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Oscillations of complex networks
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A complex network processing information or physical flows is usually characterized by a number of
macroscopic quantities such as the diameter and the betweenness centrality. An issue of significant theoretical
and practical interest is how such quantities respond to sudden changes caused by attacks or disturbances in
recoverable networks, i.e., functions of the affected nodes are only temporarily disabled or partially limited. By
introducing a model to address this issue, we find that, for a finite-capacity network, perturbations can cause
the network to oscillate persistently in the sense that the characterizing quantities vary periodically or randomly
with time. We provide a theoretical estimate of the critical capacity-parameter value for the onset of the
network oscillation. The finding is expected to have broad implications as it suggests that complex networks

may be structurally highly dynamic.
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The response of a complex network to sudden changes
such as intentional attacks, random failures, or abnormal
load increase, has been of great interest [1-10] since the
discoveries of the small-world [11] and the scale-free [12]
topologies. The issue is particularly relevant for scale-free
networks that are characterized by a power-law degree dis-
tribution. For such a network, generically there exists a small
set of nodes with degrees significantly higher than those of
the rest of the nodes. A scale-free network is thus robust
against random failures, but it is vulnerable to intentional
attacks [1]. This is particularly so when dynamics on the
network is taken into account, which can lead to catastrophic
breakdown of the network via the cascading process [5,8]
even when the attack is on a single node. A basic assumption
underlying the phenomenon of cascading breakdown is that a
node fails if the load exceeds its capacity. As a result, the
load of the failed node has to be transferred to other nodes,
which causes more nodes to fail, and so on, leading to a
cascade of failures that can eventually disintegrate the net-
work.

There are situations in complex networks where overload
does not necessarily lead to failures. For instance, in the
Internet, when the number of information-carrying packets
arriving at a node exceeds what it can handle, traffic conges-
tion occurs. That is, overload of a node can lead to the wait-
ing of packets but not to the failure of the node. As a result of
the congestion, traffic detour becomes necessary in the sense
that any optimal routes for new packets on the network try to
avoid the congested nodes. This is equivalent to a change in
the “weights” (to be defined more precisely below) of the
congested nodes and, consequently, to changes in the macro-
scopic characterizing quantities of the network. This situa-
tion usually does not occur when the network is in a normal
operational state, but it becomes likely when sudden distur-
bances, such as an attack or an abrupt large load increase,
occur. A question is then whether the network can recover
after a finite amount of time, in the sense that its character-
izing quantities restore to their original values.
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In this paper, we study a class of weighted scale-free net-
works, incorporating a feasible traffic-flow protocol, to ad-
dress the above question. In the absence of any perturbations,
the network is assumed to operate in its “normal” state so
that its macroscopic characterizing quantities are constants.
We find that, after a large perturbation, the network can in-
deed recover but only for large node capacities. When the
node capacities are not significantly higher than their loads in
the normal state, a surprising phenomenon arises: The mac-
roscopic quantities of the network are never able to return to
their unperturbed values but, instead, they exhibit persistent
oscillations. In this sense we say the network oscillates.
More remarkably, as the node capacities are decreased, both
periodic and random oscillations can occur. The striking fea-
ture is that the oscillation phenomena, periodic or random,
are caused solely by the interplay between the complex net-
work topology and the traffic-flow protocol, regardless of the
network parameters such as the degree distribution and the
overall load fluctuations. For fixed network parameters, the
oscillations exist regardless of the explicit form of the local
node dynamics, requiring only the minimal rule that it sim-
ply causes the traffic to wait when overloaded. Our finding
may have implications to many network-traffic problems.
For instance, it can provide an alternative explanation, from
the dynamical point of view, for the recently observed ran-
dom oscillations in real Internet traffic flow [13,14] and pro-
vide some insights into the self-similar oscillations of the
traffic flux observed in the worldwide web [15,16]. In a
broader sense, that a complex can never recover and instead
its basic characteristics exhibit persistent oscillations in re-
gions far away from their original steady state can have an
enormous impact on the function and role of the network,
regardless of the context (e.g., whether physical, biological,
or social).

