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ABSTRACT

We give a general bosonic construction of oscillator=-
like unitary irreducible representations (UIR} of non=-
compact groups whose coset gpaces withrespect to their
maximal compact subgroups are Hermitean symmetric.
With the exception of E, () they include all the non-
compact invariance groups of extended supergravity
theories in four dimensions. These representations
have the remarkable property that each UIR is uniquely
determined by an irreducible representation of the
maximal compact subgroup. We study the connection
between cur construction, the Hermitean symmetric spaces
and the Tits-Koecher construction of the Lie algebras
of corresponding groups. We then give the bosonic
construction of the Lie algebra of E7(7) in SU(8)},
30(8) and U{7) bases and study its properties. Appli-
cation of our method to E; () leads to reducible wuni-
tary representations.

*)Alexander von Humboldt Fellow, on leave from Physics
Dept., Bogazigi University, Istanbul/Turkey: work
supported in part by TBTAK, The National Science and
Technology Council of Turkey.
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INTRODUCTION

Recently, Cremmer and Julial) have discovered a set of non-compact invariance
groups in the bosonic sectors of N = 5, 6, 8 extended supergravity theories
in four dimensions, thereby generalizing the non-compact invariance group of the
N = 4 theory found by Cremmer, Ferrara and Scherk2). The vector field strengths
in these theories and their duals get transformed into each other under the action
of the non-compact group G and form a linear representation, whereas the scalar
fields transform non-linearly as the coset space G/H where H is the maximal

compact subgroup of G. The full invariance has the form G as

H
3) global ® local
in the two-dimensional generalized ¢ models
Julia and Cremmer conjectured that the composite gauge fields associated
with H may become dynamical at the quantum level just as in the two-dimen

local 1)
. Eilis, Gaillard and Zumino (EGZ) have extended this

sional CPN models
idea and postulated that in N = 8 supergravity in addition to the vector bound
states other bound states (fermionic as well as bosenic) form whose effective
interactions at low energies correspond to a spontanecusly broken grand unified
theory based on SU(5) with three families of quarks and leptonsq)’S). Again

in analogy with CPN models6) it was suggested that the bound states in extended

7). Since

supergravity theories may fall into linear representations of Gglobal
the global invariance for W = 4, 5, &, 8 supergravity theories are all non-
compact their unitary representaticns are infinite dimensional., In fact, an
infinite set of bound states seems to be needed for giving superheavy masses to

5) 8)

the unwanted helicity states in the EGZ program™ or the extensions thereof .

In a previous publicaticn we have given a construction of a class of oscil-
lator-like unitary representations of some non-compact groups including those

9)

appearing in extendsd supergravity thecries Qur purpose in this paper is to
present an extension of our method for constructing unitary irreducible represent-
ations {(UIR} and point out its connection to other mathematical structures; in

particular te Jordan triple systemslo) ll). The

and Hermitean symmetric spaces
plan of the paper is as follows: in Section 2 we give the bosonic construction
of the Lie algebras of Ref. 9) in a generalized form which allows one to cons-
truct larger classes of UIRs. Specifically this section contains a construction
of the Lie algebras of §SP{2n,R}, SO(2n)*, SU(m,n} and S0{m,n} in terms of
boson annihilation and creation operators, some of which are well known in the

literaturelg)'lB).

We then present, in a generalized form, the extension of the
standard construction which yields only the Lie algebras of the non~conmpact

groups of supergravity. This extensicn uses boscn operators transforming exactly
like the vector fields in the corresponding supergravity theories. {The construc-

tion of E7(7) is deferred to Section 5.) In Section 3 we point cut that with
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the exception of SO(m.n) (m#2 and n£2) all the Lie algebras of Section 2
decompese as L = LY ®LY ® L7 where L° is the Lie algebra of the maximal com-
pact subgroup H that contains an Abelian U(L) factor. LY and L™ spaces are
conjugate to each other and carry opposite U(1) charges. This decomposition
shows that the coset space G/H is a Hermitean symmetric space and the Lie
algebra L can be constructed from a so-called Hermitian Jordan triple system.
This Jordan structure is discussed and the Tits~Koecher construction of Lie
algebras from Jordan triple systems is given. In Section 4 we formulate our
general method for constructing UIRs for non~compact groups with a Jordan struc-

ture in the Fock space of the corresponding boson operators. Section 5 contains

the construction of the Lie algebra of E 207 which does not have a Jordan
structure with respect to its maximal compact subgroup SU(8). Rewriting the Lie
algebra of E in the 30(8) basis we show its triality properties. We then

7(7})
give the U(7) basis of E7(7) and indicate its connection to the Kantor cong-

truction of the Lie algebras of the E series in terms of antisymmetric tensors

of rank threelQ}’lS).

This suggests a possible link between their emergence in
= 8 extended supergravity theories in varjious dimensions and the Kantor cons-

truction.

In the last section we show how applying our methods to the case-of E 7(7)

leads to infinitely reducible unitary representations, which may still be cof
relevance to supergravity 6). We then mention a method due to Gell-Mann for

constructing UIRs of E on certain coset spaces of its maximal compact sub-

group SU(8) 17)’18). ;é7gonclude with the suggestion that in addition to the
unitary representations constructed by using boson operators transforming like
the vector fields one can construct further classes of uhitary representationé
using boson operators transforming like the scalar fields in supergravity theories

via the operator methods developed by Giirsey and his collaboratorslg).

2. BOSONIC CONSTRUCTION OF THE LIE ALGEBRAS OF
A CLASS OF NON-COMPACT GROUPS

In this section we give a bosonic construction of the Lie algebras of the
nor-compact groups Sp(2n,R}, S0(2n)¥, SU(n,m) and 50(n,m) in a more general form
than the one considered in Ref. 9). fThis generalization is trivial on the Lie
algebra level in the sense that it corresponds to taking direct sums but as we
shall see later it leads to the construction of a much larger class of UIRs by
our methods. The Lie algebras SP(2n,R), S0(2n)*, 3U{n,m) and S0(n,2) have
a Jordan structure with respect to their maximal compact subalgebra as explained
in the next section. The non-compact groups that come up in extended super-

gravity theories in four dimensions all have a Jordan structure with respect to

B L R A U L T T T T R e TP T LR e L R R T T o P
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their maximal compact subgroups. The only exception is the non-compact group

E7(7) of N = 8 supergravityl) which does not have a Jordan structure with respect
to its maximal compact subgroup 3U(8). We treat the bosonic construction of
E7(7) separately in a later section.

