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A B S T R A C T

There is growing observational evidence that the variability of red giants could be caused by

self-excitation of global modes of oscillation. The most recent evidence of such oscillations

was reported for aUMa by Buzasi et al. who analysed space photometric data from the WIRE

satellite.

Little is understood concerning the oscillation properties in red giants. In this paper we

address the question as to whether excited radial and non-radial modes can explain the

observed variability in red giants. In particular, we present the results of numerical

computations of oscillation properties of a model of aUMa and of several models of a 2-M(

star in the red giant phase.

The red giant stars that we have studied have two cavities that can support oscillations: the

inner core that supports gravity (g) waves and the outer one that supports acoustic (p) waves.

Most of the modes in the p-mode frequency range are g modes confined in the core; those

modes with frequencies close to a corresponding characteristic frequency of a p mode in the

outer cavity are of mixed character and have substantial amplitudes in the outer cavity. We

have shown that such modes of low degree, ‘ ¼ 1 and 2, together with the radial (p) modes,

can be unstable. The linear growth rates of these non-radial modes are similar to those of

corresponding radial modes. In the model of aUMa and in the 2-M( models in the lower

regions of the giant branch, high amplitudes in the p-mode cavity arise only for modes with

‘ ¼ 2.

We have been unable to explain the observed oscillation properties of aUMa, either in

terms of mode instability or in terms of stochastic excitation by turbulent convection. The

modes with the lowest frequencies, which exhibit the largest amplitudes and may correspond

to the first three radial modes, are computed to be unstable if all of the effects of convection

are neglected in the stability analyses. However, if the Lagrangian perturbations of the

turbulent fluxes (heat and momentum) are taken into account in the pulsation calculation,

only modes with higher frequencies are found to be unstable. The observed frequency

dependence of amplitudes reported by Buzasi et al. does not agree with what one expects

from stochastic excitation. This mechanism predicts an amplitude of the fundamental mode

about two orders of magnitude smaller than the amplitudes of modes with orders n $ 5,

which is in stark disagreement with the observations.
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1 I N T R O D U C T I O N

Buzasi et al. (2000) have reported the discovery of oscillations in

photometric data from aUMa observed with the star camera on the

WIRE satellite. They interpret the observed oscillations as radial

modes, and cautiously suggest that the modes may be excited by

the mechanism similar to that responsible for solar oscillations.

The star, however, is very different from the Sun. Its spectral type is

K0 III. Models of the internal structure of the star, and its pulsation

properties, suggest that the star is a red giant. Thus, even if the

oscillations are stochastically excited by turbulence in the outer

convective zone, as they are in the Sun, some important differencesPE-mail: wd@astrouw.edu.pl

Mon. Not. R. Astron. Soc. 328, 601–610 (2001)

q 2001 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/328/2/601/1088742 by guest on 20 August 2022



between the oscillation properties of aUMa and the Sun should be

expected.

Variability is a common feature of red giants. There are strong

observationally based arguments that, at least in part, this

variability is caused by global pulsations. Edmonds & Gilliland

(1996) proposed radial or non-radial pulsations as an explanation

for the variability they observed in K giants in the globular cluster

47 Tuc. They found frequencies between 3 and 6mHz with

amplitudes between 5 and 15 mmag. Cook et al. (1997) analysed

photometric data from red stars in the Large Magellanic Cluster

(LMC) collected from the microlensing project MACHO, and

reported that the period–luminosity relation comprises several

ridges in the period range of 10–200 d, which may be interpreted as

arising from radial modes of different n. Hatzes & Cochran (1998)

reported that there is strong evidence from radial velocity data for

oscillations in K giants. Frequencies similar to those found in

aUMa have been found in a number of other objects. In particular,

Hatzes & Cochran quote 11 frequencies of Arcturus (K2 III) in the

range 1:4–6:8mHz. Evidence for short-period multimode pulsa-

tions in a number of M stars has been presented recently by Koen &

Laney (2000).

Thus, by being a multimode pulsator aUMa appears not to be

unique amongst red giants. However, with its high frequencies and

low amplitudes it does represent an extreme case so far, although it

is not wholly out of line with the others. This star is the hottest and

the least luminous object amongst variable red giants. It provides,

so far, the best example of possible red giant oscillations, but its

spectrum is not as clean as that of the Sun, or of those of other

main-sequence stars, or of white dwarfs. Nevertheless, we consider

the evidence to be strong enough to justify new investigations in

the theory of red giant oscillations. So far, only the modelling of

radial pulsations in Miras (see Xiong, Deng & Cheng 1998 and

references therein) and Arcturus (Balmforth, Gough & Tout 1991)

has attracted the attention of theorists. Non-radial oscillations in

red giants have been ignored almost entirely. Here we review the

theoretical aspects of this problem, in Section 3, and provide some

numerical examples of the properties of the oscillations of a model

of aUMa and of models of a 2-M( star on the red giant branch.

Some data concerning these models are presented in Section 2.

The most intriguing issue posed by the discovery of oscillations

in red giants is the identification of the mechanism by which they

are driven. Possibilities to consider are: (i) stochastic excitation of

linearly stable modes by convection and (ii) self-excitation of

linearly unstable modes. We shall speak of oscillations of case (i)

as being solar-like, and case (ii), Mira-like. Our understanding of

the excitation mechanism in the Sun and in Miras is not

satisfactory, but the separate association of these stars with each of

the two distinct possible excitation mechanisms is now generally

accepted. In Section 4 we present results of calculations of radial-

mode stability and of the amplitudes in the case of stochastic

excitation.

