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Abstract. Consider the delay differential equation

y(0 + ay(t) + Pf{y(t - r)) = 0, (*)

where a, /?, and r are positive constants and / is a continuous function such that

uf(u) > 0 for u e [-A, B], 0, and lim = 1,
v ; w—»o u

where A and B are positive numbers. When /(«) = sinw, (*) is the so-called "sun-

flower" equation, which describes the motion of the tip of the sunflower plant.

We obtain necessary and sufficient conditions for the oscillation of all solutions of

(*), whose graph lies eventually in the strip R+ x [—A, B], in terms of the characteristic

equation of the linearized equation

z(t) + az(t) + f}z(t - r) = 0.

1. Introduction and preliminaries. In this paper we are concerned with the problem

of oscillation of second-order delay differential equations (DDE) of the form

y{t) + ay{t) +pf(y{t-r)) = 0, t > t0, (1)

where a, /?, and r are positive constants and / is a real-valued continuous function

such that

uf(u)> 0 for u E [—A, B\, u ^ 0, (2)

where A and B are given positive numbers and

lim^ = l. (3)
u—0 U

An example of such an equation and a motivating force behind our results is the

sunflower equation

+°y{t) +j sin y{t-r) = 0, t > 0,
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introduced in 1967 by Israelsson and Johnsson [1] as a model for the geotropic

circumnutations of Helianthus annus and whose periodic solutions were studied by

Somolinos [3] in 1978.

We are interested in solutions of Eq. (1) whose graph for t sufficiently large lies

in the strip R+ x [-A, B], For all such solutions we obtained necessary and sufficient

conditions for their oscillations in terms of the characteristic equation

A2 + aA + pe~kr = 0 (4)

of the corresponding linearized equation

z(t) + az(t) + pz(t - r) = 0. (5)

For first-order equations, results along these lines were recently obtained by Ku-

lenovic, Ladas, and Meimaridou [2].

A unique feature of our results is that Condition (2) does not have to hold globally

but only for values of the argument in some interval. Thus our results apply also in

cases where the function / is oscillatory as is the case with the sunflower equation

where f(u) = sin u. In particular our results provide a necessary and sufficient condi-

tion for the oscillation of all solutions of the sunflower equation with initial function

and initial derivative in a certain region.

One of the tools in the proof of our results is the following fixed point theorem of

Knaster and Tarski. See [4].

Lemma 1 (Knaster-Tarski Fixed Point Theorem). Let E be a partially ordered

set with ordering <. Assume that inf E € E and that every nonempty subset of E has

a supremum (which belongs to E). Let S: E ^ E be an increasing mapping (that is,

x < y implies Sx < Sy). Then S has a fixed point in E.

As is customary, a solution y(t) of Eq. (1) is called oscillatory if there exists a

sequence of points {tn} such that lim„_oo tn = oo and y{tn) = 0 for n = 1,2, 

Otherwise y(t) is called nonoscillatory.

2. Main results. The following result provides sufficient conditions for the oscil-

lation of all solutions of Eq. (1) that lie in a certain strip.

Theorem 1. Consider the DDE (1), where a, /?, and r are positive constants and /

is a real-valued continuous function such that (2) and (3) are satisfied. Assume that

the characteristic equation (4) of the linearized equation (5) has no negative roots.

Then every solution of Eq. (1) whose graph lies eventually in the strip R+ x [-A, B]

is oscillatory.

Proof. Assume, for the sake of contradiction, that Eq. (1) has an eventually positive

solution y{t) G (0,5]. Then, in view of (2),

y{t) + ay{t) < 0,

which implies that the functions

u(t) = y{t) + ay{t) and v(?) = y(t)eal
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are decreasing. Let

L\ = lim u(t) and L2 = lim v(/).
t—+ oo t—>oo

Clearly L\ € R, for otherwise lim(_00j>(?) = -oo, which would imply that

lim,^oo y{t) = -oo.

Next, we claim that L2 < 0. Otherwise, L2>0 and so eventually y(t) > 0. Thus,

/0 = lim/^oo y(t) exists and is positive. Also l\ = lim;_^ooy(f) - L\ - al0 exists.

Clearly, l\ must be nonnegative, for otherwise /o would be -oo. But from Eq. (1) we

have

lim y{t) = -ali ~ Pf{k) < 0, (6)
/—► OO

which implies the contradiction that both l\ and /o are -oo. Hence our claim that

L2 < 0 has been established. This implies that y(t) < 0, and so lim,^ooy(f) =

/o > 0. Then lim<^00j>(?) = l\ exists, and it must be zero. Otherwise l\ < 0 and

so /o = -oo. From (6) we now have lim^oo y(t) = -/?/(/o), and /0 must be zero;

otherwise lim^oo y(t) < 0, and hence /o = -oo, which is a contradiction. Therefore

we have established that

y(t) > 0, y(t) < 0, and lim y(t) = lim y(t) = 0. (7)
/—► oo /—► OO

Next, we claim that there exist positive numbers m and e < 5 such that

X2 + aX + /?(1 - e)e~Xr > for X < 0. (8)

Indeed, by hypothesis, Eq. (4) has no negative roots. Set

F(A) = X2 + aX + ^e~Xr.

