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ABSTRACT 

Offshore pipelines are an indispensable element of the oil and gas industry. 

Understanding the interactions between the pipelines and their surrounding fluids is of 

paramount importance to the whole industry.  

This thesis is concerned with oscillatory flow over cylindrical structures (representing 

pipelines) at low governing parameters. The two flow regimes considered are the Honji 

instability regime and the vortex shedding regime. Honji instability is the hydrodynamic 

instability responsible for causing a two-dimensional laminar flow to transit into a three-

dimensional flow. Modifications in the resultant flow field under the Honji instability 

and the vortex shedding regimes have great engineering relevance as the flow 

characteristics often closely relate to the hydrodynamic forces on the immersed pipeline 

structures. However, our current knowledge of the resultant flow behaviours regarding 

the Honji instability and the vortex shedding phenomena remains quite limited. It is thus 

the aim of the present thesis to shed more light on our understanding of the two flow 

regimes under certain circumstances that are closely related to real engineering 

problems. 

Previous studies on Honji instability are only limited to the situation when the 

approaching inflow is perpendicular to the cylinder, while in practice, pipelines and the 

incoming flow are not always orthogonal. Therefore, the first concern of the thesis is to 

consider the effects of an oblique angle of the inflow on the Honji instability. Through 

three-dimensional numerical simulations, the flow evolution as well as the 

instantaneous flow structures under the instability regime under different oblique angles 

are obtained and discussed.  

The oblique free stream sees an elliptic cross-section of the cylinder, which indicates a 

geometrical analogy between the oblique inflow around a circular cylinder and the 

perpendicular flow around a cylinder with elliptic cross-sectional shape. In fact, many 

pipelines bear an elliptic cross-sectional shape in practice. A natural curiosity then 

arises regarding resultant flow behaviours of the Honji instability under the influences 

of different elliptic cross-sections. This thesis presents discussions on alterations of the 

typical Honji vortical structures formed at different elliptic shapes of the cylinder.  
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In addition, the thesis also presents an investigation on a dual-cylinder system with 

unequal diameters in the vortex shedding regime. This type of configuration represents 

as the so-called “piggyback cylinders” commonly encountered in industry. Through 

two-dimensional numerical simulations, the flow structures and associated 

hydrodynamic forces around the main cylinder are discussed under different vortex 

shedding modes, and the effects of the neighbouring smaller cylinder placed at various 

locations with respect to the primary cylinder are evaluated. Through examining the 

connection between the symmetricity of the resultant flow field and the hydrodynamic 

forces, this study proposes an estimating method that is easy to apply and is of great 

value for practical engineering applications. 

All results presented in this thesis have been obtained through direct numerical 

simulations using a Petrov-Galerkin finite element method, for which details are given. 

Three-dimensional calculations are performed to study the Honji instability problem 

under the effects of oblique inflow as well as of different elliptic shapes of the cylinder, 

while two-dimensional simulations are conducted for the piggyback cylinders in the 

vortex shedding regime. In summary, this thesis has advanced our knowledge of 

oscillatory flow around cylindrical structures at low governing parameters under 

different scenarios commonly encountered in practice, so that more light is shed on the 

overall understanding of fluid-structure interactions that is of significant relevance to 

the oil and gas industry. 
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CHAPTER 1 

INTRODUCTION  

1.1 Overview 

The oil and gas industry has been a chief energy provider all over the world. This 

situation continues despite the efforts to develop alternative and renewable sources of 

energy (such as solar energy) to meet the increasing energy demand of human 

population. In the oil and gas industry, ever since the construction of the first offshore 

structure in the Gulf of Mexico in 1947, offshore production has increased 

tremendously and continued to expand. In offshore extractions, the problem relating to 

delivery of the petroleum resources is always most challenging and troubling. As a 

transporting channel, pipelines serve as the link between offshore production structures 

and onshore post-processing facilities. According to a worldwide survey by Pipeline & 

Gas Journal [1], a total of approximately 188,030 km of pipelines were planned or under 

construction up to January 2013. As pipelines are a major element to the oil and gas 

industry, the design, construction and maintenance of pipelines account for a large 

portion of the total cost of the whole industry.  

Pipelines exposed to marine environments are subject to hydrodynamic influences that 

are quite often blamed for causing damage to the structures. Therefore, obtaining 

confidently quantified hydrodynamic forces and a good understanding of flow structures 

around pipelines are of vital importance to the entire oil and gas industry. In addition, 

with an increasing number of challenges arising from the fact that the extraction 

processes are extending to increasingly complex ocean environments and deeper seas, 

our needs to understand the fluid-structure interactions (especially fluids around 

pipelines) remain continuously unfulfilled.  

The topic of fluid-structure interactions, closely related to the real industrial world of oil 

and gas extraction, goes to the classical and fundamental problems of flow behaviours 

around blunt bodies under various flow conditions. In relevant research, the practical 
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problem of pipelines under water is often represented by a physical model of cylindrical 

structures immersed in fluids. In practice, the environments that a pipeline is exposed to 

can be quite diverse. For research purposes, it is a common practice to divide the types 

of flow into a steady flow and an unsteady flow depending on the motion of fluid 

particles. If the flow remains constant with time it is steady, otherwise the flow is 

regarded as unsteady. In particular, if unsteady fluid motion shows periodic reversal it is 

terminologically referred to as an oscillatory flow.  

Different flow regimes for either a steady flow or oscillatory flow can be predicted by 

studying the dimensionless characteristic governing parameters based on observations 

from previous experimental studies. The governing parameter applied for a steady flow 

around a cylindrical structure is the Reynolds number (Re), commonly but not uniquely 

defined as  

Re = UD/v 
  

1.1  

in which U is the mean velocity, D is the characteristic length of the cylinder and v is 

the kinematic viscosity. The parameter Re shows the measure of the ratio of inertial 

forces to viscous forces of the fluid particles near the blunt body.  

Since steady flows are not a major concern of the present thesis, here the resultant flow 

regimes for a steady flow with the increase of Re is mentioned only briefly. In general, 

the reported characteristics in different regimes for steady flow are the same, although 

the critical Re number marking the division between these regimes differ slightly in 

different studies [2-9]. For Re < 40 [7] or Re < 49 [6, 9], the flow remains two-

dimensional (2-D) laminar. For a slightly larger Re, 2-D vortex shedding is first 

observed before the wake transits into a three-dimensional (3-D) flow. The critical Re 

leading to the 2-D to 3-D transition is disputable [2-9], but is generally regarded to be 

approximately 200. When Re is over 300, the flow is regarded as in the subcritical 

regime, where laminar boundary layer separation is observed while the wake becomes 

completely turbulent. The subcritical regime spans over a large range of Re from 300 to 

roughly 3 105 [7] (or from 300 to 2 105 [9]). Further increasing Re results in the 

critical regime (for Re in the range from 3 105 to 3.5 105 [7] or from 2 105 to 5 105 
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[9]), where the transition from laminar separation to turbulent separation is observed. 

Then the flow enters a supercritical regime where the boundary layer has partially 

become turbulent as Re falls between 3.5 105 and 1.5 106 [7], followed by an upper 

transition regime where the boundary layer is completely turbulent at one side for 

values of Re in the range 1.5 106 < Re < 4 106 [7]. The supercritical regime and upper 

transition regime proposed by Sumer and Fredøe [7] were combined into a supercritical 

regime by Lei [9], who defined it as a regime which marks a turbulent separation for 

5 105 < Re < 3.5 106. A fully turbulent boundary layer is obtained on both sides of 

the cylinder in the final regime, namely, the transcritical [7] or post-critical [9] regime 

for Re over a value of about 4 106 [7] or 3.5 106 [9].  

For an oscillatory flow, an additional governing parameter associated with the 

oscillation period arises. Although it was first derived by Schlichting [10], this 

parameter is referred to as the Keulegan-Carpenter number (KC) [11], with a general 

definition given as  

KC = UmT/D 
  

1.2a  

where Um is the maximum velocity of the oscillatory flow and T is the oscillation period. 

In particular, if the oscillation is sinusoidal, then  

KC = UmT/D = 2πA/D 
  

1.2b  

where A is the amplitude of excursion of the fluid particles during one oscillation period. 

The expression given in Equation 1.2b explicitly shows the physical meaning of the KC 

number, which can be regarded as a length ratio of the relative orbital motion of fluid 

particles with respect to the width of the cylinder. In many studies on oscillatory flows, 

a frequency parameter (also known as the Stokes parameter or the Sarpkaya parameter, 

denoted by β) is adapted to replace the Re number. The definition for β is  
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β = Re/KC = D2/ vT. 
  

1.3  

which was first introduced by Sarpkaya [12] and fully evaluated in Sarpkaya [13]. 

Behaviors of an oscillatory flow around a cylinder can then be determined by the two 

governing parameters, namely, KC and β. According to Equation 1.3, for given values 

of KC and β, one can easily recover the Re number from Re = β KC.  

The flow behaviors under different combinations of KC and β (denoted as (KC, β)) have 

been documented to some extent. The resultant different flow regimes with variation of 

(KC, β) bear some similarities to that of the steady flow, in the sense that as the flow 

becomes more unstable, the flow transits from being 2-D laminar to chaotic turbulence; 

however, discrepancies in the flow behaviors under oscillation apply due to the effects 

of the reversing nature of the fluid particles in an oscillatory flow. In the following the 

resultant flow regimes obtained for an oscillatory flow with increasing values of (KC, β) 

are described briefly. At low values of (KC, β), the flow is laminar without generation 

of vortical structures. As the governing parameters increase, separation near the cylinder 

occurs, before the flow enters a turbulent regime where the flow particles are in chaotic 

movement. Between a purely laminar regime and a totally turbulent regime, flow 

experiences a 2-D to 3-D transition through a hydrodynamic instability in the flow near 

the cylinder surface, a phenomenon conventionally referred to as the Honji instability 

[14, 15]. As given in Sumer and Fredøe [7], the Honji instability regime is found in the 

interval of 1.1 < KC < 1.6. With a further increase of KC, a pair of symmetric vortices 

attached to the cylinder can be observed (for 1.6 < KC < 4). Higher KC (4 < KC < 7) 

than that breaks the symmetry of the attached vortices, and finally causes the onset of 

vortex shedding when KC is greater than 7. All the KC ranges given above are based on 

a constant Re of 103 [7].  

Based on the intrinsically distinct flow regimes obtained at different combinations of 

(KC, β), relevant research has an extensive scope. Among these studies, two topics 

arising from heated discussions on oscillatory flow around cylindrical structures at low 

values of (KC, β) are the hydrodynamic instability causing the 2-D to 3-D transition and 

the vortex shedding regime. These two topics serve as the primary research interests of 
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the present thesis. In the following, a literature review is given regarding previous 

relevant studies on these two aspects. 

