, three contours at fres = 200, 20, 2,

with the expectation that the gray region (fres > 200) might plausibly be excluded, while

the colored, lighter regions (20 < fres < 200 and 2 < fres < 20, respectively) are possibly

within detectability. A careful study of the constraints on resonant non-Gaussianity would

be a worthwhile topic for future research.

Next, we recall that in §6, we found that the requirements of consistency and computability

in the string compactifications giving rise to axion monodromy models led to constraints on the

parameters f and bf . Let us remark that as these constraints are not rooted in deep principles

of string theory or of quantum field theory, but rather originate in practical limitations in our

present ability to construct computable models, they may well be loosened in further work. As

such, the theoretical constraints we present here should be understood as designating included

rather than excluded regions: in contrast to experimental contours, theoretical contours of

this sort may expand rather than contract given improved understanding.

Because the parameter b measures the amplitude of a nonperturbative effect, it is expo-

nential in the natural input parameters, and can therefore be made small without substantial

fine-tuning. We therefore do not present a lower bound on b. However, we found the theoret-

ical upper bound (6.38)21

bf < 2c0 · 109M4
p

gs
V2
E

e−2/gs , (7.1)

with a model-dependent constant c0 that can be estimated in explicit examples, and which

we find to be typically of order 10−2.

21We stress that this ‘bound’ is not universal and depends on the assumptions enumerated in §6. We include

it here as a representative example of the constraints that arise in particular scenarios.
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Figure 6: We show the (one- and two-sigma) likelihood contours for the temperature two-

point function together with three contours that characterize the amplitude of the three point

function, for fres = 200, 20, 2.

Next, we obtained a lower bound for f in (6.23).22 A precise upper bound, however,

is highly model-dependent. We estimate an upper limit by assuming that the intersection

numbers are of order one23 and that no precise cancellations occur. From (6.23) and (6.24),

the complement of the theoretically excluded range for f is then

g
1/4
s

(2π)3/2
√VE

< f < gs

√
3

2
. (7.2)

Notice that the theoretical constraints depend mainly on two quantities: the string cou-

pling gs and the volume VE of the compactification. The former appears in the exponential

suppression of the nonperturbative effect generating the modulations of the potential. Hence,

gs . 0.1 suppresses any possible signature of the modulations. For gs & 0.1, there is always

a theoretically allowed region in which the oscillations in the inflaton potential lead to ob-

servable ripples in the two-point function of the CMB. On the other hand, the size of the

non-Gaussianity depends critically on VE as well. Assuming gs & 0.1, larger VE allows for a

larger range of f and therefore larger non-Gaussianity (see (7.2)). A way to quantify this is

to use the estimate obtained in §3.4,

fres ≃
9

4

b

(φf)3/2
, (7.3)

22The constraint from the backreaction described in §6.2 is weaker than (6.23).
23Larger intersection numbers are an interesting possibility that we will not investigate here.
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Figure 7: We superimpose the theoretical constraints, summarized in (7.1) and (7.2), on

the constraints imposed by observations, which are shown in figure 6. The orange overlay

indicates regions of the parameter space that are difficult to reach in the class of models

considered in the present work. The theoretical constraints are shown for gs = 0.12, 0.5 and

VE = 100, 900.
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Figure 8: The blue dot represents the explicit numerical example presented in appendix D. It

represents a case in which upcoming experiments could detect the signatures of modulations

in both the two-point function and the three-point function.

and the lower bound in (7.2). The result is

VE > 170
( gs

0.2

)1/2
(
fres
10

)4/5(
10−4

bf

)4/5

. (7.4)

We now combine the theoretical and observational constraints, presenting them in the

plane {log(f), log(b)}. We choose as boundaries 10−4 < f ≪Mp and 10−4 < b≪ 1 based on

the following considerations. The number of oscillations per e-folding is roughly 10−2Mp/f .

Hence for f & 0.1Mp there is less than one oscillation in the whole range of scales probed by

the CMB, and the signal from modulations becomes degenerate with the overall amplitude.

Furthermore, in §3, we systematically used the expansion b ≪ 1, where b = 1 divides mono-

tonic from non-monotonic potentials. Finally, the lower boundaries 10−4 < f and 10−4 < b

exclude regions that are relatively uninteresting in the present context: smaller values of b

lead to an unobservably small signal, while smaller values of f are rather difficult to obtain

in the class of string theory constructions we considered. In the {log(f), log(b)} plane, the

theoretically allowed region looks like an interval in f , whose size is determined by VE, with

an upper cut effectively determined by gs as in (7.1).