2 S E L E C T E D M O D E L S

There are stringent constraints on the parameters for defining

models of aUMa. The star is bright, and is in a visual binary

system. Accurate spectroscopic data, parallax and a radius

determination by means of interferometry are available. After

considering all of the observational data, Guenther et al. (2000)

suggested the following values for the global parameters of the

star: M ¼ 4–5 M(, logðL/L(Þ ¼ 2:5 ^ 0:05, Teff ¼ ð4660 ^

100ÞK: Guenther et al. (2000) constructed evolutionary models

with masses in this range and with an initial chemical composition

X ¼ 0:727 and Z ¼ 0:0124, which is consistent with the spectro-

scopic value of [Fe/H] and the Galactic helium enrichment. They

found that only models with M # 4:5 M( satisfy the observational

constraints.

We have adopted the same initial chemical composition in our

model calculations. Furthermore, we have adopted the same

opacity and equation of state. For the model of aUMa we have

considered only M ¼ 4 M(, and we have adjusted the mixing-

length parameter, a, to be consistent with the values of logðL/L(Þ

and Teff proposed by Guenther et al. (2000).

The star aUMa is a high-mass red giant with a non-degenerate

core. Such stars are very rare. As seen in Fig. 1, the red giant branch

for M ¼ 4 M( is very short; the star spends only 0.5 Myr on it,

which is more than two orders of magnitude shorter than the time

spent by a star with a mass of M ¼ 2 M(, in which helium ignites

in a degenerate core. We have chosen the model sequence with

M ¼ 2 M( to illustrate non-radial mode properties in red giants

over a wide range of luminosity. The most important parameter

determining non-radial mode properties is the ratio of the mean

Figure 1. Hertzsprung–Russell diagram showing evolutionary tracks of

models with masses of 2 and 4 M(. Models selected for pulsation analyses

are indicated by diamonds. The box around the symbol for the 4-M( star

indicates the uncertainty in locating aUMa in the diagram (see Table 1).

Table 1. Some parameters of the models used in this work; Mc is the core mass including the hydrogen burning shell;
the subscript ‘bc’ denotes the bottom of the convective envelope.

Model M/M( Age (Gyr) log Teff log L/L( R/R( log Tc log rc Mc rbc/R Mbc/M

Ma 4 0.143 3.6993 2.50 27.21 7.924 4.187 0.1083 0.3259 0.4300
M21 2 0.904 3.6915 1.50 7.77 7.753 4.766 0.1145 0.1481 0.1869
M22 2 0.934 3.6596 2.00 15.99 7.776 5.220 0.1397 0.0509 0.1527
M23 2 0.963 3.6240 2.50 33.50 7.780 5.555 0.1705 0.0264 0.1755
M24 2 0.972 3.5848 3.00 71.32 7.835 5.752 0.2017 0.0124 0.2042
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density of the core to the mean density of the whole star. In the

sequence we have chosen, this parameter increases by nearly four

orders of magnitudes between the bottom and the top of the giant

branch. We have considered four models for the 2-M( sequence,

calculated with the same values of X, Z and a as those for the model

of aUMa. The locations of the selected models on the evolutionary

tracks are indicated in Fig. 1; the parameters characterizing these

models are listed in Table 1.

3 N O N - R A D I A L M O D E S O F R E D G I A N T S

Guenther et al. (2000) considered only radial modes as potential

candidates for explaining the peaks in the aUMa frequency

spectrum determined by Buzasi et al. (2000). They noticed that the

frequencies of these peaks are much lower than the buoyancy

frequency deep in the star, and presumed that a non-radial

interpretation would appear to imply that the modes are g modes of

high radial order. According to their estimate, the separation

between the cyclic frequencies of consecutive g modes of like

degree is of the order of 0.1mHz, and consequently, they argued,

the spectrum could not be resolved into individual modes. They did

not, however, explain why radial modes should stand above this

quasi-continuum, which would appear to be necessary for

explaining the observations by Buzasi. Moreover, they failed to

point out that a g mode that resonates at a corresponding (i.e. the

same value of ‘) characteristic p-mode frequency of the outer

acoustic cavity can have a particularly large amplitude at the

surface.

3.1 General properties

The basic properties of non-radial oscillations in highly evolved

stars were determined in the 1970s (Dziembowski 1971, 1977;

Osaki 1977). However, the objects of interest in those early works

were stars in the Cepheid instability strip. To the best of our

knowledge there is only one paper devoted to the theory of non-

radial oscillations in red giants. It is a short note by Keeley (1980),

in which a crude estimate of mode trapping was made. The non-

adiabatic effects, which are very important in this context, were

ignored.

The differences in the non-radial mode properties between red

and yellow giants are a consequence of the different depths of the

convection zones. The formalism for calculating linear modes in

these two types of star is the same. Here we provide only an outline

of the formalism developed by Dziembowski (1977), which was

recently recalled in some detail by Van Hoolst, Dziembowski &

Kawaler (1998; hereafter VDK). We intend to apply this formalism

to low-degree modes ð‘ ¼ 1; 2Þ, in a cyclic-frequency range

starting somewhat below the fundamental radial-mode frequency

and extending up to the acoustic cut-off frequency, nac, in the

photosphere ðr ¼ RÞ. In our model of aUMa, nac . 27mHz.