1.2 Review of relevant literature 

 Hydrodynamic instability causing 2-D to 3-D transition 1.2.1

A summary of the various possibilities for the behaviours of near-cylinder flow at low 

values of (KC, β) is found in Tatsuno and Bearman [16]. Through experiments on a 

circular cylinder oscillating in a fluid at rest, they identified eight flow regimes 

including an associated 3-D flow instability along the cylinder in a KC-β plane for the 

range of 1.6 < KC < 15 and 5 < β < 160. An interesting phenomenon to be noted here is 

the onset of 3-D flow features, which occur during a 2-D to 3-D transition under the 

effects of the so-called “Honji instability”, a phenomena first reported by Honji [14].  

Honji [14] conducted a series of laboratory experiments on a circular cylinder immersed 

and transversely oscillated in quiescent water at relatively small values of KC (1.3 < KC 

< 3.9) and β (70 < β < 700). He found that the intrinsically 2-D flow field broke into 3-

D when KC increased to over 1.2 to 2.4 (depending on β). The instability mechanism 

that gives rise to the 3-D flow manifests itself as a series of mushroom-shaped vortical 

structures distributed along the cylinder span. The mushroom-shaped vortical structures, 

forming two axial rows of counter-rotating vortex pairs, locate near the cylinder crown 

at planes normal to the direction of cylinder oscillation. The vortical structures originate 

from detachment of the water particles from the surface of the cylinder and rolling-up of 

the boundary layer during each oscillation period. Honji mentioned that the 3-D 

structures seemed to form under a centrifugal-type instability. The typical mushroom-

shaped vortices can only be observed at a narrow range of small KC and β with further 

increasing of KC leading to the appearance of separation and turbulence. The critical 

boundary in the KC-β plane marking the onset of the instability was identified by Honji 

for 70 < β < 700.  

Ever since its first introduction by Honji [14], the instability causing the 2-D to 3-D 

flow transition in the form of mushroom-shaped vortices has received extensive 
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academic attention which motivated further relevant studies through analytical 

development [17], physical experiments [15, 18] and numerical simulations [19-23]. 

One common concern of studies on the instability problem is obtaining the dependence 

of flow regimes on the governing parameters. Hall [17] conducted a linear stability 

analysis of the 2-D to 3-D transition problem under the assumption of sufficiently small 

KC and large β. Hall derived a formula for the threshold of the inception of the Honji 

instability, which is known as the “Hall line” (H-Line). Following Sarpkaya’s [15] 

notation, the H-Line is given by 

1.4 

At (KC, β) values above the H-Line the instability mechanism is operative and flow 

becomes unstable; below the Hall line the flow pattern assumes a featureless 2-D 

laminar form. Hall showed that the prediction given by Equation 1.4 for the onset of the 

instability was in good accord with the available experimental results [14, 15] and  

attributed the instability to be a Taylor-Görtler type.  

In due course, Sarpkaya [15] suggested the now universally accepted terminology 

“Honji instability” for the instability mode first reported by Honji [14], based on the 

observations of its significant differences from the Taylor-Görtler instability. Sarpkaya 

conducted extensive experiments to further extend the parameter range to higher β 

values (roughly 5.5 103 < β < 1.35 106). In addition to providing flow visualizations 

for demonstrating the flow structures, Sarpkaya also studied the possible effects of the 

Honji instability, separation and turbulence on the resultant in-line force coefficients 

obtained under the Stokes-Wang (S-W) theory. He found that the S-W theory only holds 

true for a 2-D laminar flow (when KC < 2 and β > 1000). When 2-D flow transits to 3-D 

under the effects of the Honji instability, the measured drag coefficient deviates from 

the S-W theory abruptly. It was also found that effects of the Honji instability on the 

resultant drag coefficient are stronger than the effects of transition to turbulence. Based 

on his observations, Sarpkaya divided the KC-β plane to present four flow regimes and 

discussed the coefficients and the associated flow structures in each regime.  
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A much more elaborate demonstration of flow structures under the Honji instability is 

given in a follow-up study by Sarpkaya [18], which covered a governing parameter 

range of 0.02 < KC < 1 and 103 < β < 1.4 106. Through extensive flow visualizations 

from the experiments, Sarpkaya reported that the H-Line only stands for the instability 

with the typical mushroom-shaped vortical structures that could be sustained throughout 

the whole flow period. He observed the occurrence of other forms of early 3-D 

structures at lower KC than required by the H-Line. The threshold for the onset of this 

type of early 3-D structures based on Sarpkaya’s experimental results follows a relation 

of 

 
1.5 

which represents a “Sarpkaya Line” (S-Line). The refined KC-β map with both the H-

Line and the S-Line to the first order accuracy is plotted in Figure 1.1 for the range of 0 

< KC < 0.8 and 103 < β < 106. Sarpkaya reported that the S-Line (KCcr and βcr) stands 

for the inception of an instability that causes a 2-D flow to transit to 3-D; while the H-

Line (KCh and βh) marks the points where the mushroom-shaped vortical structures 

persist with their most developed forms throughout each oscillation period. According 

to Figure 1.1, the two lines divide the whole KC-β map into three sections, representing 

three distinct flow regimes. Firstly, on the left and below the S-Line, the flow falls in a 

stable regime with either no 3-D features observed, or those generated (most likely at 

high-velocity moments during each oscillation period) being too weak to survive the 

low-velocity moments. Secondly, on the right and above the H-Line, the flow is in a 

strong unstable regime, where chaotic behaviours of vortices eventually lead to 

separation and turbulence. The structures of separation were studied by Sarpkaya [24] 

for KC varying between 0.6 to 5 at a constant β value of 6815; positions of the 

separation points and separation angles were recorded. Thirdly, in the area between the 

H-Line and the S-Line, the flow is in an “unstable transition region”, where quasi-

coherent structures (QCS) are observed with various shapes and changing sizes. Based 

on the identification of the QCS, Sarpkaya then proposed a correction for the 

nomenclature for the regular mushroom-shaped vortical structures by referring to them 

as the “coherent structures (CS)” (instead of the “Honji instability”), in comparison to 
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the QCS observed between the S-Line and H-Line. In the present thesis, it is regarded 

that the terminology “Honji instability” can be reasonably used for a general indication 

of the instability mechanism causing the transition from a 2-D flow to a 3-D flow. 
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Figure 1.1 Dependence of KC and β for Hall’s formula and Sarpkaya’s formula in the range of 0 < KC < 0.8 and 103 

< β < 106. 

Sarpkaya has proposed repeatedly [18, 25] a necessity to further investigate the coherent 

and quasi-coherent structures (CS and QCS) formed at any possible point on the KC-β 

map through physical experiments or numerical simulations for a better understanding 

of the evolving turbulence. It is known that conducting precise physical experiments on 

hydrodynamic instability problems (e.g. the Honji instability) is not straightforward and 

can encounter various practical challenges. Fortunately, the advent of modern 

computational tools makes numerical simulation an increasingly preferable choice for 

investigators due to its accuracy, economic efficiency and convenience. In particular, 

direct numerical simulation has become a very useful tool for investigations of 

hydrodynamic instability problems that are often difficult to model in the laboratory. In 

the following discussions, several numerical simulations regarding the Honji instability 

will be mentioned. 

Zhang and Dalton [19] studied oscillatory flow past a fixed cylinder using a combined 

finite-difference/spectral-method [26, 27]. They kept the frequency number at β = 196 

and observed 2-D laminar flow at KC = 1 and appearance of the 3-D structures at KC = 
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2. Further increasing KC results in separation and chaotic behaviours of flow at KC 

numbers of 3.4 and 4, respectively. Using computational visualization techniques, 

Zhang and Dalton demonstrated plots of typical Honji vortices distributing along the 

cylinder’s span represented by vorticity iso-surfaces. Their findings agree well in 

accordance with the previously mentioned KC-β map and their flow visualization 

pictures showing the vortical structures are very similar to that experimentally observed 

by Honji [14]. Although the study of Zhang and Dalton only considered a few (KC, β) 

points, it provides us with early results on Honji instability obtained by numerical 

models.  

Another example of computer-visualized Honji structures is given by Lu and Ling [28]. 

The governing parameter they covered was KC = 2 and β varying from 100 to 600. 

They demonstrated the instantaneous vortical structures through vorticity contour plots, 

and were also able to obtain the typical Honji vortices in the form of mushroom-shape 

counter-rotating vortices distributing along the cylinder span alternatively. In addition, 

they also studied the non-dimensionalized force coefficient for the in-line force obtained 

through the Morison [29] equation for varying KC number at a constant β of 200.  

At the same governing parameter range as that of Lu and Ling [28], i.e. KC = 2 and β = 

100 ~ 600, more detailed flow structures of the Honji instability were presented by An 

et al. [21], through direct numerical simulations using the Petrov-Galerkin finite 

element method. In their study, An et al. captured the three distinct flow regimes 

depending on β: 2-D laminar flow at β = 100, typical mushroom-shaped coherent Honji 

vortices for β in the range of 150 and 550 and turbulence flow at β = 600. The key 

characteristics of flow evolution during the development of the instability as well as the 

instantaneous flow structures under the three flow regimes were demonstrated through 

flow visualizations. In addition, through a dimension analysis of the governing 

equations, An et al. was able to demonstrate that the spacing (denoted as λ) between the 

neighbouring mushroom-shaped vortex pairs has a stronger dependence on KC than on 

β; they then proposed an empirical relationship between KC and λ. In addition to 

discussions on flow development and instantaneous flow behaviours, the steady 

streaming flow was also evaluated to show the time-averaging effects on the flow field. 

The results showed that a 3-D steady streaming was only observable for the stable Honji 
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vortex regime; beyond this range, either reducing β to result in the 2-D potential flow or 

increasing β to cause the chaotic flow would result in a 2-D steady streaming field. The 

reason for resulting in a 2-D steady streaming field at larger β cases where strong 

interactions and movements of the unstable vortical structures were observable for the 

instantaneous flow field was attributed to the cancellations of the overall three-

dimensionality in the whole field when applying a long-time averaging. This study is of 

most relevance to the Honji instability studies covered in Chapter 4 and Chapter 5 of the 

present thesis, as shall be mentioned later. 