Consider N pairs of boson annihilation and creation operators ai(K),
bi(K) and aI(K), bI(K) where i = 1,...,n denotes a U(n) index and
K=1,...,N labels the different pairs which can be infinitely many in certain
cases of physical interest as is shown in the Appendix. We shall denote the
creation operators by upper indices; thus ai(K)+ = ai{K), bi(K)+ = bi(K). They

obey the canonical commutation relations

LO‘.L(K) ; ai(L)] = SLI SKL
[ b;(‘() , bj(L)] = Sia ? “* (2.1)
‘_CLL-CK) ) OLJ(L\} =0 = [ b,_-('d, bA(Lﬁ]

The U(n) generators are then

- ___,m__' —_— M
" = o +b-b
v

where the dot product represents a sum over the generation index K, 1.e.,

N
Q- o =2 (k) (K)

v
K= |

The U(n) algebra can be extended to the Lie algebra of a non-compact group

with a maximal compact subgroup Uln}:

a) Uf{n) » 3P(2n,R}:

The symmetric diboson operators

N
H]

ol
!

S.=a.-b. + A.- b,
b L (2.3)

L] t
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together with the Ig obey the commutation relations

ki ¢ _k k _¢
[-SL'J' y D J:gj I,+79 Ij+$;_‘|_i-+'55'12‘

[IMV\ ) S;J ] == Simsn; - Eam S;.‘v‘
[17,,99]=3" 3"+ 3 =

which corresponds to the Lie algebra of SP(2n,R)

{2.4)

in a so-called split basis.
b) U(n) + s0{2n)*:

The antisymmetric dibosen operators

A =d..b -3 b
4 o }ooe

b . | | . (2.5)
A= 3BT B
and the IE satisfy
kl e _\k k¢ k __t t_k
[ /\td ) A ] = 753 T L i;i :[j TSJ ]:L -—Tgi ][J
LIM,, ) ch]=“gi A"J _Bijiw (2.6)

[T75, All= 3, A Lsi A

This is the Lie algebra of 30(2n}* with maximal compact subgroup U{n) in

a
split basis.
Instead of considering the particular combination I" one can also take
the operators
L' ._.i_._a i L‘ -—t
-F.a. - L3 (B
P ;T 0 o)
. — —_— L ¢ .
‘o= b - L3 (1% )
Rb b,j ﬂ'gdfbm.b (2.7)

e ] w1
-

L
i

o + b . b
WA

"

TR ILTMY L AURIAE 0D 300 TR L W00 LTI OO 0 L9 00 000 % DR 0 SO QIR [ YRVERE IR IF -l 0 RIDN 11X R0 I RRR R E - [l | frgmmeree 1= 1
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which generate the Lie algebra of S(U(n) xU{n}}. These operators together
with the non-symmetrized diboson operaters

U. = 25:. . E;
“4 £

{2.8)

¢ o -
Uar— a.b“
give us the Lie algebra of SU(n,n).

If the indices of the boson operators a and b run differently, i.e.,
for a.,1=1
i

sr-a 1 and bu, u=1,...,m then the operators

(,‘ -—QL‘...—u 1: ™
]? = -, — A D . . Q
a joow B ()
= b -4 .
RV bv wm 31’ ( by\ b ) (2.9)
N= Lona LB b
= — . + — .
vl o om A
GY,m= g ;o MV A = e,
together with the dibocscn operators
U, =&, b
/.M ‘ 4 (2.10)
L —_t T M
L) )*:: 8 S k)
generate the Lie algebra of SU(m,n)
v \
LU,V ]=§£*R/,+5 P+ '5 N
) ¢
- = - U
LT, :Uk/,] 3, Ypu+ L3 uﬁ
; L ; ) (2.11)
[, u”]=13" u‘f‘_ ‘76‘- he

¢ k
[. j? j ) j? L il = §5 ’19 - ﬁa ]?
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[N, UL-/A]=._(-‘—M+_|‘;) Up . (2.12)
[N, U] (L) u”
R} R 1= 3 R -3) R,

The following subset of the above operators
5 . Mo v L
L(-P ), (RL-R.) , (u%+u )

generate the 350(n,m) subalgebra of SU(n,m). Of the non-compact groups S0(n,m)
only those for which n =2 or m=2 have a Jordan structure as explained

in the following section.

Now we repeat the above extension procedure by considering annihilation
and creation operators transforming like the antisymmetric tensor representation
of Uln). This is of interest as one obtains exactly the Lie algebras of the
non-compact groups cccurring as global symmetries in extended supergravity theories

and nothing elseg). We now have

L t t_k
Lowoo , aln]=3" (355/-33))

Lo, 00, b (0] =37 (35 5;_'5; 3¢) o ew
LO&J(VJ ,OLMCL)] =o = [bt.é(m, bu_(l.)]

where

OL‘:J(K) =- aJL(K) N

L=t KyL,-» =4 ---, N

kD.(KJ =—b (v}
q Jt

UL e e
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It is easy to see that the n = 2 and n = 3 cases revert to the standard cons-
truction in the form discussed under &) and b) above. New algebras are found

only for n = 4,5,6,7,8 and the diboson operaters that extend the Uln) gene-

rators Elk-gjk + %jkoﬁlk to the Lie algebra of a non-compact group all have
the form
f:f- ---al.\{,
— R i "
A . = GL‘ . L‘ o a b
f.“_‘- LV\ Ayt e
and
foe € i, «-- C

Thus for n = 4 we have the dibosons
+ | a_.ﬁi — ket
—_ — e Q, »
S 4 cjlet
Ve (2-14)
4 Cs ke

which, together with Q° = %(glj'gij + gij°ElJ) representing the trace of Ul4)
generate the SU(1,1) algebra

[Q", @ l=-2Q°

+

[}, Q+] = Q (2.15)
[_(Sfp ] (:Ef ] == Cai-

With the remaining SU(4) generators Tj =aeay + B, B - GEQ“ the result-
ing extension is U(4) » SU{4) x SU(1,1).