Finally, in figure 8 we show where a particular numerical toy example, with specific choices

of the intersection numbers, lies in the {log(f), log(b)} plane.
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8 Conclusions

The goal of this investigation was to characterize the predictions of axion monodromy inflation

for the CMB temperature anisotropies. Nonperturbative effects in these models generically

introduce sinusoidal modulations of the inflaton potential, which in turn lead to resonantly-

enhanced modulations of the scalar spectrum and bispectrum.

We have provided a simple analytic result for the modulated scalar power spectrum in this

class of models. We also presented an alternative derivation in terms of episodes of particle

production driven by resonance between a mode inside the horizon and the driving force of

the oscillatory background evolution. We then determined in detail the constraints that the

five-year WMAP data places on models with modulations of this sort.

Next, after reviewing the realization of axion monodromy inflation in string theory, we

performed a comprehensive study of the parameter constraints implied by the requirements

of microphysical consistency and computability. The resulting allowed parameter regions are

very plausibly realizable in sensible string theory constructions.

We also identified a new contribution to the inflaton potential in axion monodromy infla-

tion: the backreaction of the inflationary energy on the compact space can source an important

correction to the potential by correcting the volumes of four-cycles and hence affecting the

scale of nonperturbative moduli-stabilizing effects. We then presented a model-building solu-

tion to this problem, in which the NS5-brane and anti-NS5-brane driving inflation are in the

same warped region, or more generally are distant from the four-cycles of interest.

Finally, we combined the observational and theoretical constraints, in order to ascertain

whether detectable modulations of the scalar spectrum and/or bispectrum are possible, con-

sistent with current observational bounds and known theoretical restrictions. Our conclusion

is that both sorts of modulations are possible, and in fact in many cases the strongest bound

on the amplitude of the modulations comes from data, not from microphysics. Moreover,

even though observational limits on the amplitude and frequency of modulations in the scalar

power spectrum provide a strong constraint on the parameter space of axion monodromy

models, and even though microphysical constraints sharply restrict the allowed frequencies,

detectably-large non-Gaussianity can indeed be produced in a class of controllable models.

Such models enjoy three nontrivial signatures: detectable tensors with r ≈ 0.07, a modulated

scalar power spectrum, and resonant non-Gaussianity.

Let us remark that even in the absence of non-Gaussianity, this class of models is eminently

testable: axion monodromy inflation unambiguously predicts a large tensor signal, and the

parameters of the models are already strongly constrained by limits on modulations in the

scalar power spectrum.

There are several interesting directions for future work. First, we have not analyzed

the constraints on the model from the three-point function; more generally, understanding

the prospects for constraining or detecting resonant non-Gaussianity is an important task.

Moreover, it would be instructive to construct an explicit model in which the many theoretical
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constraints we have checked can be combined in a coordinated way. In addition, it would be

interesting to determine whether chain inflation can be realized in this context.

It is intriguing that the modulated power spectrum we have found is very similar in form

to that proposed in the context of modifications of the initial state, as in e.g. [22, 23, 8, 9, 10].

In light of our calculation of the power spectrum in terms of particle production (§3.3), this

coincidence is not entirely surprising: the driving force of the oscillating background eventually

generates an excited state, even if one begins in the Bunch-Davies vacuum. We leave for the

future a more systematic exploration of this connection.

Finally, it would be most valuable to develop a broader understanding of the connection,

if any, between symmetries and signatures in models of large-field inflation.
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A Notation and Conventions

In this appendix we review our conventions, emphasizing differences with the existing litera-

ture.

A good starting point is the ten-dimensional string-frame action24 [33]

S10 =
1

(2π)7α′4

∫
d10x

√
gstring

(
e−2ΦRstring −

1

2
|dC2|2

)
(A.1)

24Remember that 2κ2

10
= (2π)7α′4.
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which after the rescaling to the ten-dimensional Einstein-frame metric e−Φ/2gstring,MN =

gE,MN becomes

S10 =
1

(2π)7α′4

∫
d10x

√
gE

(
RE − 1

2
gs|dC2|2

)
, (A.2)

where we assumed that the axio-dilaton is τ = i/gs. Upon compactifying on a six-dimensional

manifold Y , the resulting four-dimensional reduced Planck mass is

M2
p =

∫
Y

√
gE

(2π)6α′3
1

α′π
≡ VE
α′π

, (A.3)

where VE is the (dimensionless) Einstein volume of Y measured in units of 2π
√
α′. When Y

is (conformally equal to) a Calabi-Yau space, we have

VE =
1

6

∫
J ∧ J ∧ J
(2π)6α′3 =

1

6
vIvJvK

∫
ωI ∧ ωJ ∧ ωK

(2π)6α′3 ≡ 1

6
vIvJvKcIJK , (A.4)

where ωI for I = 1, . . . , h1,1 are a basis of the cohomology H2(Y,Z) normalized such that
∫