Buzasi et al. (2000) reported peaks in the power spectrum located

above our value of nac, which evidently cannot easily be interpreted

in terms of strongly trapped acoustic modes.

The starting point of our discussion is an asymptotic solution, for

large order n, of the non-adiabatic wave equation, which is valid in

the radiative interior. In this approximation, any perturbed scalar

parameter may be expressed with respect to spherical polar

coordinated (r, u,f) in the following form:

qðr; u;f; tÞ ¼ AðrÞ½eiFðrÞ 1 e2 iFðrÞ�Ym
‘ ðu;fÞ e

ivct ; ð1Þ

in which t is time. The amplitude, A, is a slowly varying function of

r. The rapid variations are described by the phase F, which for stars

with radiative cores may be written in the form

FðrÞ ¼

ðr

0

k dr 2
1

2
ð‘ 1 1Þp: ð2Þ

The general expression for the radial component, k, of the

wavenumber of high-order modes in the gravity-wave cavity may

be found in VDK. The quantity vc ¼ v 2 ig (with v . 0Þ is the

complex eigenfrequency. We focus our attention on predominantly

oscillatory modes, i.e. modes with a growth rate g satisfying the

condition jgj ! v. We also specify q to be the relative Lagrangian

perturbation to the pressure, dp/p.

If the radiative energy losses are regarded as being small, there is

a simple expression for the radial wavenumber far from the edges

of the cavity:

k .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘ 1 1Þ
p

v

N

r
1 1 i D1

g

v

� �h i
; ð3Þ

where

N ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr

dp
2

r

G1p

� �s
ð4Þ

is the buoyancy (Brunt–Väisälä) frequency, g is the local

gravitational acceleration, r is density, G1 ¼ ð› ln p/› ln rÞad is

the first adiabatic exponent and

D ¼ ‘ð‘ 1 1Þ

8pv 3

gLr

r 4p

7ad

7
ð7ad 2 7Þ; ð5Þ

in which Lr(r) is the total rate at which radiant energy crosses a

sphere of radius r, 7 ¼ d ln T/d ln p and 7ad ¼ ð› ln T/› ln pÞad.

The quantity D is a measure of the radiative energy loss, which is

the only non-adiabatic effect we consider in this cavity. Here,

7ad . 7 is always satisfied; hence D . 0. To the same

approximation, the amplitude is given by

AðrÞ/
V

r 3
ffiffiffiffiffi
kr
p ; ð6Þ

with V ¼ grr/ p. The approximate expressions for the wavenumber

(equation 3) and for the amplitude (equation 6) are valid only if

D ! 1. For models M23 and M24 (see Table 1) the computations

suggest thatD @ 1 in certain layers inside the star, at least for some

modes considered in the calculations. However, for these models

we use this approximation only in the outer layers of the

asymptotic region, where the approximation is satisfied. The

maximum value of D in our model of aUMa for the lowest-

frequency quadrupole ð‘ ¼ 2Þ mode is 0.2. As in all red giant

models, that maximum occurs within the shell source. Even if D is

small, consequences of radiative losses may still be very important

for the wave properties, because if N/v is large we may still have

Fi ; ImðFÞ @ 1. Equation (1) describes a superposition of an

outward (first term on the right-hand side) and inward propagating

gravity wave, where the direction of propagation is the direction of

the group velocity.

Let us concentrate now on the oscillations in the outer, acoustic

cavity. Moreover, let us assume that the approximation for q given

by equation (1) is valid in an interval [0,rf] of the g-mode cavity. In

this interval we can neglect the derivative of A with respect to r in

the calculation of the derivative of q. Thus, at r ¼ rf we have
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approximately

1

q

›q

›r
¼ ik

expðiFÞ2 expð2 iFÞ

expðiFÞ1 expð2 iFÞ
; ð7Þ

which provides a boundary condition for the numerical solution of

the equation for the linear non-adiabatic oscillations in the interval

[rf, R], which contains the very outer layers of the g-mode cavity in

which the asymptotics breaks down, the entire surrounding

acoustic cavity and the evanescent zone between. The left-hand

side of equation (7) depends on ‘ and on the value of vc. The

dependence on vc is relatively weak in comparison with the

explicit dependence of the right-hand side of equation (7).

Assuming Fi @ 1, expression (7) simplifies to

›q

›r
. 2 ikq; ð8Þ

which is valid for the case when the wave is effectively dissipated

on its way towards the centre. The energy loss may be

overcompensated by the driving operating in the outer layers if

the wave amplitude A(rf) is small, i.e. if the mode trapping in the

acoustic propagation zone is severe. Indeed, non-radial modes with

growth rates g similar to those of radial modes were found in

models of Cepheids (Osaki 1977) and of RR Lyrae (Dziembowski

1977). In these two independent papers, equation (8) was used for

the inner boundary condition. In VDK such modes were called

strongly trapped unstable (STU). We must emphasize, however,

that even when the amplitude in the outer acoustic zone is

relatively large, according to VDK the oscillations typically have

80 per cent of their energy in the inner, g-mode cavity. In the model

of the RR Lyrae star considered by VDK, STU modes were found

only with ‘ . 4. We shall see that in red giants STU modes may

also exist with ‘ as low as unity. The frequency separation between

consecutive low-degree STU modes is similar to the separation

between consecutive radial modes.