For n = 5 one has the first simple Lie algebra cof a non-compact group.

Again we split the U(5) generators into the trace
L
Q‘Q'Qc.l.-i-b b (2.16)
y

and the SU{5) part:

t' -—--ntk___-

T .= O . - . -
a +b.-b = 'SJ Q (2.17)
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and use the diboscon operators

AT St >
. (2.18)
L\J LM — —

L
= N2 :
A 4 € qak bcm

to arrive at the algebra of SU(5,1}:

LA, All= T2 _3»_-5;‘q

ic
k
}
la A l= 4 A;

[.CSZ ) }\f ] = - ‘q' ;\L

—le k
‘c:) Aj]=-‘o' AL--I——,:_)- ELAA (2.19)

Under the action of the Su(5,1} group the boson operators aij(K) and %IJ(K)
transform into each other and form a 20-dimensional representation of SU(5,1),

+kf, amn
ijklmna b
and thelr conjugates. With the 36 generators of {6} one thus has a total of B8

Finally, we treat n = 6: there are 15 diboson operators ¢

operators, suggesting S0{12)%, However, the algebra does not close, because
unlike the U(5) case, SO0{12}*% does not have a 30 dimensional representation
. corresponding to aij(K) @ bij(K). The simplest way to remedy+the situation is
to introduce two SU(6) singlet boson operators v{K) and w (K) in order to
build up the 32 dimensional semi-spinor of S30{12)¥%, 1Indeed this 32 dimensicnal
representation of 3S0(12)* decomposes as l® 15 @15 @1 with respect to

SU(6). The correct diboson generators now are

= L Sbliwn
Aej =7 S, &0 P "’\T;'(OL\

‘ v;gﬁi.;:)

)

9 Gelwn IR (2.20)
A= —€ . 2 (alv ,

4 Clhm kjnnnuk VE? (T * k) W )

P VIR QIR BEE W RSB AR R e e e e




whereas the SU(6) and U{(l} generators are given by

‘: _.l:n__. — LV s — WAV
T . = . +b.b——6(aq+b b..
) » m
e — A —.+-. — _'-i- (2.21)
Q=0 &, +b b - gN.V 6w W

They satisfy the commutation relations of SG(12)¥

[A(ijP&:L]=-—(‘5 TR TR TS T

| | ‘54-54 3, )Q
LT; ) Akal = “5kAj¢"'SL Akj *":':,"5' Ave

J (2.22)

LQ , Ay ]"4Aa
C e ‘
(%, A )= % AY 3 AT-L0A

la, Al = 4A"

From the basis we have chosen for the Lie algebras above, it may not be
obvious what non-compact form of the respective groups we are dealing with. S3ince
we are interested in constructing unitary representations we assume implicitly
that we are working in a Hermitean basis, i.e., all the generators of our group
are Hermitian operators. In the above bases this is not the case. Therefore,
we must take suitable linear combinations of the operators above to g0 to the
Hermitean basis in which all the generators H of the group are Hermitian
and the structure constants fijk defined by [H JH. ] = 1fle B, are all
pure real. Then the operator Ulg) = elH representlng a general group
element is unitary (wi are real group parameters). It is in this basis that

we calculate the Killing metric so as to determine the form of non-compactness.

LIE ALGEBRAS WITH A JORDAN STRUCTURE
AND BERMITEAN SYMMETRIC SPACES

We define a simple Lie algebra with a Jordan structure as a Lie algebra

L that has a three-dimensional graded form, i.e.,
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- . +

L=L ® L. @& L (3.1)
where L° contains the generator Q of an Abelian U(l} factor such that
0 . + 4+ + + Ces
L> =H® Q and [Q,H] = 0, [L7,L J=0, [0, L7] = tL%. 1In addition we have
a conjugation + such that (L5)7 z L7, L' = L° Because of the grading and

simplicity of the algebra we have [L°,L+] =LY, [Lo,L7] =17, [L+,L_] T Lo,

A1l simple Lie algebras L with a Jordan structure can be related to the
so-called Jordan triple systems by the following simple methodzo)’zl). Denote
the elements of L that lie in the LY subspace by Ua and the elements of the
Z where a Dbelongs to some vector space V. Further dencte the
Ua and Ug as S

L™ space by U

commutator of
ab

1
Sap = LU, U] (3.2)

Because of the grading [Ua Ub] =0 = [UZ UZ . Through the commutator of S,
H N L

with UC one defines a triple product (abc) in the vector space Vi

[Sa‘o ) Uc] = U(abc) (3.3)

b

Then all the commutation relaticns can be expressed in terms of the triple product
{abc} by using the Jacobi identities.

[Sb)u+]:“ UJr

@ < (vac)

LS, Seal= S =

o (deb) (cda) b

Jacobl identities impose two conditions on the triple product:

(abc) = (c b ) (3.5a)

(b (cd =) — (cd (abox)) = (a(deb)x) + ((cdq)bx) =0 (3.5b)

Rl LR LU LG LU S LT R T AT R L T T T e R T e IR I I e T [ IR T T Ty T S A AT O S NP
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These conditions define a Jordan triple systemlo). Therefore, given any Jordan
triple system one can construct a Lie algebra with a Jordan structure as above.
This construction of a Lie algebra with a Jordan structure is known as the

Tits-Koecher constructionzo)'Zl).
22),23)

Tt has also been extended to Lie superalgebras

with a Jordan structure

A Jordan algebra with a symmetric product a*b = % (ab+ba) defines a Jordan

triple system with the triple product

(abc)z a-(b-cY=b-(o-c) + (a-b)

(3.6)

that satisfies the conditions (3.5a) and (3.5b).

