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U
nderstanding spatiotemporal complexity1–3 is important
to many disciplines, from biology4,5 to finance6. However,
because it is seldom possible to achieve complete control

over the parameters that determine the behaviour of real
complex systems, it has been difficult to study such behaviour
experimentally. Here we demonstrate a simple microfluidic
bubble generator that shows stable oscillatory patterns (both
in space and time) of unanticipated complexity and uniquely
long repetition periods. At low flow rates, the device produces a
regular stream of bubbles of uniform size. As the flow increases,
the system shows intricate dynamic behaviour typified by a
stable limit cycle of order 29 bubbles per period, which repeats
without change over intervals of up to 100 periods and more.
As well as providing an example of a well-characterized and
experimentally tractable model system with which to study
complex, nonlinear dynamics, such behaviour demonstrates that
it is possible to observe complex and stable limit cycles without
active external control.

Even though nonlinear temporal dynamics is well understood1,
the understanding of systems having complex dynamics in both
time and space is still limited2,3,7. Spatiotemporal dynamics
may underlie phenomena as varied as weather8, evolution of
geophysical patterns9, the movement of stock markets6, the
flux through metabolic pathways4, biomechanical processes10

and morphogenesis2,5. So-called large spatiotemporal systems—
systems in which the number of effective degrees of freedom
is large—demonstrate the applicability of amplitude and phase
equations2,11 in the characterization of spatiotemporal patterns2,7.
Small systems—systems with only a few degrees of freedom—are
substantially more complicated to study because the boundaries of
these systems strongly influence their dynamics and are difficult to
treat analytically. Truly tractable experimental demonstrations12,13

of spatiotemporal dynamics are scarce11, and the need for
them is correspondingly high2. Here we provide an example
of such a tractable system that is amenable to rational design
and modification.

The system comprises coupled microfluidic flow-focusing
devices. A single flow-focusing device14,15 (Fig. 1a) was first
implemented in a microfluidic chip by Anna et al.16; the system

has three inlet channels—two outer supplying liquid and the
centre one supplying gas—that merge at a junction leading to a
single outlet channel. In this geometry, the pinch-off process that
generates bubbles is regulated17 by the inflow of liquid into the
orifice (at a typical speed uinflow ∼ 0.01−1 m s−1); this inflow is
slower by two to five orders of magnitude than the relaxation
rates (the typical interfacial and bulk relaxation speeds are
uinterfacial ∼ γ/μ ∼ 100 m s−1 and usound ∼ 1,000 m s−1, respectively,
where γ is the interfacial tension and μ is the viscosity of the
liquid). As a result, the breakup process in the simple flow-focusing
device is highly reproducible and leads to the generation of
monodisperse bubbles17,18.

We have incorporated this well-characterized17 device into a
multi-orifice design (Fig. 1b) in which the stream of gas can
pinch-off at any orifice in an array of five orifices. Each liquid
inlet splits into five connected channels that feed the array of
orifices. These five channels couple the dynamics at each orifice by
pressure feedback loops. For an externally fixed rate of flow, Q, of
the liquid, the viscous resistance to flow downstream determines
the pressure at each orifice and the flow through it. As the gas
fills the centre channel, it blocks certain orifices and increases the
flow through a smaller number of (unblocked) inlet channels. The
pressures (pi) in—and the rates of inflow (qi) into—each of the
orifices depend on the length and position of the gaseous thread
and of the bubbles. When the thread breaks and the bubbles
move downstream, they also alter the distribution of pressure, and
consequently the dynamics of the breaking of the thread.

We examined the behaviour of this system using N2 as the gas
and water containing 2% of a surfactant (Tween 20) as the liquid.
As the pressure applied to the stream of gas increases, the behaviour
of the system becomes progressively more complex and then it
re-simplifies. For a fixed Q, and for the pressure applied to the
gas stream p only slightly above the minimum pressure needed to
form bubbles, the thread breaks into bubbles of uniform size at
the first orifice (the ‘period-1’ regime). At intermediate pressures
the dynamics becomes astonishingly complex: the thread enters the
array of orifices, undergoes several breakup events that generate
a series of bubbles of different sizes, pauses, and then the whole
process repeats. In spite of the intricacy of this periodic behaviour,
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Figure 1 The geometry of the system and an example of the periodic behaviour.

a,b, Schematic diagrams of the flow-focusing device with a single orifice (a) and the

multi-orifice system (b) that we used in this study. We supply the gaseous phase

(nitrogen) through a channel that runs along the axis of the device. Liquid (water

containing 2% w/w Tween 20 surfactant) flows from both sides into the central

channel through a network of five side channels; the five orifices in which bubbles

are formed are numbered from 1 to 5. The width of the gas-inlet channel and the

orifices is 40 µm, the channels that deliver the liquid to the orifices comprise two

sections of different widths, and the width of the section adjacent to the centre-line

channel is 20 µm. The spacing between the liquid-carrying inlets along the centre

channel (the lengths of the orifices) and the width of the outlet channel are 200 µm.