Then F(—00) — 00 and F(0) = /? > 0. It follows that

X2 + aX 4- fie~Xr > m,

where m = min^o F(X). Observe that

lim (A2 + aX + = 00,
X—>-oo

and so there exists A0 < 0 such that

X2 + aX+ ^e~Xr >m/2 for X < X0. (9)

Choose
. f 1 mex°r 1

£ = min{r ~w\-

Thus, for X < X0 using (9) we have

X1 + aX + P( \ - e)e~kr > X2 + aX+ ±pe~Xr > m/2,

while for Xo < X < 0 we get

X2 + aX + /?(1 - e)e~Xr > X2 + aX + fie~Xr -

> m - m/2 = m/2,

and the proof of (8) is complete.
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Now, integrating Eq. (1) from t to oo and using (7), we find

/OO

f{y{s-r))ds. (10)

Choose t\ so large that

f(y{s ~ r))
> 1 — e for 5 > t\,

y{s-r)

which is possible, in view of (3) and (7). Then, for t > t\ Eq. (10) yields the linear

inequality

/OO

y(s-r)ds. (11)

Next, we will establish the following claim.

Claim. Let y(t) be an eventually positive solution of (11). Assume that a e R

and /?(1 - e) > 0. Then

/OO

z(s-r)ds (12)

has a solution z(t) such that, eventually, 0 < z{t) < y(t).

Proof. Setting u(t) = y(t)eal into (11), we find that u{t) > 0 and that

u(t) > /?(1 - e)eaI

Integrating from T to t, we get

/OO

e~a^~r^u(s - r) ds.

/t r r oo
P{\ -e)easJ e~a^-r)u^-r)di ds (13)

for t > T. We will employ the Knaster-Tarski fixed point theorem. Let X be the set

of all real-valued nondecreasing functions x defined on [Too) and such that

x(t) = u(t) for T < t < T + r (14)

and

x(t) < u(t) for t > T + r. (15)

If X\ and X2 belong to X, we will say that X\ < X2 if and only if X\ (t) < Xz(t) for

t > T. Clearly, with this ordering, A' is a partially ordered set. Define the mapping

T on X as follows:

r u(t), T < t < T + r,

(Tx)(t) = | U{T + r) + f'T+r [/?(1 - e)eas Js°° e~a^~r)x{^ - r) d^\ ds,

^ t > T + r.

In view of (15) and (13),

(Tx)(t) < (Tu)(t) < u(t) for t > T + r,

while, in view of the definition of T,

(Tx)(t) = u(t) for T < t < T + r.
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Also Tx is a nondecreasing function for t > T. Thus, T: X —* X. Finally, inf X e X,

and every nonempty subset of X has a supremum that belongs to X. Hence, all the

hypotheses of Lemma 1 are satisfied, and so T has a fixed point x e X. That is,

(Tx)(t) = x{t) for t > T.

Then

Xft) _ { "(0. T < t < T + r,

1 u(T + r) + f'T+r [/?(1 - e)eas fs°° e~a^~r^x(^ - r) d£\ ds, t > T + r.

Clearly, x(t) > 0 for ; > T, and differentiating for t > T + r, we see that x satisfies

the equation

COO

t > T + r.
/OO

e-a((-r)x^ _ r) ^

Setting x(t) = z(t)eat, t > T + r, we see that z(t) > 0 and that z satisfies (12).

Also, z(t)eat = x(t) < y(t)eal, and the proof of the claim is complete. Finally,

differentiating both sides of (12), we see that z(t) is a bounded positive solution of

z{t) + az(t) + f}(\ - s)z(t - r) = 0.

This contradicts (8) and the proof is complete.

The following result is a partial converse to Theorem 1.

Theorem 2. Consider Eq. (1) and assume that (2) holds,

f{u)<u for u G [0, B], (16)

/ is nondecreasing for u e [0, B], (17)

and the characteristic equation (4) of the "majorant" equation (5) has a real root.

Then Eq. (1) has a nonoscillatory solution whose graph lies eventually in the strip

R+ x (0,5],

Proof. Let /ibea real root of Eq. (4). Then clearly ju < 0, and so there is a T > t0

such that e^T < B. Thus, Eq. (5) has the nonoscillatory solution

y(t) = e1" € (0, B] fort>T.

Hence, in light of (16) and (17), the differential inequality

y{t) + ay(t) + 0f{y(t - r)) < 0, t > T, (18)

is also satisfied by y(t) = e*" and (7) holds. Integrating (18) from t to oo and using

(7), we get

/OO

f(y{s-r))ds. (19)

Now, a slight modification in the proof of the claim that we established in the proof

of Theorem 1 implies that the equation

r OO

z(t) + az(t) = p f(z{s - r))ds
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has a solution z(t) such that

0 < z(t) < eMt, t > T.

Clearly, z(t) is a positive solution of Eq. (1) that lies in the strip R+ x (0,5], The

proof is complete.

Combining Theorems 1 and 2, we obtain the following necessary and sufficient

condition for the oscillation of Eq. (1).

Theorem 3. Assume that Conditions (2), (3), (16), and (17) are satisfied. Then every

solution of Eq. (1) whose graph lies eventually in the strip R+ x [-A,B] oscillates

if and only if the characteristic equation (4) of the linearized equation (5) has no

negative roots.

3. Application. Consider the so-called sunflower equation

)>(() + 7y{t) + 7 sin y(t - r) = 0, (20)

which describes the helical movement of the tip of growing plants, especially of the

sunflower. The study of this problem goes back to the early 1800s. See [1] and [3] for

the description of the model, the study of periodic solutions, and further references.

Somolinos [3] showed that under appropriate initial conditions and with the pa-

rameters a, b, and r in a certain range the solutions of Eq. (20) remain in the strip

R+ x [-A, B], where A — B = n - e and e > 0 is sufficiently small. Applying our

Theorem 3, we therefore conclude that those solutions oscillate if and only if the

characteristic equation

a2 + sa + ^-a' = o

has no negative roots.
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