Below we list the Lie algebras L and their respective subalgebras L% that
can be constructed from varicus Jordan algebras using the Jordan triple product
{3.6).

Jordan Algebra L? L
fR
n Uln} Sp{2n)
Jg SU(n) x SU(n) x U(1) SU(2n)
JH U{2n) 30(4n)
n
8
J3 Ee x U1} E7
T{d) S0(d+1) x 30(2) S0{d+3)
R ) H

where J , J Jn denote the Jordan algebras of n x n real symmetric, complex
Hermitean and quaternionic Hermitean matrices respectively. J: is the excep-
tional Jordan algebra of 3 x 3 Hermitean octonionic matrices. T'{d) denctes

the Jordan algebra of Yy matrices in d dimensions

¥,z it hi=3, 4 5 =\, .- d

Rectangular n x m matrices over the real numbers R, complex numbers C

and quaternions H define a Jordan triple system under the triple product 22)

_ o+
(abc)=abec +c b a (3.7)
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where the bar denotes conjugation over the underlying division algebra R, T or

H and T 1is transposition. The corresponding Lie algebras L and L° are

I3

Jordan Triple System L? L
Kﬁm SU(n) x SU(m) x U(1) SU (11em)
K SU(n) x SU(n) x SU(m) x SU(m) x U(1) | SU(nem) x SU(nem)
KD SU(2n) x SU(2m) x U(1) SU(2n+2m)
K, S0(10) x SO(2) E,

where KmE’E’H refers to the Jordan triple system of n x m matrices over
R, € and H. In the case of (2xl) octonionic matrices K,, the triple
product is modified to be {abc) = {(aBT)c-+(b£T)c-b(§Tc)} + {a +>» ¢} due to

the non-associztivity of octonions.

In the above we have denoted zll the Lie algebras L° and L with the
compact form of the corresponding groups. In general they will be Lie algebras
of the non-compact form depending on the underiying Jordan triple system. All
simple Lie algebras with a Jordan structure can be constructed from z suitable

triple systemzﬁ).

Now if we denote the groups corresponding to the Lie algebras L and LO
as G and H then the ccset space G/H is a Hermitean symmetric space.
Hermitean symmetric spaces are all Kihlerian and they can in general be repre-

sented in the form of a tensor product25)
X .
M, X M % M, - x.hdr

where M, 1is the quotient of a complex Euclidean space by a discrete group of
pure translations and each Mi (i>0} is one of the following Riemannian sym-

metric spaces:

5U(P+‘13/5(u(p>xu(q)) ‘so(zw)/U(")
S0 (ﬂ+2‘)/so(.,‘) X S002) = /'50(:03 X S0((2)
SP2wY /Uy 57/5609 Jn

B L R T T R T T D T T P LU L T TR R (e I R T AR AP T A"
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From this classification it follows that all simple Lie algebras have a
Jordan structure with respect to some suitable subalgebra except for the Lie
algebras of G,, F, and E,. For the detailed study of the connection between
symmetric spaces and Jordan triple systems we refer the reader to Refs. 11) and
26) .

411 the Lie algebras of the non-compact groups [except for S0{m,n} where
both m and n are different from 2] considered in the previous section have
a Jopdan structure with respect to the Lie algebra of their maximal compact
subgroups. Of the remaining Lie algebras of the non-compact groups with a
Jordan structure with respect to their maximal compact subgroup, the Lie algebras
of Es(—lu) and E7(_25)

In the next section we give a general method for constructing certain classes

can be similarly constructed from boson operators.

of UIRs of non-compact groups with a Jordan structure with respect to their

maximal compact subgroup.

0SCILLATOR-LIKE UNITARY IRREDUCIBLE REPRESENTATIONS OF
NON-COMPACT GROUPS WITH A JORDAN STRUCTURE

The Lie algebras of the non-compact groups constructed above have a Jordan

structure with respect to the Lie algebra of their maximal compact subgroup:

i1z

L=etel  frm cete

where the L~ and L" subspaces correspond to the non-compact generatcrs con-
structed in terms of diboson annihilation and creation operators. In Ref. 9),

we have given a construction of a certain class of UIRs of non-compact groups
with a Jordan structure in the case when L~ (and L5 generators were cons-
tructed in terms of diboson annihilation (and creation) operators only. Here

we give the same construction in a more general form when we have an arbitrary
number of pairs of boson operators al(K), b(X), k = 1,2,...,N instead of a
single pair as was done in Ref. g). On the Lie algebra level this extension

is trivial in the sense that it gives us a direct sum of N copies of the

same Lie algebra. However, this simple extension enables us to construct larger

classes of UIRs of the respective groupszY).

Consider now the Fock space constructed from the tensor product of Fock
spaces of individual boson operators. The vacuum |O> in cur Fock space will

be a tensor product of the individual vacua o).
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Lo = 1) le) oo - |o)
Tt is annihilated by all the annihilaticn operators.
O‘-LCK) ‘O> =0e = b; (D \°> K=l .-+, N (4.2)

Choose a set of states |¢A> in our Fock space which is annihilated by all the
diboson operators in the L~ space and transform as a certain representation

of the maximal compact subgroup generated by LO:

—

L 4, >=0 (4.3)

Then the infinite number of states generated by applying the operators L' on

[¢A> form the basis of a unitary representation of the non-compact group G:
+ +.2
e7 > Ly ) 1>y, - - - (4.4)

Now if |WA> are chosen such that they transform like an irreducible
representation of the maximal compact subgroup generated by L%, then the cor-
responding representaticn of the non-compact group 1s also irreducible., The
proof of this theorem, which was given in Ref. 8), is very simple and uses the

Jordan structure of the non-compact group in a ¢rucial manner.