Also considering low values of governing parameters, Elston et al. [20] explored the 

various instability modes in the range KC < 10 and β < 100 using direct numerical 

simulations combined with a Floquet analysis. The Floquet analysis is frequently used 

to tackle the instability problem for causing the 2-D to 3-D flow transition. They found 

that the symmetric breaking flow could be either 2-D or 3-D for the (KC, β) values 

concerned, and that for a β value roughly larger than 50, a 3-D instability arose 

primarily in the 2-D symmetric base flow. Elston et al.’s study indicated that the 

demarcation line dividing the absolute 2-D flow with the early 3-D unstable flow should 

cross the H-Line at β ≈ 50. However, as shown in Figure 1.2, the S-Line according to 

Sarpkaya’s empirical formula and the H-Line from Hall’s analytical solution crosses at 

(KC, β) = (1.6, 171.5). It should be remembered that Sarpkaya [18] obtained the 

empirical formula for the S-Line based on experimental observations where the 3-D 

flow structures failed to be captured. Also, Sarpkaya’s experiments were conducted at 

high values of β (103 < β < 106), and thus may not be suitable for predicting the 2-D 

flow field at low values of (KC, β) such as that concerned by Elston et al. [20]. 
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Figure 1.2 Dependence of KC on β for Hall’s formula and Sarpkaya’s formula in the range of 0 < KC < 4 and 0 < β < 

103. 

Suthon and Dalton [22] extended numerical simulations on Honji instability to high 

values of β (β = 1035, 6815 and 9956 for 0.1 < KC < 2.0). They applied a finite-

difference spectral-method scheme to discretise the dimensionless governing equation 

system of the primitive variables form, i.e. the Navier-Stokes equation and the 

continuity equation. In order to facilitate a better comparison with experimental 

observations, Suthon and Dalton used streaklines rather than the conventional vorticity 

iso-surfaces for visualizing the flow. The most prominent contribution in their study 

was providing an insight into the mechanism that forms and sustains the Honji 

instability. The origin of the 3-D vortical structures under the instability regime was 

related to both the boundary layer and the outer flow. They provided elaborate 

demonstrations for the vortical structures around the circumference, which are in the 

form of 3-D dipole tubes and are mushroom-shaped at each 2-D circumferential plane. 

The evolution of the vortical structures considering the mechanism of the generation 

and sustaining of the Honji instability in relation to the boundary layer as well as the 

outer flow was also discussed. 

Subsequently, in a follow-up study [23], Suthon and Dalton looked deeper into the 

mechanism for causing the Honji instability by quantifying a critical criterion for 

triggering of the instability. Through careful evaluation and analysis of the numerical 
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results obtained through a similar method to their earlier study mentioned above [22], 

they found that the Honji instability is caused by a mechanism of the Lord Rayleigh 

type [30], but is different from the Taylor [31], Dean [32] and Görtler [33] types. This 

finding supported the suggestion of Sarpkaya for giving the instability its own name – 

the “Honji instability”. Suthon and Dalton [23] also mentioned that the requirements for 

trigging the Honji instability involved two aspects, i.e. both the Lord Rayleigh’s 

stability criterion of dГ2/dr < 0 and the critical values of (KC, β) (so far the best 

estimation for the critical values for different flow regimes is predicted by the H-Line 

and the S-Line) must be met.  

1.2.1.1 Effects of angle of attack (α) 

Although Honji instability at various (KC, β) values has undergone extensive 

investigations, the understanding of the Honji instability is still relatively limited with 

previous relevant studies exclusively considering the limiting situation when the 

incoming oscillatory flow is perpendicular to the cylinder. To the author’s best 

knowledge, investigation of the Honji instability under possible effects of an oblique 

inflow has attracted little attention, though in practical circumstances oscillatory flow is 

unlikely to be directed precisely at right angles to the obstructing body. The oblique 

angle, or angle of attack, is often defined as the angle between the free stream and the 

perpendicular flow component, as shown in Figure 1.3.  
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Normal flow 

component (ux) 
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Axial flow 
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Figure 1.3 Definition sketch for oblique inflow with an angle of attack α.  

There exist some previous studies on inclined flow around a yawed circular cylinder, 

however most of them consider the effects of flow incidence angle on hydrodynamic 
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forces and vortex shedding phenomena at relatively large values of (KC, β), and very 

often are concerned with steady flow conditions [34-42]. Among these studies, one 

research worth mentioning is that of Zhao et al. [41]. Using a Petrov-Galerkin finite 

element method, Zhao et al. studied the sinusoidal oscillatory flow around a circular 

cylinder at different oblique angles in the range of 6.75 < KC < 30 and a constant Re of 

2000. Vortex shedding can be observed for the interested governing parameter range, 

with the shedding mode determined by the value of KC. Zhao et al. gave a discussion on 

the flow behaviours and the associated hydrodynamic forces under effects of varying 

values of angle of attack for the calculated vortex-shedding modes. They found that the 

oblique angle exerted little effect on the resultant vortex shedding modes. In addition, 

through evaluations of the calculated in-line and lift forces, their results indicated that 

the Independence Principle (or the Cosine Law1) [34] is applicable for the in-line force 

at an angle of attack up to 60°, and for the lift force at an angle of attack as large as 45°. 

However, at an oblique angle of 60°, both the maximum value and the mode-averaged 

value of the non-dimensionalized lift force showed some differences from that obtained 

for a perpendicular flow, indicating that the Independence Principle is violated for the 

lift force for an angle of attack at 60°. 

1.2.1.2 Effects of shape ratio (K) 

In the case of an oblique inflow, the free stream sees an elliptic cross-section. A 

consideration then naturally arises for the situation when the cylinder is of an elliptic 

shape. To the best knowledge of the author, possible alterations on the Honji instability 

brought by variation in cross section of the cylinder have never been covered before. 

Different studies on elliptic cylinders at low Reynolds number have been conducted, 

although not specifically on the topic of Honji instability. Many analytical studies for 

                                                

1The Independence Principle, or the Cosine Law, states that for a cylinder placed in an oblique flow, the 
normalized force coefficients in the direction perpendicular to the cylinder are identical to that obtained 
for a cylinder normal to the flow. 
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flow around elliptic cylinders are conducted at low Reynolds numbers either in uniform 

flow, or in oscillating flow but not in the Honji regime. For a steady flow, Shintani et al. 

[43] reported an analytical study on a steady flow approaching an elliptic cylinder 

perpendicularly in the limit of Re → 0 (Re = 0.1). They applied a matched asymptotic 

study based on Umemura [44], and discussed in particular the effects of both the shape 

factor K (the ratio of minor axis to the major axis of the elliptic cross section of the 

cylinder) and fluid inertia on the resultant flow structures. For a varying shape factor 

including a limiting case of zero thickness (viz the ellipse becoming a flat plate), they 

found that the twin vortices spread wider as the cross-section of the cylinder became 

flatter with a smaller K.  

In addition to the shape factor K, another influencing factor considered in studies 

regarding flow around elliptic cylinders is the direction of the incoming flow with 

respect to the ellipse. A cross-sectional angle of attack, α0 (note, different from the axial 

angle of attack α defined for the previously mentioned oblique inflow problem) is then 

defined by an angle between the free stream and the major axis of the elliptic cross-

section. There are many theoretical predictions on elliptic cylinders considering 

oscillating flow approaching the cylinder with specific values of α0. For example, in 

Taneda’s [45] comprehensive study on basic unsteady flows around 2-D bodies, he 

attempted a theoretical solution for a cylinder of K = 0.5 oscillating at α0 = 30° in a flow 

at rest, and gave visualizations of the flow field using streamline patterns. Taneda 

reported that, for an elliptic cylinder oscillating in a uniform flow, there exists an 

‘isolated permanent dead water region’ in the downstream. Another analytical study 

given by Badr [46] investigated an elliptic cylinder with K = 0.6 and α0 at either 30° or 

60°, in an oscillatory flow at low Reynolds number from 102 to 103 and KC number of 2 

and 4. Badr’s study presented the evolution of the developed flow structures near the 

cylinder surface using streamlines and vorticity distribution. Hydrodynamic forces were 

also considered by giving distributions of pressure and force coefficients. 

Numerical studies on elliptic cylinders under the Honji instability regime are also rare. 

Evaluation of the few previous papers on oscillatory flow around elliptic cylinders 

shows that, while the flow is likely to undergo a 2-D to 3-D transition for Re value 

between 102 < Re < 103, most numerical simulations found in the literature only 
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assumed the flow to be 2-D. This is mostly because of the restrictions of inadequate 

computational resources at the time such studies were conducted. Examples include 

Nair and Sengupta [47] for uniform flows at Re = 10,000, and a follow-up study of Nair 

and Sengupta [48] at Re =3000 and 10,000. Nair and Sengupta [47] conducted a 2-D 

simulation to study the onset of asymmetry in the flow field (resulting from flow 

instability) and found that, compared with a circular cylinder, the asymmetry developed 

earlier around an elliptic cylinder for a perpendicular incidence (i.e. α0 = 0°). They also 

found that the asymmetry development had a higher rate as the ellipse became thicker 

(i.e. larger K). Their later study [48] of a 2-D direct numerical simulation further 

extended their previous study [47] by introducing the influences of the Re number, the 

angle of attack α0 and the shape ratio K of the ellipse.  

With the boost of supercomputing technology in recent years, an increasing number of 

3-D simulations have emerged. The laminar 3-D transition of a uniform flow around an 

elliptic cylinder was discussed by Sheard [49], who studied the case under Re = 500 and 

an incidence angle α0 between 0° to 90°. In particular, it is worthwhile mentioning an 

interesting application of a 3-D simulation for a higher Re value proposed by Flynn and 

Eisner [50], which related an elliptic cylinder in flow to the scenario of a human body 

immersed in contaminant airflows. In their study, Flynn and Eisner regarded the human 

form as elliptic in the cross section. With a Re number as high as Re = 1.35 104, they 

applied a k-epsilon model in the finite element package called Fidap, and studied the 

resultant turbulence kinetic energy. They were able to give a verification and validation 

study for the time-averaged velocity field in the very near wake. Although interesting 

results are provided by the studies just mentioned along with other similar research on 

an elliptic cylinder exposed in various types of flows (examples including [51-53]), no 

previous 3-D simulations have been found regarding elliptic cylinders under the Honji 

instability marking the transition from 2-D flow to 3-D flow, which is our present 

interest. 