ΣI

ωJ = (2π)2α′δ I
J (A.5)

for a basis ΣI of the dual homology H2(Y,Z). With the ansatz for the ten-dimensional RR

two-form

C2 =
1

2π
c(x)ω , (A.6)

for some base two-cycle ω, we get a four-dimensional axion c(x) with periodicity25 2π, as

can be seen e.g. via S-duality starting from the world-sheet coupling
∫
B/(2πα′). The axion

decay constant of c is

f 2

M2
p

=
gs

12VE(2π)2

[∫
ω ∧ ∗ω

(2π)6α′3

]
. (A.7)

The four-dimensional N = 1 Kähler potential for the Kähler moduli is

K = −2 logVE . (A.8)

B Induced Shift of the Four-Cycle Volume

In this appendix we address the issue raised in §6.2: the inflationary energy can correct the

warped volumes of four-cycles in the compact space, leading to corrections to the moduli

potential, and hence inducing new terms in the inflaton potential itself.

25Note that this choice differs from that in [5], where the axion periodicity was (2π)2.
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More specifically, if an NS5-brane wraps some cycle Σ, then a nonvanishing integral∫
Σ
C2 6= 0 leads to the presence of energy that is localized near Σ in the compact space;

this energy corresponds to the increased tension of the NS5-brane. Moreover, there is a corre-

sponding induced D3-brane charge via the coupling
∫
C2 ∧C4. The increased tension creates

a backreaction on the metric (and in particular, on the warp factor) of the compact space,

while the induced charge sources five-form flux. We must determine whether these effects sub-

stantially correct the nonperturbative effects that are responsible, in our KKLT-like scenario,

for stabilization of the Kähler moduli.

Whether the nonperturbative superpotential arises from gaugino condensation on D7-

branes or from Euclidean D3-branes, it is exponentially sensitive to the warped volume of the

four-cycle wrapped by these D-branes. Therefore, we will carefully consider the possibility of

an inflaton-dependent shift of the warped volume of various four-cycles.

Concretely, we will consider a fivebrane/anti-fivebrane pair wrapping two homologous

cycles, and will compute the leading correction to the volume of a particular four-cycle in the

same throat region as the fivebranes. This will serve as a conservative upper bound on the

effect of the worldvolume flux, as more distant four-cycles would be more weakly affected.

It would be very interesting to perform a systematic study of this backreaction in the four-

dimensional effective theory and in ten-dimensional supergravity/string theory. We leave this

task for future investigation. In what follows, we simply show that the effect described above

can be ameliorated by choosing an appropriate configuration.

The are two mechanisms to suppress the backreaction on a given four-cycle volume. A

first improvement comes from choosing a setup in which the leading backreaction is due to

a dipole as opposed to a monopole potential. This allows for a parametric suppression. The

second improvement can be achieved by a carefully chosen geometry of the four-cycle under

consideration. In general, this latter mechanism requires fine tuning.

The problem of estimating the backreaction from two-form flux on an NS5-brane pair

may be simplified by a series of approximations. First, the inflaton-dependent backreaction

is generated by the increased tension and the induced D3-brane charge of the NS5-branes,

which may be understood as corresponding to some number of D3-branes (or anti-D3-branes)

dissolved in the NS5-branes. In practice, it is much simpler to study the effect of the D3-branes

themselves; this captures the leading inflaton-dependent contributions.

The configuration of interest involves an NS5-brane wrapping Σ, with

1

(2π)2α′

∫

Σ

C2 ≡ Nw , (B.1)

as well as a distant NS5-brane wrapping a homologous cycle Σ′, but with opposite orientation.

(We will refer to the latter object as the anti-NS5-brane.) Next, we recall that the COBE

normalization requires each fivebrane to be in a warped region. Let us denote by N/2 the

amount of D3-brane charge that creates the background warping for each of the fivebranes.26

26More generally, one could consider different degrees of warping for each fivebrane; extending our consid-
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In light of the above discussion, we may approximate the fivebrane by a stack of Nw

D3-branes and the anti-fivebrane by a stack of Nw anti-D3-branes. Combining this with the

background D3-brane charge, we conclude that a convenient proxy for our system consists of

two stacks of D3-branes, which we call A and B respectively. The first consists of N/2 +Nw

D3-branes and the second of N/2 D3-branes and Nw anti-D3-branes, which we may more

conveniently represent as N/2 −Nw D3-branes and Nw brane-antibrane pairs.