With the exception of the second construction of SO(12}% [see Eq. (2.20)]
the L~ spaces of all the Lie algebras constructed in Sectiocn 2 involve diboson
annihilation cperators only. The states in our Fock space that are annihilated
by L~ involving diboson annihilation operators only, are a linear combination
of the states of the form

]:oéc.)]mI [cf(z)]w't[ : ][qk(u)]MN o> (4.5)

VTR REET XTI PH - 10 3T RPN ML 1 OEES 0GP L LT PR 10 W% 4010 4 o g UHRRULBIIEENED FUEAN W DR R 0L PRI H bt I ETIY TR SR I 1 0 R e e MY 1 s
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and of the form

. n, ' v _ n
[ bon] L\Sm]z?--- [ém\]"\c»

(4.6)

These states transform in general like a reducible representation of the maximal
compact subgroup H. However, using suitable projection operators one can pro-
ject out the irreducible components. The possible irreducible representations of
H that can be constructed this way depends on the number N pairs of boson
operators a and b. For example in the case when a(K) and b(K), (K = 1,...,N}
transform like the fundamental representation of SU{n) then the irreducible
representations of SU(n) that one can obtain by this methed have Young tableaux
with at most N rows. This is simply due to the fact that the largest totally
antisymmetric representation of SU(n) that one can constructed from N copies
of boson operators is of rank N. Qf course, if N > n any representation of
SU(n) can be constructed by repeated application of the creation operators

followed by a projection operator. In Young tableaux notation we have

- "
L K
[OL(K\] lo>> = CW'K y© >0, ) (4.7a)

E’Al"' ::I,---,V‘

S S S
Lot [o@y] 165 =5 (mpem, o0 Wm0

(4.7b)
v ™, 3 w“ﬁ ¢ "
[ ] [Q.(z)] - [ oueny] ) lo™>

= (V\AUO,.--)®(MZ,Q)-")® - ®(MN)OJOJ”) (4.7¢)

where {ml,m .,mn) denotes a representation with a Young tableau which has

N

m, number of boxes in the ith row. The maximal compact subgroups in our case
have a U(l) factor whose generator in most cases corresponds to the boson
number operator. Each one of the states constructed above has a definite Uil)

charge.



- 16 -

The remarkable feature of the unitary representations above is that they
are uniquely determined by the initial state ]¢A> that is annihilated by the
L space and the irreducibility of the representation follows directly from the
irreducibility of |¢A> under the maximal compact subgroup H. This is a general
property of the representations belonging to the discrete series28). Furthermore
the condition L_’¢A> could be interpreted as an holomorphicity condition and
thus we would expect the above representations to belong to the holomorphic

discrete series.

We should note that the use of boson operators for constructing UIRs of
non-cempact groups is certainly not new in physics, They have been used from
time to time to construct representations of certain non-compact groups of
physical interest, using most often one set of beson coperators which leads to
only two UIRs [see Ref. 12) for a comprehensive list of references]. What oupr
formulation does is to give a unified treatment of the oscillator-like represent-
aticns of all non-compact groups with a Jordan structure in the most general
form. The irreducibility of the resulting represantations that was proven in
individual cases by the brute force method of calculating all the Casimir operators
fellows simply from condition [4.,3) and the Jordan‘structureg). Furthermore,
the use of an arbitrary number of pairs of boson operators enables us to construct

infinite classes of UIRs.

5. BOSONIC CONSTRUCTION OF THE LIE ALGEBRA OF
NCON-COMPACT GROUP E7

(7)

The Lie algebra of E7 with a maximal compact subgroup SU(8) was con—

, (7)
structed in Ref. 9) in terms of a pair of boson annihilation and creation opera-

tors transforming like the antisymmetric tensor representations of SU(8). Here
we give the same construction using an arbitrary number N pairs of boson

operators., They satisfy the commutation relations:
ke KL k ¢ _x_¢
ke KL k ¢ kL ¢t
Lo, (), b (y]=% (3,5 35 )
P PR R 1)

[Q‘L‘j('() ) Clk(CL-)—] =9 = [bca (k) ) bke(l‘)]

v, ket =1,2,.- % : K,L,-- =1, ..., N

LN UL LY T T T T T D S R T T R (IR R I BRI IR EPRIL J e e LR R o e B L ek e 8 b e e m e o e e o e
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and
a_éiﬁmyz_aé.L(K) g bi.A(K):..b]-L(K)
The SU(8) generators are taken as
R . b . b ......l_. . L. -
Tb o8 ij » 353( Qu+bu )

(5.2)

where the dot product again denctes summation over the generation index

K=1,...,0. They satisfy the commutation relations
LTQ Tk]aSkTi_ﬁﬁTk (5.3)
3 L 3t e )

Now the 133 dimensional adjoint representation of E7 decomposes under

the 3U{(8) subgroup as

133 = 63 @ ¥9
where 63 stands for the adjoint representation of SU{8) and 70 corresponds
to the totally antisymmetric rank four tenscr representation. This suggests

that as the 70 non-compact generators of E7(7} we take

-_— ___’MVI ——im
V.., = - b +1ée. a .
t}\cl LLA I:.l.] 4 1‘}\‘(,,.”?,_1 b (5.4)
where indices inside brackets [ ] are all antisymmetrized., The operator Vijki
is totally antisymmetric in its indices and satisfies
= 1. ¢ =V "
vV — \Y = . (5.5)

l‘j\cl 41 wnpq
which reflects the fact that the representation 70 cf SU(8) is self-conjugate.

The operators Vijkl do indeed close into the generators of SU(8):
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€ _rm eqb:.cl n qu

abcd
[Vi'\c(, ) Vv ] == L'l'lg.Q wmpqv v

"
é

wa Mqu
T . 1=l €. "
[_ n 3 VLJ\LL'l - € Gt}kﬁnfalr v _E‘ 5;4 VL'J"/.( {5.6)

Qk(qur wh Uikl
=-t¢ v, +1% V!

- L'j\r_L
e T

LA

LT

t‘lajkc“‘ :l,-- g

That the resulting Lie algebra is that of E7 follows from the fact that it is
the only simple Lie algebra of dimension 133. To determine whether it is the
Lie algebra of non-compact E7(7) with the maximal compact subgroup SU(8) one
has to look at the Killing form. The Killing metric turns out tc be

vk vtk
: = 369, 9. +1002 5. %
a-t*i ,TE t ) + fooz 4§ £
= —36 € .
Vc)m J\JWH “Ju'“"“?‘\ (5.7)

%Tc v =0
JJ wwupo‘

showing that in a Hermitean basis it gives us the Lie algebra of E7(7).