To the best knowledge of the author, the linear stability analysis reported by Hall [17] is 

the only study considering the Honji instability around an elliptic cylinder. Hall 

produced a dependence curve of the critical Taylor number on the shape factor K and 

angle of attack α0 (see Figure 4 and Figure 5 in Hall [17]) and predicted that the flow 
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would become unstable at different circumferential locations depending on the shape of 

the cylinder and the incidence angle α0. In particular, for the case of α0 = 0°, Hall found 

that flattening of the cross-section of the cylinder (by decreasing K) inhibits the Honji 

instability. In addition, as the shoulders (upwind and lee-wake sides) of the cylinder 

become sharpened at smaller K values, the fluids near the shoulders may break into a 3-

D instability at governing parameters lower than those needed for a 3-D instability to 

develop near the crown of the cylinder. Hall’s theory was derived in the limiting case of 

small KC and large β without consideration of the non-linear effects. An in-depth 

discussion on Hall’s theory is covered in Chapter 5 considering oscillatory flow around 

an elliptic cylinder. 

 Flow behaviours and hydrodynamic forces in vortex shedding flows 1.2.2

Understanding the flow structures around and the fluid induced forces on a single 

cylinder in an oscillatory flow under the vortex shedding regime is of both academic as 

well as practical importance. Therefore, this type of flow has always been a heated topic 

and undergone extensive investigations both experimentally and numerically [21, 54-

62]. An accessible summary of some interesting phenomena with respect to flow 

structures and vortex properties has been given by Zdravkovich [63].  

The relation between the near-cylinder flow structures and the resultant hydrodynamic 

forces has been documented by previous researches. Zdravkovich and Namork [64] and 

Sarpkaya [25] have reported that an asymmetric wake resulted from vortex shedding 

and convection may cause the lift force to increase. Williamson [56] conducted 

experiments on a sinusoidal flow around both an isolated cylinder and a pair of identical 

cylinders in a subcritical flow regime, and found that the number of large vortices being 

shed in each half cycle is closely associated with the magnitude and frequency of the 

measured lift force.  

Compared with the isolated cylinder case, the understanding of the resultant 

hydrodynamic forces for a common application of a dual-cylinder system with either 

identical or different diameters remains far from complete [65], especially considering 

that many of the investigations of flow around two neighbouring cylinders are 

concerned with steady flow conditions. Examples include the 2-D numerical studies of 
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Zhao et al. [66] (at a low Re of 500, with respect to the main cylinder) and Zhao et al. 

[67] (for a turbulent flow at high Re of 5  104) for steady flow past a pair of cylinders 

of differing diameters; in both studies, the properties of the force coefficients and vortex 

shedding patterns were discussed as the smaller cylinder (or the piggyback cylinder) 

was moved relative to the larger. Zhao et al. reported that the key factors influencing the 

flow field around a pair of cylinders include the gap ratio, the diameter ratio and the 

direction of the incoming flow.  

For oscillatory flow scenarios, Williamson [56] conducted experiments on two identical 

cylinders moving harmonically in an otherwise quiescent fluid, and reported that, when 

the two cylinders were in close proximity, large alteration of the vortex-shedding 

patterns was observed, which then resulted in a great change in both the lift and in-line 

forces. Another study by Mclver and Evans [68] provided an approximation method for 

calculating forces on fixed vertical cylinders in a plane wave, and reported that the 

interactions between the cylinders could have strong influences on the flow structures 

and the resultant fluid forces. Less is known about the case when the two neighbouring 

cylinders are of unequal diameters. Carstens and Sayer [65] used a linear potential 

theory to study the hydrodynamic interactions and gave their results in terms of the 

added mass and damping between two unequal vertical cylinders in oscillatory flow. 

Williamson [69] investigated the fluid forces on two neighbouring cylinders with 

unequal diameters, and focused on ascertaining the hydrodynamic interference effects 

of the flow field of the larger cylinder on the smaller one.  

1.3 Research objectives 

As can be seen from the literature review given above, although extensive studies have 

been conducted on oscillatory flow around cylindrical structures covering a large range 

of governing parameters, understanding of the flow behaviors subject to certain 

conditions remains far from complete. The incompleteness lying in the present 

knowledge of these practically important problems has motivated the research presented 

in this thesis, of which the main objectives are described briefly in the following 

subsections. 
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 For the hydrodynamic instability  1.3.1

Understanding the Honji instability is of both academic as well as industrial importance 

in that: the flow experiences a fundamental change as it transmits from 2-D to 3-D, 

resulting in substantial modifications of flow structures which will then alter the 

hydrodynamic forces exerted on the underwater cylinder. Careful examination and clear 

understanding of the variations of flow structures near the cylinder provides information 

on intrinsic mechanisms and physical explanations for the transition process, and is 

therefore a prerequisite for force evaluation and other studies. However, as discussed in 

Section 1.2.1, previous studies on Honji instability are still rare and limited, presumably 

due to the fact that, for one thing, it is hard to be achieved through laboratory 

experiments; for another, conducting numerical simulations on Honji instability requires 

a huge amount of computer resources in order to reveal the delicate flow structures 

formed during the 2-D to 3-D transition. 

This thesis, with the aid of powerful supercomputers, provides a numerical study to 

comprehensively investigate the Honji instability under conditions commonly 

encountered in practice. The study on Honji instability considers two aspects under 

which the attributes of the near-cylinder fluid structures are likely to be affected. First, 

the effects of an angle of attack are evaluated to examine the influences of obliqueness 

of the incoming flow. Second, the cross-sectional shape of a cylinder is investigated, 

and the resultant flow fields under different elliptic cylinders with different flatness are 

discussed. 

1.3.1.1 Objective 1. Evaluating the effects of angle of attack (α) 

One primary aim of the present study is to extend our understanding of the Honji 

instability to when the incident flow is slightly oblique to the cylinder, i.e. at a small 

angle of attack (α). Oscillatory flow oblique to an isolated cylinder is examined when 

the flow transits from 2-D to 3-D under the effects of the Honji instability. The major 

concern is to gain a detailed description of the effects of an oblique inflow on the 

resultant flow evolution as well as the instantaneous flow field. In addition, possible 

explanations on the observed findings of the obliqueness effects will also be given. 
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1.3.1.2 Objective 2. Evaluating the shape effects of an elliptic cylinder (K) 

Arising from a geometric analogy with the oblique inflow case, the resultant flow field 

for an elliptic cylinder with different shape ratios are discussed under the Honji 

instability regime. The main aim is to provide detailed flow visualizations for the Honji 

vortical structures (namely, the QCS and the CS) near an elliptic cylinder in order to 

reveal the effects of the flatness of the cylinder for the cases evaluated. Numerical 

results obtained for elliptic cylinder cases provide a first-ever attempt to validate Hall’s 

[17] theory considering the elliptic effects on the instability causing the 2-D to 3-D 

transition. Possible reasons for inducing the shape ratio effects are also explored. 

 For the dual-cylinder system in vortex shedding regime 1.3.2

As mentioned in Section 1.2.1.2, effects of the presence of a nearby smaller cylinder on 

the flow patterns and fluid forces of the main cylinder under oscillatory flow conditions 

are still unclear despite their apparent engineering relevance. Existing numerical studies 

regarding steady flow at low Re or oscillatory flow at low (KC, β) around a dual-

cylinder system are dominated by calculations using 2-D direction numerical 

simulations, for which Lei [9] has provided a summary of the key outcomes, plus an 

evaluation of the 2-D and 3-D modelling.  

1.3.2.1 Objective 3. Evaluating the effects of a nearby smaller cylinder 

This thesis also provides an investigation on flow behaviours around two neighbouring 

cylinders of unequal sizes at low values of (KC, β) using 2-D numerical simulations. 

The (KC, β) range concerned for the dual-cylinder study leads to a vortex shedding 

regime. This particular research aims to address the influences of a nearby smaller 

(piggyback) cylinder on the resultant flow fields and hydrodynamic forces on the 

primary cylinder. This objective relates directly to a practically important problem of 

prediction of possible force alterations caused by the existing of a piggyback cylinder 

near the main cylinder. 
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1.4 Thesis outline 

A brief overall structure of the present thesis is given in Figure 1.4. The background 

information and motivations for conducting the research work presented in this thesis 

are covered in Chapter 1. Subsequently, the theory and the methodology applied to 

conduct the calculations of the study are introduced in Chapter 2 and Chapter 3. 

Following that, main results from calculations and associated discussions that serve the 

three objectives listed in Section 1.3 are presented in Chapter 4, Chapter 5 and Chapter 

6, respectively. The thesis then finalises with main conclusions summarised in Chapter 

7 along with some suggestions for relevant future studies. A more detailed outline for 

the major body of the thesis is given as follows.  

� In Chapter 2 the methodologies used in this research are described in detail. 

The numerical scheme and validation of the numerical method are presented. 

The mathematical theory and the finite element method adopted in the computer 

programs are explained, and a mesh validation is conducted to evaluate the 

influences of mesh density on the calculated results, based on which a most 

appropriate mesh was chosen. 

� Chapter 3 introduces a perturbation method to be applied to selected cases for 

the aim of accelerating the development of the instability (for the wake 3-D 

cases) as well as checking the convective instability of the flow field (for 

confirming the obtained 2-D flow field). 

� Chapter 4 concerns the effects of an axial flow component on the Honji 

instability, where the modification of the development of the instability as well 

as the resultant flow structures under different values of angle of attack (α) are 

discussed. 

� Following the previous chapter, Chapter 5 is then devoted to consider the 

influences of the cross-sectional shape of an elliptic cylinder on the Honji 

instability. Flow behaviours under different values of the shape ratio of the 

cylinder’s cross-section are described and explained. The resultant flow fields 

under the two geometrically similar scenarios are compared. In addition, 

evaluations of Hall’s [17] theory are discussed using the results obtained. 
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� Chapter 6 deals with a 2-D numerical simulation on a dual-cylinder system of 

unequal sizes for the aim of investigating the alterations of the resultant flow 

fields as well as hydrodynamic forces of the main cylinder under the effects of a 

smaller cylinder in the vicinity.  

� Finally, main findings arising from the present study are briefly summarised in 

Chapter 7. Some final remarks and suggestions for future studies are also 

presented.  
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Figure 1.4 Sketch showing thesis structure and organisation. 
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CHAPTER 2 

METHODOLOGY 

2.1 Aim of this chapter 

In this chapter, we will first briefly give some general background information in 

research methods for fluid studies. Then we will focus on providing detailed 

information on the specific numerical method applied in the present study. 