The STU modes are true eigensolutions of the non-adiabatic

oscillation equations for the whole star. Indeed, the boundary

conditions (7) and (8) are equivalent for unstable modes because if

g . 0 we have ImðkÞ . 0 throughout the interval [0, rf], and Fi

does not change sign. If D ! 1, this conclusion follows

immediately from equation (3) although, in fact, it is also true

for any D $ 0 (see, e.g., Dziembowski 1977). For stable modes,

the situation is more involved. If a solution with g , 0 is found

subject to the inner boundary condition (8), then the solution must

always be checked to determine whether it satisfies the inequality

Fi @ 1. Actually, this inequality is rarely satisfied. Let us note that

with the usage of equation (7) we assume maximum energy losses.

When we use equation (7) with a properly calculated phase, instead

of equation (8), we may find unstable modes. However, for such

modes the growth rates are typically much smaller than those of

radial modes with similar frequencies.

A dense spectrum of weakly unstable modes with ‘ ¼ 1 and 2

was found for the RR Lyrae model considered by VDK. In the next

section we shall discuss the problem of mode stability, and we shall

see that it is actually far from being solved. Fortunately, whatever

the mechanism responsible for the excitation of the modes, it

should operate in the layers where the radial eigenfunctions do not

depend on ‘. We shall take advantage of this property in our

discussion of the relative chances of non-radial or radial modes

being excited.

It seems to be not unreasonable to assume that if in a certain

frequency range unstable modes of various degrees exist, their

chances of being excited are related to the growth rates g. The

growth rate may be expressed in terms of the work integral, W, and

the mode inertia, I, through the well-known relation (see, e.g.,

Unno et al. 1989)

g ¼
W

2vI
: ð9Þ

The generic expression for the work integral is

W ¼

ð
d3x r½2T7ad Imðq*dsÞ�1

ð
d3x Im

dr*

r

dpt

pt

� �
; ð10Þ

where s is the entropy per unit mass and pt (the so-called turbulent

pressure) is the rr-component of the Reynolds stress tensor

Tij ; ruiuj (u is the turbulent velocity field and the overbar denotes

an ensemble average). The asterisk denotes a complex conjugate.

In this expression we neglect the contribution from the anisotropy

of the Reynolds stress tensor, which is small compared with the

isotropic component. However, in this section we neglect

convection dynamics in the model computations: in the evaluation

of the work integral the second term of the right-hand side of

equation (10) is neglected. The mode inertia is defined as

I ¼

ð
d3x rjjj2; ð11Þ

with j representing the displacement eigenfunction. The integrals

are over the entire volume of the star. The inertia I also enters into

the expression for the amplitudes of stochastically excited modes

(see equation 21). Another quantity in the expression for the

amplitudes is the energy supply rate PQ injected into the modes by

the turbulent convection, and which we assume to be generated

predominantly by the fluctuating Reynolds stresses (see the next

section).

There are important differences between radial and non-radial

oscillation properties below the acoustic propagation zone of the

non-radial modes. These differences are reflected in the values of I.

If I is large, the largest contribution to the work integral may arise

in the gravity-mode propagation zone, where the asymptotic

approximation is applicable. In the gravity-wave propagation zone

we have adopted for the Lagrangian specific entropy perturbation

the expression

ds ¼ 2icp

› ln T

› ln r

� �
p

d ln p

d ln r
2

1

G1

� �
Dq; ð12Þ

in which cp is the specific heat at constant pressure. It follows, for

example, from equation (19) of VDK in the weakly non-adiabatic

limit, that is, when jDj ! 1. Substituting equations (1) and (12)

into equation (10) we obtain

Wg ¼ 22Cfv
2

ðFr;f

0

hD dFr; ð13Þ

where Fr ; ReðFÞ and Cf is a real positive constant which is

obtained from the eigenfunctions calculated numerically for

r . rf , and

h ¼ expð2FiÞ1 expð22FiÞ: ð14Þ

The oscillatory term, proportional to cos(2Fr), in the integrand of

Wg has been ignored, which is consistent with the asymptotic

approximation.

An expression for j in terms of q can be calculated in the
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adiabatic approximation. The result is

j ¼ 2
r

V
q er 1

r 2

‘ð‘ 1 1Þ
7h

›q

›r

� �� �
; ð15Þ

where er is a unit vector in the radial direction and 7h is the

horizontal component of the gradient operator. From equation (3)

we conclude that, to a first approximation, the contribution of the

radial displacement to I can be neglected if N @ v. Thus, from

the asymptotic interior we obtain the following contribution to the

modal inertia I:

Ig ¼ Cf

ðFr;f

0

h dFr: ð16Þ

We normalize the relative rms radial component of the mode

displacement to unity at the stellar surface. The coefficient Cf,

which is a function of v, exhibits minima separated by nearly the

same interval in frequency as the minima in the radial modes. This

is a manifestation of the trapping properties of the acoustic cavity,

which are purely dynamical and result from a resonance between

the two cavities. The spectrum of g modes in the inner cavity is so

dense that there is always a g-mode-like oscillation the frequency

of which resonates with a p mode in the outer cavity, such that the

amplitudes in both cavities are similar. All other g modes are

confined to the central g-mode cavity, and have very low ampli-

tudes in the outer layers of the star. Mode trapping is also

influenced by the behaviour of the factor h (see equation 14), which

is determined by non-adiabatic effects. For STU modes we have

h < expð2Fi;1Þ @ 1, which is a sharply increasing function of r.