The Killing metric deéermines the quadratic Casimir operator C2 up tc an

over-all constant., For E7(7) we choose this constant such that

(v, vV TYT
= g \24q (jlet T (5.8)

B R B I I R
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This construction of E7(7) from boson operators corresponds Lo an operator for-
rulation of a realization of E7 in a 56 dimensional space by H. Freudenthal30).
Remarkably enough the Casimir operator C2 is exactly the quartic symplectic
invariant on the 56 dimensional fundamental representation space given by
Freudenthal. In our case the operators aij(bij) and bij(aij) get transformed
into each other under the action of E7(7) and form the 56 dimensional fundamental

representation.

The non-compact group E7(7) is the global invariance group of the bosonic
sector of the largest possible supergravity theory (N=8) in four dimensicns.
The natural SO0(8) symmetry of N = 8 supergravity first gets extended to a
global SU(8) symmetry via a chiral-dual transformation, i.e., it acts on the
spinor fields of the theory as chiral transformations and on the spin one fields
as duality rota;%ons which transform the electric and magnetic field strengths

into each other Then this compact SU(8) symmetry is enlarged to the non-
compact E7(7} which is realized non-linearly over t?? 70 scalar fields of the
theory corresponding to the coset space E7(7)/SU(8) . - Thus, it would be

interesting to rewrite ET(?) Lie algebra in an S0(8) basis. Doing this turns

out to be the same as going to the Hermitean basis:

Consider the following Hermitean linear combinations of E?(?) generaters:

A =‘:<Tmn_—Tnm)=—Awm > A ZAM”

Ll

s = T, +T =95 Y DL =D

wn 4 wA Miiaa

_ it +
'5(1,‘“— ij\ct + V X %"U, =5 (5.9)

(V.. - Vca'\d) _ 1 _

Aciu: t et

Note that since we are working in an S0(8) basis we are not making any distinc-
tion between upper and lower indices. These operators satisfy the commutation
relations:
i vimve
LA, Aupes 1= 2 (€ er e )
, oL B . . €
‘3“‘ ) P ? £ (l\(Q_M/AV? #pB LJ‘ttm/wg KP‘&Sn/wvg Awm
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S » Dy | = - €. L
[ mn ) takﬁ] £ etjkt W pvg A"‘/‘Vf +€ e‘ljl‘e")""g AWV?
- ?iﬂw A\kat.
A D =te. -
[ M ) lJ\cL] s LJLLV;/,.-.,g %m/uvg £ et‘s\.QM/ﬂVf Sn/uug

i

[_Smn b) ALJ\CL]

|
4 "J\c(n/avg /Avf +~LEJ“( ve "‘/“VS’
.5 S‘-JI(C (5.10)

[Aw\n ) f-ch(,] tJ\r.Cn/uv? AM/AV? + ZL' ec‘jkt_m/nvg A?“’f

[Sire s Do Ta (L€ s

vk = i € 1

3 L) "\F“?] (6 ta‘clwyﬂv? .(P-xs +6 éiJltfﬂyAVg enfr-ﬂw\ »9 Amvn
(2 s s 1= it €20 ;
Jh( ) “P"“S '3 ‘)“2 wpvy “BY3 +€ Elak(uyuvg E'-(P'Jsvyvf)smm

L k o _ . M"fq_: __1__ ,ungmnP
Rt Y LR I (jlee "24651'1:(/-‘»5}\6 1

The number of independent A ik is 35 and so is the number of independent

8 - .
ijkg‘ Since Z -1 S = 0, there are also 35 independent Smn' Therefore,
under the 80(8) subgroup generated by Amn the adjoint representation of E7

decomposes as

v
133 = 23 @ 35 @?_'5‘-63‘52 (5.11)

which corresponds to the decomposition of the generators as

! = = - .. (5.12)
33 Amn@ M ® A‘A\CL @ S‘a‘c(
Thesé three 35 dimensional representations of 80(8) are all inequivalent and
are related by the principle of trialityBl) which generalizes the well-known

triality among the three 8 dimensional representations BV, 8L and 8R of 30(8),

namely the vectors 8V,

32). In fact the exceptional group F, has the same structure

left-handed spinors 8L and right-handed spinors SR,

respectively
with respect to its 3S0(8) subgroup, i.e., its adjoint representation 52 decom-

poses as

WAL ED LU (YT SR LIRS IR g s e
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. |
52=2303®% @3 (5.13)

From the following Kronecker products

VL, R

@8 = 1+23 435" ;

€ ol k
B3RB = 1+ 23+ 35 | (5.14)
i,a"k = V,L,®% taken in cyclic order

it follows that the representations 35v, 35L and 35R correspond to symmetric

traceless tensors in vector, left-handed spinor and right-handed spinor indices

in eight dimensions, respectively. The triality principle also implies that

‘ ( N
35" @ 35 = 23+35 4 ---
L 5 "
35 @ 35° = B35 4+ - (5.15)

‘\.)\\L = V,L,% in cyclic order

A unitary operator representing an element of the group E7{?) can now be
written as
e (wy Ay Yy Scj + Yyjlee Ae,'u + Ve Sefe )
U{ N= €&

U)f(cgp Ug) = i

{5.16)

where W. ., V.., W.. and V.. are real parameters with the same tensorial
ij ij ijk& ijk&

properties as the prespective cperators, i.e.,

W, = w . . J.. = Ur. o=
L) }.’ ¥ t} JL + (X3 o

o~ - _ 1 . (5.17)
w'—‘i‘tl - ngk( - z4 et)hlwwfc\ Ww-wpel

"~

- - |
U-t:s\d_- U:‘jkt - a efik( wnpq U;ura‘
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Now if we define the boson number operator as N = gmn-gmn-+gmn-gmn we find that

the BSU(8) generators have zerco boson number
—_—a
[N, 7" =0 (5.18)
"

and the non-compact generators Vijk% do not have a well-defined bosen number

since they involve dibescn creation as well as annihilaticon operators. This is
a reflection of the exceptional feature of E?(7) whose adjoint representation
decomposes as the adjoint plus a real irreducible representation with respect

to a maximal compact unitary subgroup. [The only other group with this property

is SO(6,1).] The operator N which lies outside of E7 does however still

(7)
generate an automorphism cof its Lie algebra.