2.2 Introduction 

There are mainly three typical approaches to conduct research concerned with 

behaviours of fluid flows, namely, physical experiments, theoretical analysis and 

numerical simulations. The earliest and currently still most widely adopted method is 

conducting physical fluid experiments in a laboratory. Early attempts to study the flow 

behaviours by conducting experiments provide us with some fundamental concepts and 

understanding about the important basics. Another conventional approach is to produce 

mathematical solutions. The analytical or theoretical solutions are able to produce 

satisfactory descriptions of the flow behaviour for some simple cases such as potential 

flows. However, the limitation of analytical solutions is that this method is only valid 

for some specific or limited cases, or has to be applied under certain simplifications 

(such as linearization), due to the complexity resulted from the non-linear nature of the 

real problem. Then numerical treatment of various flow problems began to emerge with 

the advent of computers in the early 1950s. The theory behind numerical modelling is 

referred to as computational fluids dynamics (CFD), which is based on understanding 

and appropriate mathematical processing of the governing equations along with 

properly-applied boundary and initial conditions. Ever since it was proposed, numerical 

simulation method has been a much interested topic and developing fairly fast. This is 

probably because of its handiness and time-and-cost efficiency that keeps improving 

with the huge growth of computer power in recent years.  
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The basic tools for CFD mainly include finite difference method (FDM), finite element 

method (FEM) and finite volume method (FVM), listed according to the time sequence 

of their origins. Comparing between these methods, FDM is acknowledged to be simple 

in formulation and computation, and therefore is chosen by the majority. However, with 

current development of the FEM along with the increased computer capacity, FEM has 

seen an increasing popularity in recent years. The formulation of FVM is related to both 

FDM and FEM. The three methods can be used both individually and with combined 

knowledge. In fact, because of evident benefits, there is a trend in recent years to 

combine these methods when solving a certain problem. However, it should be noted 

that to the present, there are still unsurpassable limitations in all three methods 

mentioned above. One example is the numerical treatment of high-Reynolds-number 

flow using direct numerical simulation, which would involve enormous calculations 

because of mesh requirements and is still unattainable at the present stage. 

In this thesis, FEM is adopted for calculations of the fluid field and therefore is our 

focus of discussion from now on. After the initial introduction and application of FEM 

on structural analysis in the 1950s, this method began to be used to simple flow 

problems, first seen with Zienkiewicz and Cheung [70]. Various improved approaches 

and methods were then proposed which facilitated the evolvement of FEM. Based on 

whether the weighting functions are the same as the trial functions or not, there are the 

Galerkin methods and the weighted residual methods. Examples for the Galerkin 

methods (weighting functions the same as the trial functions) are the streamline upwind 

Petrov-Galerkin method ([71], [72]) and Taylor-Galerkin methods [73]. Examples for 

weighted residual methods (weighting functions different from the trial functions) 

include spectral element methods [74], least square methods [75] and finite point 

method [76], etc. The method used by this study is the streamline upwind Petrov-

Galerkin FEM, as will be discussed in detail later on. 

The incompressible flow concerned here oscillates around blunt bodies at low Re 

number. Specifically, our interests fall in studying the flow behaviour in the regime 

where the 2-D to 3-D transition occurs due to hydrodynamic instabilities. For an 

intrinsically unstable flow in practice, transition to 3-D flow occurs because of small 3-

D disturbances. There are obvious advantages in studying fluid instability problems 
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numerically rather than through physical experiments. This is because it is greatly 

challenging to try to control the experimental conditions for instability studies, as the 

marginal fluid field is very sensitive to small disturbances, which are almost impossible 

to avoid completely in physical experiments. It is challenging to distinguish the 3-D 

behaviours resulted from the intrinsic instability within the flow and those due to 

unwanted environmental influences. There are numerous possibilities for disturbing the 

stable flow field in actual flow experiments, such as non-uniform incoming flow, 

presence of surface roughness and running conditions of the experiments. However, 

these issues do not exist or can be controlled for numerical simulations. 

2.3 The numerical scheme 

In this study, the oscillatory flow field is calculated by solving the Navier-Stokes 

equations using a streamline upwind Petrov-Galerkin Finite Element Method (PG-FEM). 

Direct numerical simulation (DNS) is conducted by simulating viscous flow without 

turbulence modelling. The current thesis adopts a calculation model previously 

developed by Zhao et al. [40] in FORTRAN 90. The simulations are conducted on the 

high-performance supercomputer cluster provided by iVEC supercomputer facility in 

Western Australia. The efficiency of the calculations is greatly increased by applying 

the parallel-computing technique based on OpenMPI, namely, the message-passing 

interface for the parallel processing. The accuracy of the present method has been 

validated in a number of previous projects [21, 40, 61, 62, 66, 67, 77-83] it has been 

applied to, as shall be mentioned later. 

 The physical model 2.3.1

The physical problem concerned in this study is the behavior of an oscillatory flow 

around a smooth fixed cylinder of infinite length at low KC and β numbers. The 

physical model is represented by a computational domain shown in Figure 2.1. Flow 

past a cylinder of infinite length is simulated by a finite domain and a periodic boundary 

condition at the two ends of the cylinder. All calculations were performed on a domain 

of size 40D × 20D ×4D, with 40D in length (flow direction), 20D in width (cross flow 

direction), 4D in height, where D is the cylinder’s diameter. The height of the 
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computational domain is a sectional length of a theoretically infinite-long cylinder. The 

cylinder, as can be seen from Figure 2.1, has its axis in the z-direction and lies in the 

center of the x-y plane with these coordinates oriented so that the free stream velocity 

oscillates in the x-z plane. The cylinder is located at the center of the computational 

domain. The computational domain size is checked and confirmed for its sufficiency to 

be free from inlet and outlet boundary influences on the computed flow field.  

 

Figure 2.1 Definition sketch of the computational domain, with a dimension of 40D × 20D ×4D. 

 The governing equations 2.3.2

The governing equations for the incompressible flow field are the 3-D Navier-Stokes 

equations. The primitive variables are non-dimensionalized using the cylinder diameter 

D and the amplitude of the oscillatory velocity in the x-direction (Umx) following the 

equations 

, , , , ,  
  

2.1  

Using above non-dimensionalization method, the non-dimensional Navier-Stokes 

equations are written as 
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2.2  

  

2.3  

where p is the pressure and ui is the velocity in the xi-direction, (x1, x2, x3) = (x, y, z) and 

ui stands for the velocity in the xi-direction. The governing equations are solved through 

the PG-FEM described in detail in the following contents. The incompressible 

oscillatory flow past a fixed cylinder under various scenarios is computed at KC = 2 and 

β =200, 300 and 400. The first step of solving the equations is to apply a spatial 

discretization of the domain field. 

 Computational mesh 2.3.3

The computational domain is divided into eight-node tri-linear hexahedral elements, as 

shown in Figure 2.2. The 3-D computational mesh is constructed by slicing the 

computational domain into a number of identical 2D planes that are perpendicular to the 

cylinder axis, and each of these slices is discretised into four-node quadrilateral 

elements (Figure 2.2a). Dense mesh is applied in area close to the cylinder surface in 

order to obtain detailed observation of the flow structures, while a relatively coarser 

mesh is applied in the far field. The size of the elements for the 2-D plane and the axial 

density of the 3-D mesh are determined through a careful mesh-dependence study, 

which will be discussed in Section 2.3.6.1. 

(a) (b) 

 

Figure 2.2 Demonstration of the computational mesh. (a) 2-D mesh in the axial plane; (b) 3-D mesh. 
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 Petrov-Galerkin finite element method 2.3.4

The PG-FEM described below is the same as that applied in Zhao et al. [40], which also 

provides the major elements of the method. As mentioned before, the validation of this 

method has been well established from various studies including Zhao et al. [40, 41, 62, 

66, 67, 79, 83], An et al. [21, 61] and Yang et al. [80], to name but only a few. 

2.3.4.1 FEM Formulation 

The FEM begins with introducing a shape function (also known as interpolation, trial or 

basis function). In order to obtain the finite element equations, the primitive variables 

pressure and velocity of the partial differential equation are approximated as a linear 

combination of the shape function by , with  being pressure or velocity, 

the subscript k denoting the global node number, therefore  is the value of  at kth 

node and  is the shape function at kth node.  

The original governing Equation 2.2 is formulated into finite element equations using 

weighted residual methods. Aiming to minimize the error or the residual of the 

governing equations to zero, the weighted residual methods apply an inner product of 

the weighting function and the residual, and then set the integral of the inner product to 

zero. This process is mathematically expressed as 

 
  

2.4  

It is easy to understand that this method is sometimes called the ‘projection method’, as 

the integration shown in Equation 2.4 simply means that ‘the error at each point in the 

domain orthogonally projected onto a functional space spanned by the weighting 

function summed over the entire domain is set equal to zero’ (p249, [84]). 

Using W as the weighting function, Ω as the computational domain, Γ as the domain 

boundary and  (or ) as the gradient of ui in the outwards direction normal to the 

boundaries, the resultant variational or weak form of Equation 2.2 can be written as  
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2.5  

Next we determine the element shape function. The element shape function obtained 

under different coordinate system varies. The coordinate system should thus be selected 

to ensure smallest amount of algebra involved in formulation of finite element equations. 

In the present study, the standard rectangular Cartesian coordinate system is applied. To 

obtain the shape function within an element, the actual hexahedron elements are 

transformed into isoperimetric cubic elements using a non-dimensional local coordinate. 

The origin of the local isoperimetric coordinates is located at the centroid of the element 

and has a range of ξ1,2,3 = [-1,1] as shown in Figure 2.3. The transformation between 

two coordinates are realised through geometrical Jacobian rule, given in Equation 2.6.  

x 

z 
y 

ξ1 

ξ3 
ξ2 

Figure 2.3 Sketch of transformation from between two coordinate systems, (x, y, z) to (ξ1, ξ2 and ξ3). 

 
  

2.6  

where J is the Jacobian matrix given by  
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2.7  

Following the Jacobian rule, in the isoperimetric element for a linear variation of the 

geometry and variable, the isoperimetric shape function has the form  

 

  

2.8  

The transformation between two coordinates are realised through geometrical Jacobian. 

Following the rule that the derivatives of  can be determined from the tensor product 

of the inverse of the Jacobian (J) and the derivatives of , Equation 2.5 representing 

the weighted residual formulation can then be written in the transformed local 

coordinates as 

 
  

2.9  

in which  and , J and I denote the Jacobians for the points located in 

the inner domain the on the boundaries, respectively.  