Thus, Ig is negligible and Wg may be evaluated as the rate of wave

loss:

Wg;w ¼ 2 r 2p

ð
Imðj*

r qÞ sin u du df

� �
f

¼ 2Cfv
2hf : ð17Þ

For all other modes we have to use equations (13) and (16) to

evaluate the contributions Wg and Ig. Equation (3) implies that for

stable modes h(r) has a maximum in the layer in the star in which

D ¼ 2g/v. Thus, Ig may be significant, and is often the dominant

contribution to I. Let us note that the values of Ig and Wg depend on

g, and consequently on the non-adiabatic processes operating in

these layers. This means that uncertainties in the computation of

the non-adiabatic effects are to some degree reflected in the values

of Ig and Wg. Damping in the outer layers reduces the effect of

mode trapping.

3.2 Application to aUMa

In our code for computing non-radial non-adiabatic oscillations

(Dziembowski 1977) we set the Lagrangian perturbation of the

turbulent fluxes (heat and momentum) to zero, and we ignore the

turbulent pressure in the equilibrium model. With this treatment,

all radial modes are found to be unstable.

In Fig. 2 we show the behaviour of the normalized mode inertia

In ¼ I/3MR 2 as a function of the cyclic frequency n ¼ v/2p for

our model of aUMa. The choice of normalization is not important

here, except that all modes are assumed to have the same surface

amplitude of radial displacement. There are two sequences of

model results: in the first sequence (upper plots) we calculated h

with g obtained from our code; in the second sequence we

suppressed all non-adiabatic effects where r . rf . A comparison

allows us to assess some of the consequences of the uncertainties of

the physics in the convective zone.

Symbols are used to denote the non-radial modes that are most

trapped in the acoustic cavity. For the ‘ ¼ 2 sequence the minima

in In almost coincide with the radial-mode frequencies, while the

minima for ‘ ¼ 1 are located roughly half-way between the ‘ ¼ 0

and 2 minima. The positions of these minima resemble the

positions of modes in the whole-disc spectra of solar oscillations.

There are many more modes with ‘ ¼ 1 and 2 than are depicted by

the symbols. The frequency separation Dn between non-radial

modes of consecutive order n is indeed very small. It may be

evaluated from the asymptotic formula

Dn

n
¼ 2:4 � 1024 nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘ð‘ 1 1Þ
p ; ð18Þ

where n is expressed in mHz. The numerical constant is specific to

the model. At ‘ ¼ 1 and n ¼ 2:8mHz the value of Dn is about

0.0013mHz, which is much less than that found by Guenther et al.

(2000).

There is no substantial difference between the trapping pattern

of the two sequences, except for the differences in the depths of the

minima, particularly those of the ‘ ¼ 2 modes. Greater driving in

the outer layers results in deeper minima. If there is net damping in

the outer layers, as in the case of solar oscillations, the minima are

shallower than in the adiabatic approximation.

In Fig. 3, we plot the rate of energy dissipation, Dg; 2 vWg, in

the asymptotic interior for the same two sequences of modes. In

addition, in the upper panel, we show the total energy gain rate,

2Dp; 2 vW , for radial modes. The total driving rate for the

Figure 2. Modal inertia in units of 3MR 2, plotted against frequency. The

eigenfunctions are normalized such that at the surface jr ¼

RYm
l ðu;fÞ expðivctÞ: Individual non-radial modes are not resolved. The

symbols are displayed only for those modes that are locally most trapped.

Dp ¼ 0 means that all non-adiabatic effects in the outer layers are ignored.

Oscillations of aUMa and other red giants 605

q 2001 RAS, MNRAS 328, 601–610

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/328/2/601/1088742 by guest on 20 August 2022



non-radial modes is given approximately by g . ½DpðnÞ1 Dg�=

2v 2I; because significant non-adiabatic effects may arise only

either near the surface – and then they are ‘-independent – or in

the deep interior where the g-mode asymptotics apply. Some non-

radial modes with frequencies larger then 12mHz are found to be

unstable: if the radial modes with n . 12mHz are indeed unstable,

then there are also some unstable low-degree non-radial modes.

When ‘ ¼ 2 the modes that are most trapped are detached from

the remaining modes, except for that at n . 10mHz. Except for this

particular mode, all the other modes satisfy Fi;f . 1. Thus, the

unstable ‘ ¼ 2 modes are STU modes, and their growth rates are

nearly the same as those of the corresponding radial modes. All

the unstable ‘ ¼ 1 modes have Fi;f ! 1, and the trapping effect

is less severe. The inertia of the most trapped ‘ ¼ 1 modes is

always significantly larger than that of the closest radial mode

(see Fig. 2).

3.3 ‘Unstable’ low-degree modes in 2-M( red giants

In Table 2 we compare some characteristics of modes of the aUMa

model, Ma, and the modes of models of 2-M( red giants that are

found to be unstable with our code. For the models M21 and M22

we find more-or-less similar properties to those of the Ma model.

Strong trapping occurs only for ‘ $ 2, and the non-radial modes

are unstable for the higher n. Note that n is the radial order only for

‘ ¼ 0 (for ‘ . 0 it is the number of nodes in the acoustic cavity of

radial component of the displacement eigenfunction). For all cases

the upper limit of the unstable range is determined by the acoustic

cut-off frequency.