We begin by constructing a scale-free network of N nodes
using the standard growth and preferential-attachment
mechanism [12]. We next define the node capacity by using
the model in Ref. [8],
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Ci=(1+a)L(0), (1)

where L;(0) is the initial load on node i, which is approxi-
mately the load in a normal operational state (free of traffic
congestion), and @>0 is the capacity parameter. The load L;
can be conveniently chosen to be the betweenness [17,18],
which is the total number of optimal paths [19] between all
pairs of nodes passing through node i. To define an optimal
path at time ¢, say at this time the weights associated with
node i and with node j are w,(¢) and w;(r) (to be defined
below according to the degree of traffic congestion), respec-
tively, where there is a direct link /;; between the two nodes.
Given a pair of nodes, one packet generating and another
receiving, the optimal path is the one that minimizes the sum
of all weights w; of nodes that constitute the path. Finally, we
define a traffic protocol on the network by assuming that, at
each time step, one packet is to be communicated between
any pair of nodes. There are thus N(N—1)/2 packets to be
transported across the whole network at any time. When a
packet is generated, its destination and the optimal path that
the packet is going to travel toward it are determined.

In a computer or a communication network, a meaningful
quantity to characterize a link is the time required to transfer
a data packet through this link. When the traffic flow is free,
it takes one time unit for a node to transport a packet. When
congestion occurs, it may take a substantially longer time for
a packet to pass through a node. For instance, suppose at
time 7 there are J;(¢) packets at node i, where J;(r) > C;. Since
the node can process C; packets at any time, the waiting time
for a packet at the end of the queue is 1+int[J,(¢)/C;], where
int[-] is the integer part of the fraction in the square bracket.
These considerations lead to the following definition of in-
stantaneous weight for node i:

wi(t)=l+int[Ji—(t)}, fori=1,...,N, (2)
G
from which the instantaneous weights for any node in the
network and hence a set of instantaneous optimal paths can
be calculated accordingly. For free traffic flow on the net-
work, we have J,(r) < C; and hence w,(r)=1 so that the net-
work is nonweighted. In this case, the optimal path reduces
to the shortest path.

The above model of traffic dynamics on a weighted net-
work allows us to investigate the response of the network to
perturbations in a systematic way. In particular, since the
node capacities are the key to the occurrence of traffic con-
gestion, it is meaningful to choose the capacity parameter «
in Eq. (1) as a bifurcation parameter. To apply perturbation,
we locate the node with the largest betweenness B, in the
network and generate a large number of packets, say ten
times of B, at time t=0. The network is then allowed to
relax according to our model. Initially, because of the con-
gestion at the largest-betweenness node caused by the pertur-
bation, its weight assumes a large value. As a result, there is
a high probability that the optimal paths originally passing
through this node change routes. This can lead to a sudden
increase in the network diameter, which is the average of all
optimal-path length. As time goes by, the congestion will
cascade to other nodes that adopt some detoured optimal
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FIG. 1. For a scale-free network of 1000 nodes and for a=0.4,
time evolutions of three macroscopic quantities: (a) The normalized
network diameter, (b) the normalized betweenness centrality, and
(c) the number of jammed nodes. The quantities return to their
respective steady-state values after a brief transient.

paths. As a result, the diameter increases quickly and reaches
its maximum at some time. During this process the conges-
tion situation is lessened at the attacking node while it gets
worse at the nodes that paths detour to. After this, the net-
work begins to “absorb” the congestions due to the load
tolerance and the recovery process starts, reducing the diam-
eter. The same processes apply to other macroscopic charac-
terizing quantities of the network. Due to the imbalance of
load distribution and the high density of optimal paths, the
final state where the system recovers to is difficult to predict
[23]. Therefore, we are interested in whether these quantities
can return to their “normal” or the steady-state values before
the perturbation.

For relatively large value of «, the ability of the network
to process and transport packets is strong, so we expect the
network to be able to relax to its unperturbed state. This is
exemplified in Figs. 1(a)-1(c), the time evolutions of three
macroscopic quantities, the normalized diameter (D), the
normalized betweenness centrality (B), and the number of
jammed nodes nj, respectively, of a scale-free network of
1000 nodes for a=0.4. [For this network, the values of the
diameter and of the betweenness centrality in the unper-
turbed state are (D)~ 5.18 and (B,)=~2.35 X 10°. The plot-
ted quantities in (a) and (b) are normalized with respect to
these “static” values.] We see that, after about seven time
steps, these quantities reach their maximum values and, after
another about five steps, these quantities return to their re-
spective unperturbed values. In this case, the large perturba-
tion causes the network to oscillate but only for a transient
time period. As the capacity parameter « is reduced, a re-
markable phenomenon occurs: After an initial transient the
network never returns to its steady state but, instead, it ex-
hibits persistent oscillations. Figures 2(a)-2(c) show periodic
oscillations for a=0.31, where the legends are the same as
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FIG. 2. (a)-(c) For the same
scale-free network but for «
=0.31, periodic oscillations of (a)
the normalized diameter, (b) the
normalized betweenness central-
ity, and (c) the number of jammed
nodes. (d)—(f) Random oscilla-
tions of the same set of quantities

for a=0.2.
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for Figs. 1(a)-1(c), respectively. The oscillations are in fact
period-2 in that each macroscopic quantity can assume two
distinct values, neither being the steady-state value, and the
quantity alternates between the two values. For smaller value
of «, random oscillations [20] occur, as shown in Figs.
2(d)-2(f) for a=0.2.