Next, using the results of [44], we recognize that the leading backreaction effect comes from

the total D3-brane charge on each stack, while the brane-antibrane pairs lead to subleading

effects that are suppressed by powers of the warp factor. Thus, we can simplify even further,

so that at last we are considering a supersymmetric system involving two stacks that contain

N/2 +Nw and N/2 −Nw D3-branes, respectively.

Equipped with this much simpler system, we may now estimate the inflaton-dependent

backreaction, by computing how the presence of the stacks A and B leads to a Nw-dependent

change in the warped volume of some four-cycle.

We choose the usual D3-brane ansatz

ds2
6 =

√
H−1(y)ds2

4 +
√
H(y)ds2

6 (B.2)

F̃5 = (1 + ∗)dH−1 ∧ Vol4 , Φ = const . (B.3)

The resulting equation of motion is linear in H(y). Therefore we may simply add the solutions

obtained in the presence of either of the two individual stacks. Once the resulting warp factor

is used to compute the volume of a four-cycle, the Nw dependence of the result gives us an

estimate of the inflaton-dependence of the nonperturbative superpotential.

We tackle the problem in two steps of increasing complexity. First, in §B.1 we give a very

simple, (conformally) flat toy example in which the calculations are easy. This already shows

the relevant features of the more complicated solution. The inflaton-dependent shift of the

volume can be suppressed by having the distance between A and B much smaller than the

distance between the four-cycle and either of A and B. This corresponds to a configuration

in which the leading interaction is via a dipole. In addition, one can fine-tune the four-cycle

embedding so that the Nw-dependent correction to its volume actually cancels.27

Then, in §B.2, §B.2.1 and §B.3, we describe the case of a resolved conifold using the

solution of [52, 53]. We consider a particular holomorphic embedding of a four-cycle and

compute numerically the inflaton-dependence of its warped volume.

B.1 A simple illustration of the suppression mechanism

Consider two stacks of N/2±Nw D3-branes, called A and B, respectively, in conformally flat

space M4 ×R
6. The A stack is located at the origin of R

6 and the B stack is located at some

erations to this case is straightforward.
27Although suppression from symmetry of the embedding appears unappealing because of the fine-tuning

required, one should keep in mind that it could conceivably be enforced by a discrete symmetry of the

compactification.
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B

A

θ

Figure 9: This diagram illustrates the positions of the A and B stacks of D3-branes in R
6,

the choice of the angular coordinate θ, and, in blue, a (topologically trivial) four-cycle.

position (u, 0, 0, 0, 0, 0) for28 u ∈ R
+, where we have chosen spherical coordinates (see figure

B.1) with the metric

ds2
6 = dr2 + r2

(
dθ2 + sin2 θdΩ2

4

)
, (B.4)

where dΩ4 is the volume form of S4. With the usual D3-brane ansatz (B.2) one finds the

solution

H = 1 +
R4
A

r4
+

R4
B

(r2 + u2 − 2ru cos θ)2
, (B.5)

RA,B = 4πgsα
′2
(
N

2
±Nw

)
. (B.6)

Let us consider a (topologically trivial) four-cycle Σ4 defined by29 r = µ and θ = θ̄, whose

unwarped volume is V4 = 8π2

3
r̄4 sin4 θ̄. The warped volume is

∫

Σ4

H(r, θ) sin4 θdΩ4 = V4H(µ, θ̄) (B.7)

= V4

[
1 +

R4

µ4

(
1 + O

(
u

µ

))
−Nw

u

µ

(
4 cos θ̄ − 2

u

µ
+ O

(
u2

µ2

))]
.

28We choose the letter u in analogy with the setup of the next subsections, where the distance between the

A and the B stack is given by the resolution parameter of the resolved conifold.
29We choose the letter µ in analogy with the (usually complex) parameter appearing in other known

embeddings of four-cycles in the conifold [54, 55].
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From this result, one can see that a fine-tuning of the embedding can suppress the backre-

action, i.e. if cos θ̄ ≃ u/(2µ). On the other hand, a parametric suppression is also clearly

visible. Both the factors Nw/N and u/µ can be made small by construction. The former

must be small in order for the background geometry to be at all trustworthy. The latter can

be made small by arranging for all the four-cycles bearing nonperturbative effects to be far

away in units of the separation of the fivebranes. Physically, this means that the four-cycle

is sensitive only to the dipole field generated by the A and B stacks.