& maximal rank compact subgroup with respect to which the additional genera-

tors in E7 split into complex representations is U(7), If we take as the

(7)

SU(7) generators Tg where A,B = 1,...,7 and as the U(l) generator Tg = =T

then under this U(7) the Lie algebra of E?

A
decomposes as

(7}
"'L‘l =™ e TS ) ® TA% ® TS =(a3+1)47 + 7

\/C.).u =V @ Vv = 3% ® 35 (5.19)

ABCD ABCH
. - = .. 7
(,z,k,t =\, .- S 3 ABC,D ’
. ABCs ABC .
Denoting the generators VABCa as AABC and V as A we can write the
E7(7) Lie algebra in the U{7) basis as a direct sum

A 3 AsC A
L= FA@ AABC.®<T SG)TS)@A ® F

+1 {5.20)

~2 -1 o +2
L=LoedL &L & L @ L

where FA stands for Tg and FA for Ti. We see that with prespect to the

U{l} generator T: the Lie algebra has a five dimensional graded structure.
This is a more general structure than the Jordan structure and all simple Lie
algebras have a five dimensional graded structure with respect to a suitable

maximal subalgebra. We shall call this type of a five dimensional graded struc-

14)

ture a Kantor structure The construction of Lie (super) algebras from

Jordan (super) triple systems has been extended to this more general caselq)’zg).
The ternary algebra that gives us the Lie algebra of E, in a U(7) basis in

this more general construction corresponds to antisymmetric tensors of rank three

14)

in seven dimensions In fact, Kantor construction yields the Lie algebra

of the exceptional group £, when the underlying ternary algebra is antisymmetric

d

LI IR T LU LA TR TR TR LA DU R G LT T R LU T e Tl N R T T R R R R e L R R

[ T RURTER TR TR T R T T TR L T T
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tensors of rank three in d dimensions with a suitable triple productlS). This
construction gives finite dimensional Lie algebras Ed for d £ 8 and leads
14) for d > 8. Now the N = 8 extended

supergravity theory in d dimensions has non-compact Ed(d) as its global

tc infinite dimensional Lie algebras

invariance group33) and all these theories are obtained from the 11 dimensional
simple supergravity theory by dimensional reduction. The fundamental boson field
that enters this latter theory is an antisymmetric tensor or rank three. Thus
the Kantor construction of E series suggests a possible link between the
emergence of these groups and the presence of antisymmetric rank three tensor

fields in N = 8 supergravity theories.

UNITARY REPRESENTATIONS OF E7(7)

If we apply the methods of Section 4 to E7(7) for the construction of
unitary representations we find that the resulting representations are reducible,
This can be seen easily as follows. Consider a set of states !wA> transforming
as an irreducible representation of the maximal compact subgroup SU(8) that is
constructed by acting on the vacuum state with the creation operators Eij and
bij. By repeated application of the non-compact generators Vijkl on |¢A>

we can generate an infinite set of states:

13>, Vegu"‘h> ) \l(.}u\/wﬁw‘& y - (6.1)

which form the basis of a unitary representation of E7(7). The Vijk% transform

as the self-conjugate representation 70 of 8U(8) and the product

Vet Muwnpq = és‘\]“x“ NNES: W“j‘tt y Nowee ]

transforms as the reducible (1+T2O+1764)Sym' + 63antisym. representation of
SU(8). The fact that the product contains a singlet of SU{8) means that every
irpreducible representation of SU(8) that occurs in the infinite set of states
(6.1) will reappear again after two applications of the V's. Thus the multi-
plicity of an irreducible representation of SU(8) that occurs in the unitary
representation defined over the set of states (6.1) is infinite. This means

that the resulting unitary representation is infinitely reducible as a consequence
of the well-known fact that the multiplicity of an irreducible representation

of the maximal compact subgroup inside an UIR of a non-compact group is less

than cr equal to its dimension34). Though reducible, these representations may

. . . 5),16)
still be of relevance for physical applications ! .
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Application of our method to the second construction of S0(12)% [see
Egs. (2.20)-(2.22)] gives reducible unitary representations as well. In this
case even though we have a Jordan structure there are no states transforming
like an irreducible representation of U{&) that is annihilated by the L~

space.

The fact that one gets infinitely reducible unitary representations in the

case of S0(12)¥ and E7 suggests the use of coherent states to construct

{7)
UIRs of these groups. In fact there is a method due to Gell-Mann for construc-

ting a class of UIRs of some non-compact groups on certain coset spaces of their

177,18}

maximzl compact subgroups His methed does apply to E7 and is par-

ticularly simple for determining the multiplicities of the irreé;iible repre-

sentations of the maximal compact subgroup inside a UIR of the non-compact group.
For example, one possible coset space on which to realize UIRs of E7(7) is
SU{8)/Sp(8). 1In this case the multiplicity of an irreducible representation of

SU(8) in an UIR of E7 constructed by his method is determined by the

number of Sp{8) singlé;; that representation containslT). The reason why
Gell-Mann's method cannot be applied to our construction of E7(7) is due to
the fact that the boson operators we use transform linearly under the SU(8)
subgroup rather than non-linearly as some coset space of SU(8) satisfying
certain criterials). On the other hand our construction of the non-compact
groups of supergravity parallels very closely their emergence in supergravity
and the boson operators we use correspond to the vector fields in these theories.
The reducibility of some of the resulting representations seems to be necessary
for the compatibility of supersymmetry with the non-compact invariance in

N =4 -8 supergravity thecrieslé)’35).

The only basic boscnic fields that transform non-linearly in supergravity
thecries are the scalar fields which sit on the coset space G/H of the non-
compact group G with respect to its maximal compact subgroup. The action of
G on the scalar fields can be represented as a generalized linear fractional
transformationl) indicating that the scalars can be considered as a Gelfand-7-

basis of G36).