All channels have a uniform height of 44 µm (the Supplementary Information gives a

detailed diagram of the experimental device). The gas–liquid interface is

represented with a thick solid line. The shaded areas correspond to the elastomeric

polydimethylsiloxane (PDMS) walls of the device. c–k, The dynamics of the system

at Q = 1.66 µl s
−1

and the value of the pressure applied to the gas stream

p = 76 kPa. The part of the system shown in these micrographs corresponds to the

area marked by the dashed box in diagram b. c–h are chronological micrographs of

the system showing formation of the sequence of 29 bubbles produced within one

period. This sequence is repeated indefinitely provided that the pressures applied to

the gas and liquid inlets remain approximately constant. h–k (highlighted with the

grey background) illustrate the system at the same phase of the period—that is

right after the last of the 29 bubbles enters the outlet channel. The intervals between

the pairs of micrographs h and i, i and j, and j and k correspond to 1, 101 and 1

period(s) correspondingly. The numbers by the images shown in c–k indicate the

time (in ms) elapsed after the first micrograph (c) was taken.

it is coherent—the sequence of the sizes of the bubbles and the
intervals between them are almost identical from period to period
(Fig. 1h–k). We have observed stable, coherent sequences of order
as high as 40 bubbles in each period. At high values of p, the
thread progresses all the way downstream and breaks only in the
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Figure 2 Periodicity as a function of the pressure applied to the stream of gas.

a, The number (N ) of bubbles in a period (or burst) as a function of p, for

Q = 1.66 µl s
−1

. The regions in which the cyclic trajectories are stable (white) are

separated by regions of irregular dynamics (shaded grey). For each pressure we

counted the number of bubbles in five consecutive bursts. If this number was always

the same (suggesting a stable cyclic orbit) we have verified that the behaviour does

not change over longer intervals (100 periods). b, An enlarged plot of a section of the

diagram (marked with the dashed lines in a). The numbers in b denote the order of

the limit cycle that is stable within the white (not shaded) band.

last orifice, again in a period-1 mode. We can adjust the periodicity
almost continuously from order 1 (Q = 1.66 µl s−1

,p = 29.75 kPa)
to 40 (Q = 1.66 µl s−1

,p = 80.80 kPa), see Fig. 2. Each cyclic
trajectory is stable within a finite range of pressures: the period-29
cycle is stable for p in the range between 74.2 and 76 kPa.

To exemplify the complex periodic dynamics we describe the
behaviour of the system at Q = 1.66 µl s−1 and p = 76 kPa. For
these values, there are 29 breakup events and 29 bubbles formed
in each cycle. Figure 1c–h shows six chronological micrographs of
the system taken within one period. Micrographs 1h–k depict the
system at the same phase in the cycle—when the last of the 29
bubbles emerges from the fifth orifice. This periodic behaviour is
stable over long times (103 s, corresponding to 105 periods), and we
were able to recover the same behaviour of the system in multiple
copies of the device.

To quantify the coherence of this behaviour, we construct a
function ρ(t), where t is time, that can assume two values: ρ(t)= 1
if the outlet of the last (fifth) orifice is occupied by gas, and
ρ(t) = −1 if it is occupied by water. Figure 3a demonstrates four
fragments of ρ(t) extracted from a video tracing the behaviour
of the system over 4.3 s with a temporal resolution of 6.25 µs.
Each change of ρ(t) from −1 to 1 signifies an approach of the
gas phase to the end of the last orifice; a release of a bubble into
the outlet channel changes ρ(t) from 1 to −1. Figure 3b shows
the autocorrelation function g(�t) = 〈ρ(t)ρ(t + �t)〉, where 〈〉

denotes an average over the 690,000 frames (4.31 s), with peaks at
the multiples of �t29 = 5.02 ms—an interval corresponding to a
sequence of 29 bubbles.

We verify the stability of these periodic dynamics by
constructing Poincaré maps1 on the intervals τn between adjacent
bubbles. A release of the nth bubble is signified by the nth
instance of a change of ρ(t) from 1 to −1 at t ≡ tn. We define
the nth interval as τn = tn − tn−1. Figure 3c shows a map of
τn versus τn−1 plotted for 29 consecutive intervals; Fig. 3d shows
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Figure 3 Quantitative analysis of the cyclic behaviour of the system at Q= 1.66µl s
−1

and p= 76kPa. a, Four consecutive traces of the function ρ (t), each

representing one period; the second, third and fourth trace are delayed by � t = 5.037,10.112 and 15.100 ms, respectively. One can see that a small deviation in the

intervals between bubbles (third trace) does not amplify, but decays to yield nearly ideal behaviour in the following period (fourth trace). b, The autocorrelation function

g(� t ) calculated for the full trace of ρ (t ) (interval of 4.3215 s). The peaks occur at multiples of � t29 = 5.020 ms. c,d, The Poincaré maps of the intervals τn (τn−1 )

between bubbles plotted for one period (c), and for the whole series of data of 25,257 bubbles (d). e,f, The Poincaré maps for τn (τn−29 ), again, plotted for a single period (e)

and for the whole series of data (f ). As 29 is a prime number, the concentration of points on the diagonal cannot be explained by a resonance with a lower-order period. The

size of the spots on the Poincaré maps d and f code the number of counts for each point. We have normalized the counts by dividing them by the largest count