B.2 The conifold and its resolution

In the following we review some relevant definitions and conventions regarding the resolved

conifold. The treatment is based on [56, 53]. The (singular) conifold is a cone over T 1,1

(the coset space SU(2) × SU(2)/U(1), which is topologically S2 × S3). It is defined as the

hyperspace in C
4 that is a solution of the complex constraint

detW ≡ det

(
X U

V Y

)
= XY − V U = 0 (B.8)

where (X,U, V, Y ) are coordinates on C
4. The resolved conifold can be defined as the zero

locus in C
4 × CP1 of the two linear complex equations

(
X U

V Y

)(
λ1

λ2

)
= 0 (B.9)

where (λ1, λ2) are complex coordinates on CP1, i.e. they are identified by (λ1, λ2) ≃ (αλ1, αλ2),

for every α ∈ C∗. For every W 6= 0 (B.8) and (B.9) are equivalent, but when W = 0, i.e. at

the tip, (λ1, λ2) are arbitrary and (B.9) defines a CP1 ≃ S2. The radial direction is defined

by

TrW †W = r2 . (B.10)

One can check that the resolved conifold is an O(−1)⊕O(−1) bundle over CP1 with fiber

C2. If we define λ ≡ λ2/λ1, then we can choose coordinates on a patch H+ ≡ {λ 6= 0} of the

resolved conifold using the following solution of (B.9):

W =

( −λU U

−λY Y

)
. (B.11)

Defining λ̃ ≡ λ1/λ2, one can find coordinates on a complementary patch H− ≡ {λ̃ 6= 0} using

the following solution:

W =

(
X −λ̃X
V −λ̃V

)
. (B.12)
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The complex structure is given by

Ω = dU ∧ dY ∧ dλ = dV ∧ dX ∧ dλ̃ . (B.13)

For later use, we introduce a parametrization of the resolved conifold in terms of real coor-

dinates and give the explicit Kähler metric. We start by noting that a particular solution of

(B.9) is given by

W0 =

(
0 r

0 0

)
,

(
λ0

0

)
⇒ λ = 0 . (B.14)

The base of the resolved conifold with respect to r can be obtained by acting on this solution

with two SU(2) transformations, L1 and L2,

Li =

(
cos θi

2
e

i
2
(ψi+φi) − sin θi

2
e−

i
2
(ψi−φi)

sin θi

2
e

i
2
(ψi−φi) cos θi

2
e−

i
2
(ψi+φi)

)
, i = 1, 2 (B.15)

written in terms of Euler angles. This gives

W = L1W0L
†
2 ,

(
λ1

λ2

)
= L2

(
λ0

0

)
(B.16)

which depends only on the combination ψ ≡ ψ1+ψ2. A Kähler metric on the resolved conifold

with resolution parameter u is given by [53]

ds2
6 = κ−1(ρ)dρ2 +

1

9
κ(ρ)ρ2e2ψ +

1

6
ρ2(e2θ1 + e2φ1

) +
1

6

(
ρ2 + 6u2

)
(e2θ2 + e2φ2

) , (B.17)

where

κ(ρ) =
ρ2 + 9u2

ρ2 + 6u2
. (B.18)

Here, following [53], we have defined a new radial coordinate ρ by

r4 =
4

9
ρ4

(
2

3
ρ2 + 6u2

)
, (B.19)

The explicit expression for the e’s is

eψ = dψ +
2∑

i=1

cos θidφi , eθi
= dθi , eφi

= sin θidφi . (B.20)
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B.2.1 The λUY embedding

In this subsection, we consider a particular holomorphic embedding of a four-cycle. A simple

embedding would be λ = µ because this is trivial to solve for in real coordinates, tan θ2 = µ

and φ2 = 0 for µ ∈ R. The trouble is that this embedding reaches the tip, and in fact r is

unconstrained. This can also be seen from

r2 =
(
1 + |λ|2

) (
|U |2 + |Y |2

)
. (B.21)

As a result, this embedding does not give us the dipole suppression factor analogous to the

(u/µ) of appendix B.1. The next-simplest embedding (whose defining equation depends on

r) is

λUY = µ3 , µ ∈ R , (B.22)

which in real coordinates gives

ψ = 0 , sin(θ2) sin(θ1) = 4
µ3

r2
∼ µ3

ρ3
for large r . (B.23)

After some algebra (in particular, expressing dθ2 as a function of dθ1 and dr) one finds

the metric in terms of dρ, dθ2, dφ1 and dφ2. Its determinant gind4 is independent of φ1,2 and

reads

gind4 =
ρ2 csc4(θ2)

20736 (9u2 + ρ2)3 (ρ4(9u2 + ρ2) sin2(θ2) − 54µ6
) ×

( (
6u2 + ρ2

) (
9u2ρ+ ρ3

)2
cos (4θ2)

−4 cos (2θ2)
(
486u6ρ2 + 189u4ρ4 + u2

(
24ρ6 − 324µ6

)
− 27µ6ρ2 + ρ8

)

+3
(
54ρ2

(
9u6 + 2µ6

)
+ 189u4ρ4 + 864u2µ6 + 24u2ρ6 + ρ8

) )2

. (B.24)