The critical value «, of the capacity parameter, below
which persistent network oscillations can occur, can be esti-
mated by noting that, for a given node j, the maximally
possible increase in the load before traffic congestion occurs
is aL;(0). The weight-assignment rule in our traffic protocol,
Eq. (2), stipulates that the most probable weight change be
unity. Now regard « as a control parameter. For a fixed
amount of change AL; in the load, free flow of traffic is
guaranteed if aL;(0)>AL; but traffic congestion occurs if
aL;(0)<AL;. The critical value a. is then given by

a,=AL/L)0), (3)
which is independent of the degree variable k [8]. Since the
load distribution with respect to k is algebraic [18], this sug-
gests that, in order for Eq. (3) to be meaningful, AL; must
follow an algebraic scaling law with the same exponent.
Since the amount of possible weight change is approximately
fixed, the resulting load change is also fixed. To give an
example, we consider a weighted scale-free network of pa-
rameters N=3000 and (k)=4. Initially all nodes are assigned
the same unit weight. The algebraic load distribution is
shown in Fig. 3 (squares, the upper data set) on a logarithmic
scale. The algebraic scaling exponent is about 1.5. Next we
choose nodes of degree k and give them a sudden unit in-
crease in the weight. A recent work shows that for weighted
scale-free networks, a weight increase of a node typically
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causes its load to decrease [21]. The load change AL as a
function of k is shown in Fig. 3 (circles, the lower data set).
We see that on the logarithmic scale, AL versus k is parallel
to the initial load-degree distribution curve, justifying the use
of Eq. (3). Numerically we obtain a, ~0.37. Since in a real-
istic situation there are more nodes with weights above the
uniform background value of unity and since the amount of
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FIG. 3. (Color online) For a scale-free network of N=3000 and
(ky=4, algebraic scaling of the initial load with the degree variable
k (upper data set) and the scaling of the load change caused by unit
weight change (lower data set). The parallelism of the two sets
validates the use of Eq. (3). The insets show similar plots but for
different network parameters. These results suggest that the critical
value «,. for network oscillation is insensitive to the structural de-
tails of the network. The results are averaged over 50 realizations.
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FIG. 4. For the Internet at the autonomous system level with
capacity parameter a=0.2, evolutions of (a) the normalized diam-
eter, (b) the normalized betweenness centrality, and (c) the number
of jammed nodes. Persistent oscillations of the Internet are
observed.

weight change can be more than unity, this value of «, is
only approximate. Indeed, direct numerical computations
give a.~0.32. The two estimates are nonetheless consistent.
An interesting observation is that, for the same degree distri-
bution, the value of «, is insensitive to network parameters
like the network size and the average degree, as shown in the
two insets in Fig. 3. In particular, for N=1000 and (k)=4
(inset in the lower-right corner), we have a,~0.39, while for
N=3000 and (k)=6 (upper-left corner), we obtain a, = 0.40.
This phenomenon of network-parameter independency can
be understood by noting that the load variation at a node
caused by its weight change is mainly determined by the
probability that optimal paths through this node appear or
disappear, as a result of the weight change. This probability
is independent of the network size and the average degree of
the node [21]. The value of a,, of course, depends on the
degree distribution and the traffic protocol. Indeed, the simu-
lations indicate that the value of «, is slightly increased as
the degree distribution becomes homogeneous and, for ho-
mogeneous random networks, the value of «a, is about a,
~0.45 [23].