Next we discuss the weighting function (test function) to be applied. It is known that the 

conventional Galerkin methods using the shape function as the weighting function leads 

to unstable and inaccurate solutions under some situations. Especially for convection-

dominated flows, spurious node-to-node oscillations or ‘wiggles’ occur in the solutions 

which fails the ‘best approximation’ [71]. To preclude the wiggles, the weighting 

function is defined differently from the shape function. The Petrov-Galerkin scheme 

applied here uses a weighting function defined by adding a streamline upwind 

perturbation to the standard Galerkin weighting functions. The artificial perturbation is 
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constructed to act only in the flow direction to eliminate the possible crosswind 

diffusion. The streamline upwind Petrov-Galerkin weighting functions for the 

momentum equations then take the form  

 
  

2.10  

where W=N1N2N3 (N1,2,3 represents the one-dimensional shape function in ξ1,2,3 direction) 

is the weighting function for the simple Galerkin finite element method, which is 

modified by the added streamline perturbation . Considering only first order of 

, Equation 2.10 can be written as 

 
  

2.11  

The definition for the three-dimensional perturbation terms can be demonstrated 

through the definition of a one-dimensional problem, where is defined as 

 
  

2.12  

where  is the characteristic size of the elements in  coordinates,  is the artificial 

diffusion coefficient, defined as  and ( ).  is a 

constant chosen to be  so that the phase error is minimum [85]. 

After deciding on both the shape function and the perturbed weighting function, the 

updated finite element formula under the streamline upwind Petrov-Galerkin 

formulation can be written as 
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2.13  

The numerical integration of the transformed Equation 2.9 is achieved by performing 

the Gaussian quadrature. For a quantity given by d d , the Gaussian 

quadrature can be expressed as 

 

  

2.14  

Chosen the Gaussian points to be 2, the weight coefficient wk then becomes 1.0 and 

abscissae are ±0.57735. 

2.3.4.2 Time-advancement 

The governing equations are integrated forward in time to determine the evolution of 

the flow field, using a fractional step method. The adequacy of this method to be 

successfully applied to FEM is demonstrated by previous studies, including Donea et 

al.[86], Ramaswamy [87] and Ramaswamy and Jue [88]. 

The fractional step method is performed in a three-step sequence as given below. It can 

be seen that the perturbation term  is only applied in the first step for predicting the 

velocity, while for step 2 and 3 the simple Galerkin method is applied. This suits the 

aim of applying the upwind scheme simply for precluding the wiggles caused by the 

convective term. 

� Step 1, a predicted or intermediate velocity is calculated by omitting the pressure 

term when time integrating the momentum equation. At this step, the 

intermediate velocity does not necessarily satisfy the incompressibility 

condition. Corresponding formulation: 
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2.15  

in which ∆t is the computational time step, the superscript n and n+1 stands for 

the calculated results at the time n∆t or (n+1) ∆t. 

� Step 2, pressure is calculated by solving a pressure Poisson equation: 

 

  

2.16  

for which the finite element formula can be written as 

 

  

2.17  

� Step 3, the intermediate velocity is corrected by solving the momentum equation 

with only the pressure term as calculated in step 2: 

 

  

2.18  

 Boundary conditions 2.3.5

All computational runs are initiated with zero velocity and pressure fields to obtain self-

developed flow field. Motion is induced into the system by imposing desired boundary 

conditions.  
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At the inlet and outlet boundaries, flow is prescribed as sinusoidal oscillatory. Unless 

otherwise suggested (see Section 4.3.2), the following formula applies on the inlet and 

outlet boundaries as shown in Figure 2.1: 

For velocity variables 

 

  

2.19  

For pressure variables 
  

2.20  

The flow is solved subject to no-slip requirements on the cylinder, where the velocity is 

zero in all directions. Symmetric conditions are enforced on the two bounding surfaces 

parallel to the x-z plane (see Figure 2.1), i.e. the velocity in the y-direction is zero. 

Special consideration is given at two ends of the cylinder (two boundaries parallel to the 

x-y plane). The conventional free-slip boundary condition is not suitable for the cases 

where the incoming flow is not perpendicular to the cylinder, as it prohibits the flow 

component in the spanwise or axial direction. In this study, the periodic boundary 

condition is used at the two end boundaries. Under the periodic boundary condition 

velocity and pressure gradients at one end of the cylinder are the same as their 

counterparts at another end. In this way, the cylinder in the finite domain can represent a 

cylinder of infinite length. 

 Validation and verification of the numerical model 2.3.6

The results obtained through FEM must be convergent, stable and accurate. It is of vital 

importance to carry out mesh-dependence study and model verification when 

conducting numerical simulations. 
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2.3.6.1 Mesh dependence study 

The numerical results are greatly influenced by the mesh size. The temporal and spatial 

discretization must be carefully designed to achieve convergent solution, maintain 

numerical stability and obtain accurate numerical results. Mathematical accuracy can be 

improved by refining the mesh.  However, the time cost for the simulations at extreme 

dense mesh must be considered when such refinement is applied. The compromise 

between the accuracy and efficiency is usually determined based on the aim of the 

particular study. In general, mesh size is always attempted to be as coarse as possible by 

way of mesh validation on the basis that the calculation results are least affected. 

As mentioned in Section 2.3.3, considering both the accuracy of the results and time 

efficiency, alongside with our aim of study, fine mesh is applied near the cylinder and 

coarse mesh is applied in the far field. The present study applied the same domain size 

and discretization method as that of An et al. [21]. Although An et al. gave a discussion 

on mesh validation when choosing the computational mesh, for the present study, 

careful mesh dependency experiments were still performed in a similar fashion but with 

different mesh prescriptions. 

Table 2.1 A comparison of different meshes evaluated. ∆e/D is the distance between the first nodal point and the 

cylinder diameter in the radial direction of the cylinder; Ncy2D is the number of elements on the cylinder 

circumference in the cross section of the domain; Np2D and Ne2D are the total number of nodal points and elements 

respectively in the cross section of the domain; Np3D and Ne3D are the total number of nodal points and elements 

respectively in the 3-D domain; Ncy3D is the number of 2-D mesh layers; and ∆z/D is the axial density along the 

cylinder. 

Mesh  ∆e/D Ncy2D Np2D Np3D Ne2D Ne3D Ncy3D ∆z/D 

a 0.0016 80 7460 305,860 7280 291,200 40 0.100 

b1 0.0012 96 8996 368,836 8800 352,880 40 0.100 

c 0.0008 102 9764 400,324 9540 381,600 40 0.100 

b2 0.0012 96 8996 539,760 8800 529,320 60 0.067 

b3 0.0012 96 8996 719,680 8800 719,680 80 0.050 

b4 0.0012 96 8996 863,616 8800 846,912 96 0.038 

b5 0.0012 96 8996 1151,488 8800 1129,216 128 0.030 

Mesh validation for the present study was carried out for seven different meshes as 

listed in Table 2.1. The process for the mesh validation mainly includes two steps. First, 

the two-dimensional cross-sectional plane as shown in Figure 2.2a was examined by 
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changing the nodal point number around the cylinder circumference (a1, b and c in 

Table 2.1) while mesh resolution in the axial direction remained constant. Then, after 

choosing the appropriate two-dimensional resolution, the axial density was investigated 

using the two-dimensional resolution chosen (Mesh a1~5 in Table 2.1).  

Test calculations were run for the case of β = 400 and KC = 2 for up to 100 oscillation 

periods. This value for β was chosen because it is the largest among all the simulation 

cases to be investigated in the present study. With KC fixed, a higher β results in a more 

unstable flow field likely to involve turbulent behaviours of fluid particles, and 

therefore requires the finest mesh resolution. According to An et al.[21], the flow with β 

= 400 and KC = 2 is in the interactive Honji vortices regime where the flow structure is 

unstable. As a result, a more promising approach to study the mesh dependency is to 

compare statistical data calculated from different cases rather than using the primitive 

values of velocity and pressure. 

Following the previous discussion, we choose the quantities of the root-mean-square 

(RMS) Morison force coefficients CM and CD and the axial correlation length Lpx,y of 

pressure coefficient with regards to two measurement lines for validating the meshes. 

The Morison coefficients CM and CD are used to decompose the resultant drag (or in-

line) force per unit length of the cylinder, FD, defined in Equation 2.21. Then the 

definitions for CM and CD can be given in Equation 2.22.  

 
  

2.21  

 

  

2.22  

The axial correlation length reflects the average lengths of the cells in which vortical 

structures occur. The correlation length along the cylinder axis can be defined by 
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2.23  

In which R(z) represents the correlation coefficient, defined by 

  

2.24  

in which the overbar denotes averaging by time, z0 is the reference axial location, ∆z is 

the axial distance between the two measurement points, and p is the fluctuating part of 

the unsteady pressure. Correlation lengths are recorded at two measurement lines. Lpx 

(Lpy) denotes Lp calculated along the line of first nodal points close to the cylinder when 

y/D = 0 (x/D = 0). 

The calculated CM and CD, and Lpx,y based on the seven meshes are compared in Figure 

2.4 and Figure 2.5 respectively. For all meshes evaluated, the absolute values are given 

in Figure 2.4a and Figure 2.5a while the relative values of ∆CM and ∆CD, and ∆ Lpx,y are 

given in Figure 2.4b and Figure 2.5b for the purpose of comparison. As listed in Table 

2.1, first the 2-D resolution is studied between meshes a1, b and c. It is seen that 

although the differences resulting from different 2-D resolutions are not obvious in Lpx,y 

in Figure 2.5, the calculated CM and CD show that about 0.5% difference occurs between 

the most coarse mesh a1 and the finest mesh c. In the present study the intermediate 

mesh b is then chosen as the 2-D mesh to be applied in the next step, the axial density 

examination. Table 2.1 lists the axial variation for meshes b1, b2, b3, b4 and b5. It is 

found that the Lpx,y is influenced most when decreasing ∆z/D from Mesh b1 to Mesh b5, 

with a decrease of about 1.5%. Further evaluation of Figure 2.4b and Figure 2.5b shows 

that increasing the mesh resolution from Mesh b3 to Mesh b5 induces less than a 0.5% 

change in CD, CM and Lpx,y values. However, the computational cost for Mesh b5 is 

approximately 40% higher than that for Mesh b3. The results show that the deviation 

between using Mesh b3 and Mesh b5 is negligible, compared with the additional 

computational cost. As a result, for the present study, Mesh b3 was chosen which was 
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proved to be numerically accurate and temporally economic in computational cost, and 

it suits the main interest of the present study.  

The time step for the simulation was set at dt = 0.005, which is the same as that used in 

the work of An et al.[21], and is considered to be both temporally accurate and stable at 

the low values of governing parameters concerned in this study. 
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Figure 2.4 Calculated Morison coefficients values for different meshes (a) and derivations based on Mesh 7 (b). 
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Figure 2.5 Correlation Length of P (pressure) for different meshes (a) and derivations based on Mesh 7 (b). 