(c i j = c i j /cmax, where c i j is the number of counts for each point, and cmax is the maximum number of counts). In order to bring out the intermediate values of counts we used

a nonlinear scaling of the diameter (d ) of the dots: d proportional to 1+ (3/4) log(c i j ). This scale is shown to the right of panel f.

the same map for all the 25,257 intervals extracted from the
4.31 s recording. Strong clustering of the points signifies periodic
dynamics, and the positions of the clusters match the locations
of the points on the map for a single period. We also plot a
map of τn versus τn−29 in Fig. 3f. If a system showed ideally
periodic behaviour, all of the points on the plot would lie on
the line τn = τn−29. As 29 is a prime number, the observed
concentration of points on the diagonal cannot be explained by
a resonance with a lower period (as would be possible in the
case for a τn versus τn−16 map of a system showing period-4
behaviour). We do not observe such clustering for any map of
τn versus τn−m with m < 29.

There are two causes of the scatter of points in the plots shown
in Fig. 3d and f. First, some bubbles flow through the last orifice
very rapidly and our ability to detect them is at the limits of the
temporal resolution of our camera (6.25 µs). Some of the bubbles
are omitted, and these omissions introduce errors into the sequence
of intervals (τn). Second, within some periods, the intervals
between consecutive bubbles vary slightly (see the third trace in
Fig. 3a). The observation that these variations do not propagate into
irregular or chaotic behaviour indicates that the observed periodic
trajectories are stable limit cycles and small deviations from them
decay rather than amplify with time. This stability is in pronounced
contrast with other nonlinear systems1,19 in which the multiperiodic
trajectories are usually intertwined in strange attractors20, are
unstable, and the observed behaviour of the system is irregular.

We believe that the stability of the long limit cycles reflects
the separation of timescales between the two sets of processes
that determine the behaviour of the system: (i) slow breakup
of the gaseous thread, which typically proceeds at a timescale
tbreakup ∼ 10 µm/uinflow ∼ 100 µs, with 10 µm (∼radius of the
thread) as the characteristic length scale for the interfacial

dynamics; and (ii) fast spatial coupling between different positions
along the breaking thread, which proceeds at a typical timescale
tcoupling ∼ 1 mm/usound ∼ 1 µs, where 1 mm is a typical length
of the channels that transmit the feedback in pressure. This
separation insulates the system against perturbations, and leads
to stable periodic behaviour. The construction of our system
out of modules (single flow-focusing devices) characterized by
‘linear’ dynamics17, resulting from the separation of timescales
between the slow evolution of the system and fast relaxation
rates, distinguishes the multi-orifice device from several other
hydrodynamic systems that show archetypal examples of nonlinear
dynamics, for example, the famous leaky faucet system21,22 or
spatially extended dripping systems13.

Until now, interest in the field of spatiotemporal dynamics has
focused more on probing the onset and properties of chaos, and
less on selecting and understanding intricate periodic behaviour.
An exception is the work of Ott et al.23, who demonstrated active
stabilization of an unstable periodic cycle embedded in a strange
attractor. Their method23 required continuous application of
judiciously chosen perturbations to keep the system on a periodic
(but unstable) trajectory. Similar strategies have stabilized periodic
dynamics in simple mechanical24, electronic25 and biological
systems26. Ott et al.23 argued that the ability to choose and
stabilize periodic trajectories may lead to the construction of
adaptive materials and shed light on the adaptability and self-
regulation shown in life10. The intricate nonlinear phenomena,
especially those in the world of biology, such as, for example,
morphogenesis5, dynamics of populations20,27,28 or the operation
of the biological machinery regulating the distribution of enzymes
in cells29, often involve intricate correlations in both space and
time that are only possible in strongly nonlinear systems that
operate at the edge of chaos30. The proximity to chaotic dynamics
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induces sensitivity to perturbations, which destroys the temporal
and spatial correlations; this feature makes the experimental studies
of the complex spatiotemporal patterns difficult. The example of a
system that we demonstrated here—a system that shows complex
yet stable periodic dynamics without active external control—
suggests that the separation of timescales of the (slow) dynamics
and the (fast) spatial coupling could serve as a guideline in synthesis
of artificial systems showing complex nonlinear behaviour and
possibly help in the studies of spatiotemporal dynamics. In a
shorter perspective, modifications of the system presented here
could open a way to preparation of emulsions characterized by
a multimodal, space-filling distribution of sizes of the bubbles or
droplets. The example of a coherent periodic behaviour in this
microfluidic systems points to the potential for design of lab-on-
chip devices that would reliably and reproducibly perform simple
signal-processing tasks relying on nonlinear dynamics.
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