In the more luminous giants (models M23 and M24) STU modes

are found even for ‘ ¼ 1. In Fig. 4, we show how instability of the

most strongly trapped modes increases with stellar luminosity.

The relative frequencies of the most strongly trapped modes of

the models considered here are different from those of the RR

Lyrae star model considered by VDK and of RR Lyrae stars in

general. In red giants the most strongly trapped ‘ ¼ 1 modes are

located between the ‘ ¼ 0 and 2 pairs, the frequencies of which are

nearly coincident. There is a similarity with solar p modes,

although in the case we have studied here the frequencies of the

strongly trapped ‘ ¼ 1 modes are somewhat closer to the higher-

frequency even-degree pair. In RR Lyrae stars, on the other hand,

the frequencies of the most strongly trapped ‘ ¼ 1 modes are

actually closer to the radial eigenfrequencies than are the

frequencies of the most strongly trapped ‘ ¼ 2 modes.

These differences between RR Lyrae stars and red giants are

related to red giants having much deeper convective zones. The

Table 2. ‘Unstable’ low-degree modes in red giant models; nac is the cyclic acoustic cut-off frequency
computed for an Eddington grey atmosphere; P0,1 is the period of the fundamental radial mode; for ‘ . 0, n
indicates the range of consecutive modes that are most trapped.

nac P0,1 n-range n-range (mHz)
Model (mHz) (d) ‘ ¼ 0 ‘ ¼ 1 ‘ ¼ 2 ‘ ¼ 0 ‘ ¼ 1 ‘ ¼ 2

Ma 26.6 4.10 1–14 8–14 4–12 2.82–26.3 16.2–27.7 15.0–28.2
M21 178.0 0.919 1–18 6–18 6–18 12.6–166. 59.5–162. 62.5–166.
M22 43.4 2.65 1–13 5–14 3–13 4.36–40.3 16.3–41.9 11.5–40.3
M23 10.2 7.74 1–9 2–10 1–12 1.50–9.30 2.37–9.81 1.49–10.1
M24 2.25 24.1 1–6 1–6 1–6 0.480–2.03 0.397–1.92 0.483–2.01

Figure 3. Contributions to the energy dissipation rate from the g-mode

propagation zone in units of the stellar luminosity, L. In the upper panel the

energy gain rate for radial modes is plotted with open circles. See the

caption of Fig. 2 for further information.

Figure 4. Occurrence of instability in the sequence of 2-M( giants of non-

radial mode of low degree ‘ and low radial order n that are most strongly

trapped in the outer acoustic cavity. The abscissa is the dimensionless

frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p/Gkrl

p
n. Full symbols denote unstable modes, open symbols

stable modes. Circles, triangles, and squares denote ‘ ¼ 0; 1, 2 modes,

respectively
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differences are reflected in the different behaviours of the Brunt–

Väisälä frequency, N. In Fig. 5 we compare N and the Lamb

frequencies L1 and L2 in the envelope of an RR Lyrae model with

those in the envelope of model M21. A deeper convective zone is

associated with a wider evanescent zone separating the p- and

g-mode propagation zones, and hence there is the possibility of

more efficient trapping. This is why we find STU modes of low

degree in red giant and not in RR Lyrae models. Exceptionally poor

trapping of the ‘ ¼ 2 modes in the frequency range of the first two

radial modes is caused by the narrowness of the evanescent zone.

4 E X C I TAT I O N M E C H A N I S M S

There is little doubt that the interaction between pulsation and

convection plays an essential role in red giant pulsation, and that

the approach adopted by us to obtain the results reported in the

previous sections is inadequate. The driving agent that caused

instability of the radial modes is the same as that suggested first by

Ando & Osaki (1975) in an attempt to explain solar p-mode

excitation in the Sun, and is artificial. It is easy to understand why:

at the photosphere, where the energy is carried mostly by radiation,

the flux perturbation is negative in the high-temperature phase of

the pulsation cycle. This is a result of the steep increase of the

opacity with temperature in the outer layers. The fraction of the

energy carried by convection increases rapidly inwards. Since, by

assumption, the convective flux remains unperturbed, the energy is

forced to be captured by the photospheric layers, and the putative

heat engine works. This phenomenon is sometimes called

convective blocking, which is confusing because what actually

blocks the heat flux is the opacity variation. However, there is no

physical justification for the neglect of the perturbed convective

heat flux and Reynolds stresses. Indeed, pulsational modulation of

the convectively unstable stratification of the star is bound to

modulate the convective dynamics, and dominate the driving or

damping in regions where the convective fluxes dominate in the

equilibrium state.

Effects of convection on the stability of radial pulsations in cool

stars have been investigated since the early 1970s (see, e.g., Xiong

et al. 1998; Houdek 2000). Recent efforts have focused mainly on

Mira stars and the Sun. According to the calculations of Xiong et al.

(1998), low-order radial modes of Mira models are unstable,

whereas those of orders n . 4 were always found to be damped

[see also the work by Balmforth et al. (1991) on Arcturus]. In a

study of p-mode stability in the Sun by Balmforth (1992a), all

modes have been found to be stable. In his calculations Balmforth

used Gough’s (1976, 1977) non-local, time-dependent mixing-

length model for convection, improving on the code used by Baker

& Gough (1979) to study RR Lyrae stars by incorporating the

Eddington approximation to radiative transfer for both the

equilibrium structure and the pulsations. Houdek et al. (1999)

applied these calculations to solar-type stars, and estimated

amplitudes of intrinsically stable stochastically excited radial

oscillations in stars with masses between 0.9 and 2.0 M( close to

the main sequence.