2.3.6.2 Verification of the numerical scheme 

As mentioned before, the current numerical scheme has been applied to various projects 

and the results obtained for different scenarios have been compared successfully with 

those similar studies in the literature. It is proved to be capable of simulating the actual 

physical problems concerned. Some publications using the current numerical scheme 

are listed below to demonstrate the verification for the numerical method. 

One case most relevant to the present study is An et al.’s [21] study on oscillatory flow 

around a circular cylinder at low Re number. The parameter range covered in their study 

is KC = 2 and 100 ≤ β ≤ 600. Using the current numerical scheme, An et al. successfully 

describes the detailed flow structures for the Honji instability, which agrees well with 
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previous physical experiments [14, 15, 18, 24]. Both the instantaneous fluid field and 

the time-averaged steady streaming phenomena are successfully captured and discussed 

in that study. 

A DNS study using this numerical scheme was first applied to study a 3-D flow past a 

yawed cylinder conducted by Zhao et al. [40]. In that study, a fixed cylinder with an 

inclined angle between 0° and 60° is immersed in a steady flow at Re = 1000. The 

calculated wake flow structures are found to compare well with those observed from 

flow visualization in previous studies. Later in Zhao et al. [89], the 3-D numerical 

simulation is applied to an oscillatory flow at higher Re number of 2000 and KC number 

ranging from 6.75 to 30. In Zhao et al.’s paper they first studied the flow regimes for a 

perpendicular incoming flow under different KC number, and then discussed then 

effects of the oblique angle on the vortex shedding regime and resultant hydrodynamic 

forces. Using the results obtained from the numerical model, Zhao et al. evaluated the 

independence principle under the chosen inclination angles and the KC number 

concerned. 

It should be mentioned that the numerical model has been proved to work well under 

various circumstances, sometimes with slight modifications such as applying turbulence 

models. Examples of other applications using the current numerical model include 2-D 

simulations [80], near wall or seabed simulations [79] and combined current and 

oscillatory flow [62]. This shows the versatile capability of the numerical scheme. 

2.4 Post-processing 

Post-processing the computational results involves visualization of the calculated flow 

field and some quantitative analysis of the fluid properties. Both the flow evolution 

history and the instantaneous fluid field are examined.  

The raw results calculated by each parallel processor are first composed to get the whole 

flow field at the chosen moment. This can be done either in the supercomputer system 

or at a single desktop computer. Detailed flow structures can be gained through flow 

visualization of the calculated flow field, which are represented by the primitive 
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variables velocity and pressure. The vorticity components calculated from the primitive 

variables and are also used to demonstrate the vortical structures. Flow visualizations 

are obtained using largely Tecplot, a commercial CFD visualization and post-processing 

software, conducted on a desktop. Quantitative or discrete data processing is gained 

through post-processing codes written in FORTRAN and MatLab. Origin and Excel are 

also involved in post-processing mainly for quantitative analysis.  

 Three-dimensionality demonstration 2.4.1

The prime purpose of the present study is to investigate the hydrodynamic instability 

that causes the flow transition from 2-D to 3-D in the flow field near the cylinder. In this 

study, the third dimension refers to the axial direction. During the calculations, small 

disturbances are resulted from residuals at each time step. If the 2-D flow is intrinsically 

unstable under certain governing parameters, those disturbances will accumulate and 

develop, leading to the transition from 2-D to 3-D flow.  

The onset of 3-D instability is marked by the rising of irregular structures along the 

cylinder’s axis. Several phenomena represent the three-dimensionality of the flow. 

Using the primitive variable velocity, the flow is found to be 3-D when the axial flow 

component appears and begins to increase. The intensity of 3-D can be measured by the 

strength of the axial flow component. Another method to express the 3-D feature is 

through demonstration of the irregular vortical structures. 

 Visualization of the vortical structures 2.4.2

Other than the increase of the axial flow component, the presence of axially irregular 

vortices is also a feature showing the 3-D nature of the resultant flow field. 

Identification of the 3-D flow instability is represented by vortical structures formed and 

vary along the cylinder span.  

The vortical structures are visualised using the instantaneous iso-surfaces of the unit 

amplitude of the three non-dimensional vorticity components (ωx, ωy and ωz) in this 

study. The three vorticity components represent the specific rotation of the fluid 
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particles about different axes as are defined by ωx = , ωy =  and ωz = 

. The three-dimensionality can be reflected by the axial variation of the iso-

surface of ωx (ωy and ωz) = ±1, as shall be demonstrated in the results discussion. 
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CHAPTER 3 

A PERTURBATION METHOD ARISING FROM DIRECT 

STABILITY ANALYSIS 

3.1 Aim of chapter 

In this chapter we will propose a perturbation method to be applied for selected cases in 

the main calculations discussed in Chapter 4 and Chapter 5. The purpose is to establish 

a perturbation method that will facilitate the acceleration of the calculation and assist in 

determining the intrinsic stability of the flow field, while at the same time retain the key 

flow properties in the calculated results as if without perturbation. 

3.2 Introduction 

This chapter provides a new numerical method for tackling the problems of 

hydrodynamic instability, such as the Honji instability which is our main concern. This 

method introduced in this chapter originates from a direct stability analysis, which 

serves as a good approach for studying instability problems. Direct stability analysis is 

previously adopted for studies on the instability characteristics of the natural convective 

thermal boundary layer [90-97]. The key element of the approach is to introduce a 

perturbation to either the governing equations or to the boundary conditions, and then 

the flow field under the effects of the perturbation is examined. A similar perturbing 

approach is applied to some of our main calculations based on our interest. The aims for 

us to apply the perturbations in addition to the free-developing (i.e. calculations without 

perturbation) results mainly include two aspects.  

For one reason, perturbing the flow field can help to accelerate the calculations. In 

Chapter 2 it was mentioned that CFD is a robust tool in conducting studies on 

hydrodynamic instability problems due to its cost-effectiveness and controllability. 

However, in numerical simulations, hydrodynamic instability (such as the Honji 

instability which induces the flow field to take a 2-D to 3-D transition) is triggered 
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through accumulation of numerical residuals, which happens when the flow is 

intrinsically unstable under the flow regime determined by the governing equations. 

Since the residuals are usually small, this process may be very long before the 

instability is finally induced, especially for the cases under marginal governing 

parameters. To improve this situation, an artificial perturbation is introduced to 

accelerate the flow development. 

Another purpose is to evaluate the intrinsic stability of the flow field and the properties 

of the hydrodynamic instability developed. There are two types of hydrodynamic 

instabilities, namely, absolute instability and convective instability. In particular, for the 

Honji instability which accounts for the 2-D to 3-D flow transition, absolute instability 

refers to a case that flow remains 3-D, following an artificially applied 3-D initial 

instability. The convective instability refers to a case that flow gradually develops into 

3-D with an on-going perturbation being applied to the flow field. If neither absolute 

instability nor convective instability develops, the flow is intrinsically stable. 

This chapter deals with the definition of an on-going perturbation that fulfils the main 

purposes as given above. The perturbing method used here is similar to that applied in 

the direct stability analysis [98], i.e. the perturbation comes into effect by adding a 

source term in the governing equations. Details of the mathematical formulation are 

given in Section 3.3. It is noted that the perturbation has to be chosen carefully so that 

the resultant flow field is not fundamentally altered and is still conceptually correct. 

Validation of the method is conducted by comparing the flow developing process as 

well as the resultant instantaneous flow field with those obtained without perturbation  

(i.e. free-developed).  

For ease of reference, angle θ is defined in Figure 3.1 to represent circumferential 

locations on the cylinder. According to the definition, the positive x-axis stands for the 

value of θ = 0° and the positive y-axis stands for the value of θ = 90°. The half-

circumferential range from θ = 0° to 180° (the upper half plane) is named the ‘top half-

plane’; and the other half (from θ = 180° to θ = 360°) is regarded as the ‘bottom half-

plane’. 
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Figure 3.1 Definition sketch of the phase angle θ.  

3.3 Mathematical formulation 

 Governing equations 3.3.1

In this study, an axial random perturbation was added in the dimensionless Navier-

Stokes equations, which were then solved together with the non-dimensionalized 

continuity equation. It is known that the Honji instability is a 3-D instability 

demonstrated by an axial variation of the near-cylinder flow field. Therefore, the 

perturbation as a source term was only added in the z-component momentum equation. 

The dimensionless momentum equations for the perturbed flow field then read 
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For x and y axes 
 

3.1a 

3.1b 

For z axis   

3.2  

in which SP stands for the perturbation as a source term. The continuity equation 

remains the same as that given in Equation 2.3. 

The perturbed governing equations together with the initial and boundary conditions as 

specified in Section 2.3.5 are solved using the Petrov-Galerkin’s FEM described in 

Chapter 2. The source term SP is first determined through a series of test runs discussed 

in the following section. The governing parameter group (KC, β) = (2, 200) is chosen 

for the calculations for the evaluation of the perturbed method. 

 Definition of the perturbation 3.3.2

Several aspects need to be considered when applying the perturbation. First the location 

where the perturbation is added is determined. Perturbation needs to be placed in a 

position that does not interfere with intrinsic nature of the hydrodynamic instability. 

Therefore, we choose the shoulders of the cylinder out of the consideration that Honji 

structures mainly develop in the range near the top and bottom of the cylinder, i.e. at 

approximately 90° from the shoulders region. The perturbation term is applied to points 

located in the range of 0.5 < |x/D| < 0.5025 and -0.05 < y/D < 0.05 at the cylinder 

shoulders (i.e. θ = 0° and 180°). In addition, it is speculated that the Honji instability is a 

convective instability which associates with small disturbances generated at the leading 

edges of the cylinder. If that is the case, deliberately prescribing small disturbances at 

the shoulders may help to trigger the Honji instability. Both sides of the shoulders are 
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included, in order to keep the symmetry of the oscillatory flow field. For the 2-D cross-

sectional mesh, there are 39 nodal points perturbed on each side of the shoulder. In total 

6318 nodes are perturbed in the 3-D mesh. In addition, the perturbation should be 

random along the cylinder span to avoid assigning a pre-defined frequency to the flow 

field. Finally, for the purpose of keeping consistence with the sinusoidally oscillatory 

free stream, the perturbation should include a sinusoidal function in phase with the free 

stream. 

Following the previous discussion, an primitive expression for the perturbation SP can 

be written as  

3.3 

in which A is the amplitude of perturbation to be determined later on, Random[0,1] 

stands for a random number in the range of 0 to 1, and sin(2πft) is a sinusoidal function 

in phase with the free stream where t is the dimensionless computational time and f is 

the frequency of the perturbation, which is also given as random. 