Can oscillations be expected in realistic networks? To ad-
dress this question, we test the stability of the Internet at the
autonomous system level [22]. The network comprises 6474
nodes and 13 895 links, the average diameter is (D(0))
~4.71, the largest value of the degree is 1460, and the load
of this node is L;~1.97X 10%. By setting a=0.2, we apply
perturbation of strength P=10X L, at the largest-degree node
(to mimic an attack) and let the Internet evolve according to
our traffic protocol. The time evolutions of the normalized
diameter (D), of the normalized betweenness (B), and of the
number of congested nodes n; are shown in Figs. 4(a)-4(c).
Again, persistent oscillations are observed.
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We attribute the oscillations to the dynamical interplay
between the network topology and the traffic protocol, and
regard the existence of loop structure in topology and the
adoption of optimal path in protocol as the basic ingredients
for the network to oscillate. The loop structure provides mul-
tiple options for the communication between two nodes,
while the optimal-path protocol decides which option should
be adopted at each time step. For most real systems, these
two ingredients are naturally fulfilled and thus the oscillation
phenomenon is expected to be generic. For clarity, we have
used the standard scale-free network as a representative
model to illustrate the phenomenon, but extensive numerical
simulations have shown that this phenomenon is general for
complex networks, regardless of system details such as the
network type, the degree distribution, the average degree, the
network size, the perturbation size and position, etc. How-
ever, while the oscillation phenomenon is generic for com-
plex systems (i.e., whether network can oscillate), the oscil-
lation details can be significantly affected by the system
configurations (i.e., how network oscillates). For example,
the numerical simulations suggest that oscillations are en-
hanced in homogeneous networks in the sense that both the
value of «, and the oscillation amplitude are increased and,
for the given degree distribution, the avalanche size and the
recovery time are closed related to the size and position of
the perturbation [23]. The property of perturbation robust-
ness suggests another advantage of scale-free networks over
homogeneous random networks, which may stimulate a new
direction for network study.

For simplicity, we have assumed a discrete version of
the queuing protocol, i.e., the queuing time is unity when
node is not overloaded and increases linearly with conges-
tion when overloaded [see Eq. (2)]. To check if the network
oscillation exists for other kinds of queuing protocols,
we have replaced the discrete version with (i) a continuous
version, i.e., the node weight is real value and Eq. (2) is

replaced by w;(r) = jé—f), and (ii) a variable version where node
capacity is inversely proportional to the congestion situation,
i.e., replacing Eq. (2) by wi(t):1+int[%] with C,(1)=C;
when J,(1) <C; (not overloaded) and C,(t)=C;X j%) when
J(t) > C; (overloaded). The oscillation phenomena are well
confirmed in both cases. The only difference is that, for the
same set of network parameters, the oscillation amplitude is
decreased in the continuous capacity protocol while it is in-
creased in the inverse capacity protocol [23]. Another inter-
esting thing is that as the capacity parameter « decreases
further from the value where the period-2 oscillation occurs,
regular oscillations or higher period will arise. However, the
transitions from low-periodic oscillations to high-periodic
oscillations are nonsmooth. The final oscillation state is
highly sensitive to the network parameters as well as the
initial conditions, e.g., the perturbation size. Therefore the
transition from the period oscillation to the chaotic oscilla-
tion is nonsmooth. Nevertheless, as « decreases, the trend
from the low-period oscillations to the high-period ones and
further to the random ones are still clear. A detailed study of
this transition will be another issue of interest, since here
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chaos is generated from the topology complexity of networks
instead of the nonlinear functions.

To emphasize the deterministic nature of the network os-
cillations, we have not allowed the network capacity and
traffic load to have random fluctuations. Such fluctuations
will generally enhance the oscillations, as represented by
larger oscillation amplitudes [23]. The deterministic oscilla-
tions distinguish our work from others on network traffic
oscillations [24,25], where the underlying models are sto-
chastic. In addition, our model is different from the conges-
tion control models where chaotic flux oscillations have been
observed [13,14]. In particular, we have considered the com-
petition among simple node dynamics on complex topologies
while the congestion models focus on the competition of
complicated node dynamics on simple topologies.

In summary, we have discovered that a complex network
of finite capacity can oscillate in the sense that its macro-
scopic quantities exhibit persistent periodic or random oscil-
lations in response to external perturbations. While the study
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has arisen as a problem of network security, our findings may
have broad implications for general traffic networks which,
when applying the evolutionary weighted model, need fur-
ther specifications. Whereas there can be all sorts of dynami-
cal processes on a complex network, our finding indicates
that there can be physically meaningful situations where the
network itself is never static but highly dynamic. As a pri-
mary model for the evolutionary weighted network, oscilla-
tions of macroscopic quantities are only one aspect originat-
ing from the interplay between the topology and the local
dynamics. Other topics such as adaptivity where the network
topology updates according to the local dynamics may war-
rant further studies.
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