We see that there is a boundary beyond which the sign of the determinant becomes

negative, which thus defines the integration boundary in ρ, θ2-space:

ρmin(θ2) =
√

3µ

√
A− u2

µ2
·
(

1 − u2

µ2

1

A

)
→

√
3 · 21/3 µ csc1/3(θ2) for

u

µ
≪ 1

with : A =
3

√√√√
√

− csc2(θ2)

(
2
u6

µ6
− csc2(θ2)

)
− u6

µ6
+ csc2(θ2) . (B.25)

B.3 The shift of the four-cycle volume

The solution with the branes smeared over the S2 was obtained in [53]. Later, the solutions

with pointlike sources were given in [52]. If the D3-brane stacks are at the north and south
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pole of the resolution S2, respectively, i.e. θA2 = π − θB2 = 0, then one finds

H =
∑

l

(2l + 1)Hl(ρ)
[
L4
APl(cos(θ2)) + L4

BPl(cos(θ2))(−1)l
]
, (B.26)

Hl =
2

9u2

Cβ
ρ2+2β 2F1

(
β, 1 + β, 1 + 2β,−9u2

ρ2

)
, (B.27)

Cβ =
(3u)2βΓ(1 + β)2

Γ(1 + 2β)
β =

√
1 + (3/2)l(l + 1) , (B.28)

LA,B =
27

16
4πgs(α

′)2(N ∓Nw) , (B.29)

where 2F1 is a hypergeometric function. We want to integrate this warp factor on some

supersymmetric four-cycle Σ4. This gives us an estimate of the inflaton dependence of the

gauge kinetic function of a stack of D7-branes wrapping Σ4.

Using this information and (B.26) and (B.27) we can now calculate the integral

Vwarped =

∫

Σ4

dρ dθ2 dφ1 dφ2

√
−gind4 H(ρ, θ2) = 4π2

∫

Σ4

dρ dθ2

√
−gind4 H(ρ, θ2) (B.30)

numerically, as a function of µ. To facilitate this we will expand (B.26) up to ℓ = 1, the

dipole term, and take the large ρ limit

H(ρ, θ2) =
L4

2ρ4

[
1 + 3(2ℓ+ 1)

Nw

N

u2

ρ2
Pℓ(cos θ2)

∣∣∣∣
ℓ=1

]
= Hℓ=0(ρ) + δHℓ=1(ρ, θ2) . (B.31)

We can now calculate

V(0)
warped = 4π2

∫ π

0

dθ2

∫ ρR

ρmin(θ2)

dρ
√

−gind4 Hℓ=0(ρ) (B.32)

δVℓ=1
warped(δθ2) = 4π2

∫ π

0

dθ2

∫ ρR

ρmin(θ2)

dρ
√
−gind4 δHℓ=1(ρ, θ2 + δθ2) (B.33)

where ρR ≫ 1 denotes a UV cutoff to compactify the resolved conifold geometry for the

purpose of integration, and δθ2 denotes the angular misalignment of the D3-brane dipole

configuration with respect to the four-cycle symmetry axis at θ2 = π/2.

As
√
gind4 is a symmetric function with respect to θ2 = π/2 and δHℓ=1(ρ, θ2) is anti-

symmetric with respect to θ2 = π2, we immediately find δVwarped(δθ2 = 0) = 0. So by

fine-tuning a Z2-symmetric configuration we can forbid the ℓ = 1 term in the warped volume,

whose corrections in this case start with the ℓ = 2 quadrupole terms.

We will now display the numerical results for the case δθ2 = −π/4 in which the ℓ = 1 term

will not vanish under the integral, and compare the scaling with µ between δVwarped(δθ2) and

V(0)
warped. This is displayed in Fig. 10. We see clearly that the leading ℓ = 0 term scales as

u0µ0 = const. while the ℓ = 1 dipole term scales as (u/µ)2. Therefore, the ℓ = 1 dipole term

has a parametric suppression (u/µ)2 relative to the leading ℓ = 0 term, and can therefore
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Figure 10: 1st row: Plot of V(0)
warped and δVwarped(δθ2) as functions of µ at constant u = 0.01.

2nd row: Plot of V(0)
warped and δVwarped(δθ2) as functions of u at constant µ = 0.1. The leading

ℓ = 0 term scales as u0µ0 = const. while the ℓ = 1 dipole term scales as (u/µ)2. Note that

the ℓ = 0 scaling ensues only in the strictly noncompact limit (i.e. when the integration goes

all the way ρ→ ∞), while for a finite cutoff, resembling a crude approximation to a compact

setting, there remains a weak dependence of the ℓ = 0 term on µ, of the form (u/µ)δ, where

δ → 0 for ρbulk → ∞. For the example we have chosen ǫ ≡ Nw/N = 0.1.

be made parametrically small (even in the non-Z2-symmetric general situation) in the limit

where the four-cycle recedes far from the resolution S2 (i.e. in the limit of large µ/u).