4.1 Linear stability of radial modes in aUMa

Here we apply Balmforth’s (1992a) treatment of pulsation to a

model of aUMa. In particular, we include turbulent pressure in the

equilibrium model, and the stability analysis includes the

Lagrangian perturbations of the convective heat and momentum

fluxes. We use an envelope model calculated with the surface

parameters of model Ma given in Table 1, and an atmosphere using

the T–t relation of model C of Vernazza, Avrett & Loeser (1981).

The value of the mixing-length parameter was adjusted so as to

reproduce the same depth of the convective zone as was obtained

from the evolutionary computation. The non-local treatment of

convection introduces two more parameters, a and b, which

characterize, respectively, the spatial coherence of the ensemble of

eddies contributing to the total heat and momentum fluxes and the

extent over which the turbulent eddies experience an average of the

local stratification. Theory suggests approximate values for these

parameters, but it is arguably better to treat them as free. Roughly

speaking, the parameters control the degree of ‘non-locality’ of

convection; low values imply highly non-local solutions, and in the

limit a; b!1 the system of equations reduces to the local

formulation (except near the boundaries of the convection zone,

where the local equations are singular).

The energy dissipation rate Dp of radial p modes was calculated

as a continuous function of oscillation frequency by relaxing the

inner dynamical boundary condition. The results shown in the

upper panel of Fig. 6 were obtained for two sets of non-local

convection parameters a and b. The choice of these parameters is

important at high frequencies where unstable frequency ranges are

found. At low frequencies, covering radial orders up to n ¼ 5, all

modes are found to be stable for both sets of a and b parameters.

The values of jDpj are significantly higher than the values of 2Dp

Figure 5. Lamb frequencies L‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘ 1 1Þ
p

c/r (for ‘ ¼ 1 and 2) and the

Brunt–Väisälä frequency N in the M21 model and in a representative RR

Lyrae star model. The latter is characterized by the following parameters:

M ¼ 0:67 M(, Y0 ¼ 0:243, Z ¼ 0:001, Yc ¼ 0:17 (helium abundance in

the core), logðL/L(Þ ¼ 1:717, log Teff ¼ 3:822. The ordinate scale is

dimensionless, and corresponds to angular frequencies measured in units offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pGkrl

p
, which corresponds to the dimensionless cyclic frequencies of

Fig. 4. In these units the frequencies of the first two radial modes in the RR

Lyrae model are 1.82 and 2.46.
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shown in the upper panel of Fig. 3. This clearly indicates that by

neglecting the perturbed convective fluxes we ignore the dominant

contribution to the damping.

The results shown in Fig. 6 are also applicable to non-radial

modes, because virtually all the contribution to Dp arises in the

upper layers where the value of ‘ has little influence. However,

damping effects in these layers have consequences in the deep

interior. They change g, and hence the amplitude behaviour in the

g-mode propagation zone (see equation 3). We have seen in

Section 3.2 (Figs 2 and 3) that ignoring driving effects in these

layers reduces the trapping. Adding damping there would reduced

it further. Larger inertia implies lower amplitudes for stochastically

excited modes, and indeed we should not expect detection of

stochastically excited non-radial modes in giants.

4.2 Amplitudes of stochastically driven radial modes

The amplitudes of intrinsically stable stochastically driven radial

modes were estimated in the manner of Houdek et al. (1999):

V s ¼

ffiffiffiffiffiffiffiffiffiffiffi
PQ

2hIv

s
; ð19Þ

where here PQ is the noise generation rate injected into a mode

through the fluctuating Reynolds stresses, the expression for which

we adopted from Balmforth (1992b) (see also Houdek et al. 1999).

The damping rate is h ¼ Dp/2Iv 2 ¼ 2g, and Iv ¼ IR 22 in our

notation. For radial modes the total energy dissipation rate D is Dp.

The linear stability analysis also provides the parameter l, which is

the ratio of the relative luminosity to the relative velocity ampli-

tude, computed at the surface (i.e. outermost meshpoint) of the star.

The bolometric relative luminosity amplitude then becomes

dL

L
¼ l

dR

R
¼ l

V s

vR
; ð20Þ

and from equation (21) we obtain

dL

L
¼ l

ffiffiffiffiffiffiffiffi
P

InD

r
; ð21Þ

where P ¼ PQIn and In ¼ I/3MR 2; In is the dimensionless modal

inertia plotted in Fig. 3. In the lower panel of Fig. 6, we plot the

quantity l 2P. All the quantities plotted in this figure are also

applicable to non-radial modes of low degree. However, for non-

radial modes we have to take into account the damping effects in

the g-mode propagation zone. With the help of equation (21) and

the data given in Fig. 3 we can evaluate amplitudes for radial

modes with Dp , 0.

In Fig. 7, we compare radial-mode frequencies and amplitudes

calculated for Ma with the observational data of aUMa. Bearing in

mind the large observational errors and the fact that we have made

no effort to adjust the model parameters to fit the frequencies, we

regard the agreement of frequencies as satisfactory. On the other

hand, the disagreement between the amplitudes is very serious: the

observed amplitude at n ¼ 1 exceeds the predicted value by three

orders of magnitude, and the frequency dependence of the

amplitudes differ drastically.