Girsey and his collaborators have given an operator formula-
tion of the construction of UIRs in a Z-basis 3 la Gelfand in the case of some
smaller non-compact groupslg). By these operator techniques one can construct
new classes of unitary representations of these groups using operators corres-
ponding to the scalar fields in supergravity theories, which may be of reslevance

as well for physical applications,

bl UL L LU UL R R T T T R L e R AR Rt T R T T B T T PP
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APPENDIX - CURRENT ALGEBRA OF DIBOSON FIELDS

As an illustration of how our boson operators can be related to a field
theory context, we construct a current algebra of free boson fields. We will
also see in this example that the so far unspecified vectorial character of
our operators gi acquires a specific meaning: the components of the vector
represent various Fourier modes ai(i). Another point of interest is that the

construction involves a bosonic version of the Pauli-Glirsey (PG) transformationBT).

We first start with a set of boson fields ®; transforming (for simplicity)
as an irreducible representation of a global symmetry group H. The boscns
can be scalars or vectors, but in the latter case the study of the algebra is
simpler if they are taken to be massive, so that gauge related quantization
problems are avoided. The generators of H can be then immediately written

down as integrated charges obtained from the standard currents, which are always

J

Next, we extend H by PG like transformations which mix w. and of

i k'
This gives rise to new currents of the Fform wiaqu and wiauwj. The original

of the form QJTB P, .
1u

PG of course applies to fermions U and leaves the free massless Lagrangian

and even certain gauge couplings invariant (up to a total divergence). The new
difermicns JSfdviy and fde+¢+, together with the usual fde+¢ charges,

can sometimes close into a new algebra of a compact group. In contrast, our
bosonic version of PG and the resulting diboson generators only leave the equal-
time free boson field commutators invariant and can lead to both compact and

non-compact groups.

The main features of the construction can be understood with the example

of a single complex scalar field. The diboson charges are most conveniently

written by defining the two-component field wT = (wl,wz) with38)

Y =\g (g+L @)
4=V (6-L %)

$0 that the similarity to fermions becomes more evident. The equal-time commu-

(A.1)

tation relations between ¢ and CD+ now translate inte (other combinaticns

vanish)

+
["*l",,((i,o) ) 1"{5(3 ,0)1 = (T3)“P 51(“{-?3') (A.2)
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indeed displaying a similarity to harmonic oscillator operators or spinor field
anticommitation relations: there is no (i) on the right-hand side and the
fields { and ¢+ appear on the left-hand side, instead of the less symmetrical
@, ¢ﬁ pair. The T, signature on the right-hand side originates from the fact
that ¥, () acts like an annihilation {creation) operator; for example, for
the E2 = m® modes ¢1 Ny and ¢2 n a§+. In this formalism the U(l} <charge

operator is

0= 1§ % (¥v + e, ¥

A3
PACH oot ot oo -
= ZE = " chfktzk}ak.__ k.Clk:— Clk.Clk—

Qs mentioned before, massive spin one is no problem: we Just let @ - Ab’

D> Eb’ Y+ wb (b = 1,2,3) and sum over the space index b in Q,. The
resulting Q,  1is, of course, nothing but the usual Jfdv (A*bEb + EgAb). Thus
it is not surprising that similar but more complicated non-compact symmetries
hold for vector bosons in extended supergravity. Since the vector index can be

trivially added, we go on with our simple scalar example.

In the ¢ basis one can introduce a bosonic version of the Pauli-Giirsey

transformation ¢of the form

1
P = at, +b M"‘F ‘L‘J: (8.4)

where a, b are in general complex and M@B isa 2 x 2 matrix. This does
not leave the Lagrangian invariant, but it is canonical in the sense of preserving

the field commutators when M satisfies39)

o z |
(T”)“‘F* la| (’l’s)‘({s——lbl M

tpn CI'-,,)W MVF' (4.5)

This gives rise to two possibilities and conditions:

a) M=TI o~ T, ; \qf;-ibfﬁ:|

(A.6)
T
b) M=T, ov T, y laltibl =
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Conditions (a) and (b) suggest the groups SU(1,1) and 8U(2) respectively.
Indeed, taking M = I, applying Eq. (5) on Eq. {3), and then picking from the
results the diboson SU(1,1) generators

2iwt _2cwt

_(av + * | + 4 c
Q-i--_g\h_.'ll’-r‘sq';_\[{’“?(aka-ke —-Oquike.

(A.T)

_(av T o fé; —2cwit e -t -zcwt
R_= S'@" l"'c-s‘l'“"\}”f" . W€ -, e )
this expectation for (a) is vefified. ak(aﬁ) of course represent particle
{antiparticle) destruction operators. The exponential time dependence can be
absorbed into the operators through a, -+ ake_th, hence it will not be written

down again. Note that M = T, duplicates the algebra and M = 1. gives charges

such as  fdve® or fdveo with different Lorentz transformation ;roperties;

we consider them no further. M = T, here gives vanishing charges cn account
of Bose statistics, but when fields wi representing a Uln) group are
considered, n(n-l1) combinations of the type wjirz¢i, wkrzwl become possibdle,

extending the U(n) to compact S0(2n). These have the form

; i
= gty o LS a0ty - amal )
Q‘JS‘@‘A:! Z e ¢ 4

& +1
QY= (Gpcj)
The Lie algebra of compact boscnic E., can also be represented through such

operators. Returning to the set Q,, Q we find

[F31+ )(:i-d] = “21(3?3
[@3>Q+]-‘—Q+ (4.8)
[Qs )Q_]:-Q_

where the clear SU(1,l) signature is seen in the first commutator. The exten-

3?

sion of this current algebra representation to cases where the initial symmetry
is bigger than U{l) can obviously be effected by re-interpreting our former

expressions: for example, gi'g' could now be taken to mean Zk ai(ﬁ)a.(uﬁ)

J
in the non-compact cases and gi %g be identified with Z af(ﬁ)a?(ﬁ).
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