Let us finally note that this relative suppression of the ℓ = 1 term with (u/µ)2 might have

been guessed without any integration, as the integration boundary tells us that ρmin(θ2) ≥
ρmin(π/2), which corresponds to r > 2µ3/2 or ρ & µ, and thus the relative scaling u2/ρ2

should be replaced by the scaling u2/µ2.

C The Kaluza-Klein Spectrum

In this appendix we obtain the (5+1)-dimensional effective action for a D5-brane wrapped on

a two-cycle with
∫
B 6= 0. We show how a Kaluza-Klein reduction to four dimensions leads

to masses that are suppressed with respect to the fluxless case. We then comment on the

consequences of these light KK modes for axion monodromy inflation.
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C.1 The effective theory

The DBI action for a D5-brane is

S = T5

∫
d4x dy dz

√
−det

(
Gind
ab + Fab

)
, (C.1)

where y, z are two coordinates in the internal space, which we take to be toroidal for the

purpose of this derivation. The indices are defined as follows: worldvolume indices are a, b =

0, . . . , 5; spacetime indices are µ, ν = 0, . . . , 3 as usual; ten-dimensional indices are M,N =

0, . . . , 9; six-dimensional compact indices are m,n = 4, . . . , 9; and indices transverse to the

D5-brane are i, j = 6, . . . , 9. We first expand the square root using

√
det(M0 + δM) =

√
detM0

{
1 +

1

2
Tr(M−1

0 δM) +
1

8
[Tr(M−1

0 δM)]2 (C.2)

−1

4
Tr(M−1

0 δMM−1
0 δM) + . . .

}
. (C.3)

We will consider a background with two-form flux on the two-cycle
∫

F =

∫
B =

∫
dy ∧ dzByz(x, y, z) = b(x) = b , (C.4)

i.e. the four-dimensional axion field b(x) has a homogeneous expectation value that is ap-

proximately constant, up to terms suppressed by the slow-roll parameters. So the background

is given by

BMN = bδMyδNz − bδMzδNy , Fab = 0 , (C.5)

ds2
10 = gµνdx

µν + gyydy
2 + gzzdz

2 + 2gyzdydz + gijdy
idyj . (C.6)

Hence

(M0)ab =




gµν
gyy gyz + b

gzy − b gzz


 . (C.7)

The perturbations are

(δM)ab = ∂aX
i∂bX

j(gij +Bij) + Fab + δBab . (C.8)

The calculation is simplified by the block-diagonal form of the background M0. The 2 × 2

block is the sum of a symmetric and an antisymmetric piece that we call S and A respectively.

We have that

det(A+ S) = det(A) + det(S) , (C.9)

(S + A)−1 = S−1 det(S)

det(A) + det(S)
+ A−1 det(A)

det(A) + det(S)
, (C.10)
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which substantially simplifies the calculation. Using (C.2) we get at leading order

S = T5

∫
d4x dy dz

√−g4

√
g2 + b2

[
1 +

1

2
∂µX

i∂µXi (C.11)

+
1

2

g2

g2 + b2
(
∂yX

i∂yXi + ∂zX
i∂zXi

)
(C.12)

+
1

2

2b

g2 + b2
(
∂yX

i∂zX
jδBij + Fyz + δByz

) ]
+ . . . , (C.13)

where g2 ≡ gyygzz − g2
yz. After a KK reduction one finds the four-dimensional kinetic and

potential terms, in the first line, as well as the Kaluza-Klein mass terms, in the second line.

The Kaluza-Klein masses in the presence of fluxes are

m2
bKK =

g2

g2 + b2
m2
KK , (C.14)

where mKK are the Kaluza-Klein masses in the absence of fluxes. This leads to the central

point of this appendix: for b ≫ 1, the Kaluza-Klein masses are suppressed by a factor of√
g2/b ≃ L2/b ≪ 1.30 This phenomenon is intuitively understood in the T-dual picture in

which flux becomes the angle of the D-brane. A large flux means that the T-dual brane winds

around the torus many times, and thus becomes quite long. The Kaluza-Klein reduction

of the fields living on the worldvolume of the T-dual brane therefore produces b-suppressed

Kaluza-Klein masses.