An additional difficulty is presented by the presence of the

two peaks above the acoustic cut-off frequency. Such high-

frequency peaks are observed in the Sun, but with amplitudes

much lower than those below the acoustic cut-off. The two

highest-frequency peaks in aUMa have amplitudes of about

0.2 mmag, which are similar to most of the other peaks. We

should stress that the amplitude estimates in Fig. 7 were obtained

using the pulsation modes of a model with an atmosphere based

on model C of Vernazza et al. (1981). That atmosphere has an

Figure 6. Absolute values of energy dissipation rates, jDpj (top) and energy

generation rate Pl 2 (bottom) [P is the rate of energy injected into the

modes by the fluctuating Reynolds stresses and l is defined by equation

(22)]. The energy generation rates are expressed in units of the solar

luminosity. Two sets for the convection parameters a and b were used.

Thick curves in the upper panel indicate the frequency range where radial

modes are found to be unstable ðDp , 0Þ.

Figure 7. Amplitudes and frequencies of oscillations in aUMa from Buzasi

et al. (2000) compared with model calculations obtained for two sets of

convection parameters. The width of the shaded rectangles corresponds to

the uncertainty of the frequency data. Calculated amplitudes for the n ¼ 1,

2 and 3 modes are 0.5, 2.7 and 5.8mmag, respectively. The observed peaks

at n ¼ 34:9 ^ 0:6 and 43:6 ^ 0:9mHz, which are above the calculated

acoustic cut-off frequency, are not shown.
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acoustic cut-off frequency of 32.4mHz at the temperature

minimum, which is lower than the two highest frequencies of the

observed peaks. A more realistic atmosphere might have a higher

value than this, which itself is higher than the value for the

Eddington grey atmosphere quoted in Table 2 and used by

Guenther et al. (2000).

The amplitudes of stochastically excited non-radial modes,

including those that are most efficiently trapped in the acoustic

cavity, are expected to have values much lower than those of

corresponding radial modes. Equation (20) applies to non-radial

modes if the contributions to In and D from the g-mode propagation

zone are included. The values of both In and Dg are substantially

larger than those plotted in the lower panels of Figs 2 and 3, owing

to the damping effect in the outer layers.

5 S O L A R - L I K E O R M I R A - L I K E

O S C I L L AT I O N S ?

The results of the stability analysis presented in Section 4.1 seem to

exclude an interpretation of the low-frequency part of the aUMa

oscillation spectrum in terms of self-excited modes. Indeed, the

damping effect of convection exceeds by a large margin the driving

effect of the opacity perturbation. However, there still seems to be a

greater chance for an interpretation in terms of Mira-like excitation

than in terms of solar-like excitation. The trend of calculated

amplitudes is determined mainly by the factor I21=2
n in equation

(21), which is the most reliably calculated quantity in the

expression. One may contemplate that for the first three modes Dp

really is much lower than what we have calculated, but this option

would require near cancellation of damping and driving effects; it

is more plausible that the quantity is less than zero and that the

modes are unstable. The option that remains is an increase of l 2E

by four to six orders of magnitude.

Whatever the correct answer, the required changes are bound to

be related to the way in which we treat the interaction between

pulsation and convection. Our treatment, like most of those that

have been used, is based on the mixing-length formalism, and we

know that it is an inadequate tool for describing the mean proper-

ties of convection. In studies of acoustic mode damping and

excitation we have to consider more detailed aspects of the

dynamics of convection. The alternative is a hydrodynamical

simulation. This has already been applied to solar radial oscilla-

tions by, for example, Stein & Nordlund (2001). It is to be hoped

that before long this approach will become applicable to red giant

oscillations too.

How could future observational work on red giant variability

help us? One possibility is to disprove of genuine pulsations in

aUMa and in other red giants. Short-term variability could be a

direct manifestation of convection, such as large-scale granulation.

This would result in progress being slow: compare how much we

have learned in the past from the Sun’s granulation with what we

have learned from its oscillations.

One very promising observational approach to the solar-like

versus Mira-like alternatives is repeating the analysis of the

MACHO data of Cook et al. (1997) with a much longer time base

or of extensive data from another microlensing projects such as

OGLE (Udalski, Kubiak & Szymański 1997). Much improved

frequency and amplitude resolution is expected. Showing that the

ridges extend from a few days to hundreds of days with a

continuous amplitude increase might strengthen the Mira-like

interpretation.

Other observational evidence supporting a Mira-like interpretation

would be the identification of non-radial modes. In Section 3 we

have seen that if radial modes are unstable some ‘ ¼ 1 and 2

modes should be unstable too. If the modes are stable, then, as we

discussed at the end of Section 4.2, non-radial modes will be

excited stochastically, but their amplitudes will be much lower than

those of their radial counterparts.

It could be possible that low-order modes in aUMa are Mira-

like, whilst those of higher-order are solar-like. This could also be

the case for the multiperiodic M-type giants found by Koen &

Laney (2000). In some of these stars the frequency ratio exceeds

10, and there is no doubt that the highest frequencies exceed the

acoustic cut-off frequency. Two of the peaks in aUMa, as we have

already noted, are also above the acoustic cut-off frequency, but

that does not necessarily produce pulsational stability (cf.

Balmforth et al. 2001)

Regardless of what the excitation mechanism is, the data on

normal-mode frequencies will be very useful as a constraint on

stellar parameters and models. The prospect of detecting non-radial

modes is particularly interesting in this context.
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