C.2 Effects of the light Kaluza-Klein modes

Throughout this paper we have been careful to work in parameter ranges for which the typical

Kaluza-Klein mass scale mKK obeys mKK ≫ H, as required for a consistent four-dimensional

analysis of inflation. However, from (C.14) we learn that a subclass of Kaluza-Klein modes,

namely those associated with transverse excitations of the fivebrane, have considerably smaller

masses, mbKK ≪ mKK . For the numerical examples we have considered, we find that, very

roughly, mbKK ∼ (fc/f)H, where fc is a fiducial value of the decay constant, fc ∼ 10−2Mp.

Therefore, for constructions with small values of f , the transverse excitations of the fivebrane

can be lighter than H.

We leave a comprehensive study of this constraint for future work, as a proper implemen-

tation plausibly requires a more explicit compact model that we have been able to present in

this work. In particular, one should carefully compute the Kaluza-Klein mass, incorporating

anisotropy in the geometry, warping, and, as we have explained above, the effect of world-

volume two-forms. To accomplish this, one needs a reasonably explicit construction of the

warped throat region, of the two-cycle within the throat, and of the gluing of the throat into

the compact space, which are beyond the scope of this work.

30We have assumed for simplicity that the internal space is isotropic, with typical size L
√

α′.
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In this appendix, we will restrict ourselves to some qualitative statements that explain

how our inflationary analysis can be consistent even in parameter regimes for which mbKK is

slightly smaller than H. Broadly speaking, one might worry about corrections to the inflation-

ary Lagrangian, and about new contributions to the cosmological perturbations. Concerning

the first point, we remark that the excitations of the fivebrane depend on the inflaton expec-

tation value only through their masses. Therefore, the primary correction to the background

evolution from these light modes would come if large numbers of Kaluza-Klein particles were

produced by the time-dependent background. In practice, the particle production is negligi-

ble, as can be seen by computing the adiabatic parameter ṁbKK/m
2
bKK and substituting the

constraints on the volume, and hence on the Kaluza-Klein mass, from §6.

More generally, let us stress that only a small subclass of the Kaluza-Klein modes (a

small portion of the tower of excitations of the fivebrane) have masses smaller than H. From

the viewpoint of the inflationary analysis, these fields constitute a small number of harmless

spectators. These light fields will fluctuate, absorbing energy, but this yields a very small

correction unless the number of fields approaches (Mp/H)2. Moreover, any entropy pertur-

bations produced by these fields can turn into visible isocurvature perturbations only if their

decays are distinct from that of the inflaton. Although we have not specified a concrete

reheating mechanism, one can argue that the most straightforward scenario involves visible

sector degrees of freedom that are well-separated in the compact space from the inflationary

fivebranes. Thus, we expect that excitations of the fivebranes will not give visible isocurva-

ture perturbations, because they must first decay [57, 58] to degrees of freedom localized in

the inflationary throat, just as the inflaton does, and will plausibly do so with rather similar

couplings, as the modes correspond to small excitations of the NS5-brane that drives inflation.

D Numerical Examples

In this appendix, we specify two different sets of intersection numbers and show the relevant

formulas for the volumes. For these two toy models, we explicitly performed the moduli

stabilization outlined in §6.5, finding numerical values leading to the dot in figure 8.

D.1 Intersection numbers: set I

We consider as a toy-model Calabi-Yau manifold one with H1,1
+ = span(ωL, ω+) for the

orientifold-even homology two-cycles and H1,1
− = span(ω−) for the orientifold-odd homology

two-cycles. We assume the following simple set of intersection numbers

cLLL = cLL+ = c+−− = 1 , (D.1)

with all the others vanishing. We believe that, although very simplistic, the above toy model

captures the relevant features of more realistic constructions. Notice that the intersection

numbers in a basis for the homology of the covering space of the orientifold, i.e. without a
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definite parity with respect to the orientifold projection, are just linear combinations of those

given above.

Using the standard relations

VE =
1

6
cαβγv

αvβvγ , τα = ∂vαVE =
1

2
cαβγv

βvγ , (D.2)

one finds

vL =
√

2τ+, v+ =
τL − τ+√

2τ+
, (D.3)

and

VE =

√
2τ+
2

τL −
√

2

6
τ

3/2
+ . (D.4)

D.2 Intersection numbers: set II

Again assuming H1,1
+ = span(ωL, ω+) and H1,1

− = span(ω−), we consider the intersection

numbers

cLLL = cL++ = c+−− = 1 , (D.5)

with all the others vanishing. We find

vL =
1√
2

(
(τL + τ+)1/2 + (τL − τ+)1/2

)
, v+ =

1√
2

(
(τL + τ+)1/2 − (τL − τ+)1/2

)
, (D.6)

and

VE =
1

3
√

2

(
(τL + τ+)3/2 + (τL − τ+)3/2

)
. (D.7)
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