 Tests for the source term 3.3.3

Test runs are conducted for the case of (KC, β) = (2, 200), under which it has been 

reported [21] that the flow falls into the stable Honji regime where the distinct 

mushroom-like Honji vortical structures can be observed around the cylinder surface. 

3.3.3.1 Randomness check 

As mentioned before, the perturbation applied should be random along the cylinder span 

in order to avoid influencing the intrinsic frequency of the Honji instability. Figure 3.2 

presents two plots demonstrating that the perturbation prescribed is random. To show 

that the perturbation term added in the governing equations as given in Equation 3.3 is 

random, SP is plotted against the cylinder length for several early steps in Figure 3.2a. 

The SP values shown are obtained from an axial line of the first nodal points next to the 

cylinder at θ = 0°, which is within the perturbed region. To show that the resulting flow 

field is also random at the perturbed points, Figure 3.2b shows the contours of uz/Umx in 
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a circuit plane around the cylinder circumference recorded on points next to the cylinder 

surface for the first time step. At this instant, a slightly larger uz/Umx is seen at two 

shoulders of the cylinder (i.e. θ = 180° and θ = 0°, or 360°) due to the added 

perturbation, and the axial random variation of uz/Umx can be observed. In the rest of the 

flow field other than the perturbed area, uz/Umx is zero. The randomness of the 

perturbation is obvious as demonstrated in both figures. 
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Figure 3.2 Demonstration of the random perturbation through (a) plot of source term (SP) amplitude along the 

cylinder span for three early time steps and (b) plane view of instantaneous contours of uz/Umx around the cylinder at 

the 1st time step. Probed at a circuit of the first nodal points next to the cylinder surface. 
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3.3.3.2 Determination of the amplitude A 

In Equation 3.3 for the definition of the perturbation to be prescribed, the amplitude A 

should be evaluated carefully. To satisfy our main aims in applying the perturbation, the 

amplitude should neither be too large to maintain convergence of the calculation, nor 

too small to accelerate the flow development. The value of the amplitude of perturbation 

is regarded as appropriate when the system response is linear [94, 98]. Tests were run 

for the amplitudes A, 0.5A and 2A to see the effects on the resultant flow field. At first, 

the base amplitude A was set at 0.001, which was found to be too small to have any 

influence on the flow development. Several runs were conducted as A is increased from 

that value (test runs including A = 0.005, 0.1, 0.15, 0.2, 0.3, 0.4, 0.8), and it was 

observed that when A = 0.2 the flow development could be reasonably accelerated. 

Therefore the base amplitude was prescribed as 0.2. Next, in order to ensure the system 

response was linear, calculations for 0.5A (0.1) and 2A (0.4) were also conducted. 

Calculations for the three cases were run for 100 flow periods, and the characteristic 

properties of the resultant flow field were compared, including the time for the onset of 

Honji instability, the dominant wavenumber, and the standard deviation of the axial 

velocity component at selected points along the cylinder circumference. 

First, the flow developments under different amplitudes of the perturbation are 

compared. The development of the flow was visualised by monitoring the time history 

of the relative axial velocity component uz/Umx along a probe line which is parallel to 

the axis of the cylinder and close to its surface at θ = 90° with (x/D, y/D, z/D) = (0, 0.51, 

0-4). The position of the probe line is sketched in Figure 3.3. This line locates within the 

Honji vortical structures once the instability occurs. The non-dimensionalized axial 

velocity component uz/Umx is measured along this line at the same phase of the flow 

oscillation cycles. In the results presented in Figure 3.4, this velocity is recorded at T/4 

into the oscillation period, i.e. at the moment when the free stream has the maximum 

amplitude. The recorded uz/Umx then has the attribute (0, 0.51, z/D, Ni+T/4), in which (0, 

0.51, z/D) specifies the location of the measured points and Ni is the number of the flow 

oscillation cycle, where Ni = 0, 1, 2, …, 100 as shown in Figure 3.4. Both the temporal 

and spatial evolution of the flow structures can be demonstrated in this type of figure. In 

this method, the strength and direction of uz/Umx are reflected by the colour shade of the 
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contours, and the three-dimensionality of the flow can be observed by the change of 

colour patterns as the latter indicates the variation of the axial velocity along the 

cylinder span. When the flow develops to be 3-D, vortices form along the cylinder span, 

which are represented by the stripes in Figure 3.4.  

 

Figure 3.3 Sketch of the probe line at θ = 90° with (x/D, y/D, z/D) = (0, 0.51 0-4). Data is recorded for the points 

along the probe line represented by the dash line in this figure. 

(a) 0.5A 

Phase I II III 

(b) A 

Phase I II III 

(c) 2A 

Phase I II III 

 

Figure 3.4 Evolution of the 3-D Honji vortices along the probe line shown in Figure 3.3, under different perturbation 

amplitudes: 0.5A, A and 2A, where A = 0.2. 
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As shown in Figure 3.4, the flow development can be divided into three main phases as 

labelled in each figure: phase I, phase II and phase III. First, when the calculation starts, 

the featureless 2-D flow (phase I) remains until the accumulation of the numerical 

residuals is sufficiently large to turn the flow into phase II, which begins with the onset 

of three-dimensionality (represented by the variation of the contour shade). The three-

dimensionality initially appears as the evenly distributed vortex pairs along the cylinder 

span during Phase II. This is a transient stage, which soon ends with the onset of 

interactions between the unstable neighbouring vortices. The vortex interactions are 

signalled by the ‘fork-like’ structures observed in Figure 3.4, which are formed as a 

result of the merging of neighbouring vortices. The vortex interactions mark the 

beginning of a new phase - phase III, when vortices begin to shift along the cylinder 

span, and merging of neighbouring vortices causes a slight decrease in the number of 

vortices compared to that in phase II. 

The flow developments calculated with different perturbation amplitudes show small 

variations as observed in Figure 3.4. This is not necessarily an effect of the amplitudes 

because, in fact, small variations are expected due to the randomness of the perturbation. 

Despite the slight distinctions between the results obtained under different amplitudes, 

Figure 3.4 shows that the three spatial-temporal figures have the same essential 

attributes mainly reflected in two aspects. Firstly, the time for the onset of the Honji 

instability for all cases is roughly N = 30, i.e. the duration of phase I under different 

amplitudes is roughly 30. Secondly, both in the transient phase II and in the final quasi-

steady phase III the number of vortex pairs formed along the cylinder span is the same 

for all the three cases. As can be observed, once the 3-D features appear, for all cases in 

phase II there are six pairs of vortices along the cylinder span, represented by the six 

stripes. Then two neighbouring pairs merge during a transitional stage, thus leaving five 

pairs of Honji vortices, when the flow field enters a quasi-steady stage (phase III). 

Next we compare the characteristic wavenumbers obtained from results at different 

amplitudes. Figure 3.5 gives the results of the computed FFT (Fast Fourier Transform) 

for the three cases at N = 100 along the probe line shown in Figure 3.3. As is seen in 

Figure 3.5, for all perturbations with different amplitudes, the same non-dimensional 

wavenumber is obtained, with a value of roughly 1.2. Over a cylinder span of 4D, this 
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wavenumber gives five (1.2 4 = 4.8 ≈ 5) vortices, consistent with Figure 3.4. Recall 

that the initial perturbation applied is random and similar to white noise at the beginning 

of the calculations, therefore, it can be deduced that a dominant wavenumber of 1.2 is 

an intrinsic characteristic for the Honji instability developed in the near-cylinder flow at 

the specified governing parameters. The consistence between the three cases observed 

in Figure 3.5 indicates that the change of amplitudes does not result in variation of the 

characteristic wavenumber. 
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Figure 3.5 Comparison of the FFT results between different amplitudes at N = 100. 

Although the previous discussions have primarily demonstrated consistent results 

between using different amplitudes, in order to confirm that the base amplitude chosen 

is appropriate, it is important to ensure that the response of the system is linear with 

different amplitudes. For this aim, the instantaneous spatial growth of the axial velocity 

component along the cylinder circumference is examined. For the selected θ values, we 

calculate the standard deviation of the non-dimensionalized axial velocity component 

uz/Umx at the recorded points along the cylinder span. The formula for this calculation is 

given in Equation 3.4, in which Nz is the number of nodal points for a single line along 

the cylinder, uz(n) is the value of uz at the nth point, and  is the mean value calculated 

along the specific probe line. The measured points in each axial probe line consist of the 

first nodal points next to the cylinder surface, similar to that shown in Figure 3.3. The 

results are given in Figure 3.6, which shows the logarithmic plot of the calculated 

Wavenumber 
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standard derivation of uz/Umx (denoted as u’zstn) against the chosen points around the 

circumference of the cylinder. 

u’zstn =  
3.4 
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Figure 3.6 Standard deviation of the dimensionless axial velocity component u’zstn verses spatial phase angle θ in 

logarithmic scale along with the fitted curve at N = 100. Data recorded for selected points around the circumference 

between the two shoulders (θ = 0° and 180°) of the cylinder with an interval of 15°. 

As can be seen in Figure 3.6, along the circumference the variations of the statistical 

axial velocity calculated for the three cases are similar. Particularly in the range of θ ≈ 

15°- 60°, the three cases bear a similar trend of spatial growth along the circumference. 

The curves in the range of θ ≈ 15°- 60° shown in Figure 3.6 were fitted with a formula 

of u’zstn = aebθ, where a is the initial amplitude and b is the spatial growth rate. The 

fitted curves are included in Figure 3.6, and the parameter values found through fitting 

are given in Equation 3.5. It is seen that the relative difference of the spatial growth rate 

b for the three cases is insignificant (maximum around 10%) compared with the relative 

variation of the amplitude of the perturbation (a 100% increase from 0.5A to A and from 

A to 2A). Therefore, for all three amplitudes, b can be treated as a constant, indicating 

the spatial growth is steady and independent of the amplitude of the perturbation. 
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According to Lei and Patterson [94], this indicates that the system response can be 

regarded as linear, and that the resultant flow behaviours are invariant despite changing 

the perturbation amplitudes. The base amplitude A (0.2) is hence applied for the 

subsequent calculations. 

For 0.5A: 

u’zstn = 0.0018e0.045θ 

3.5a 

For A: 

u’zstn = 0.0022e0.040θ 

3.5b 

For 2A: 

u’zstn = 0.0024e0.044θ 

3.5c 

So far, all the elements of the source term SP which serves as the perturbation are 

determined. The expression for the perturbation given in Equation 3.3 is now updated to 

be 

3.6 

with all terms checked and evaluated. In the following section, calculations with the 

determined perturbation are conducted. 

3.4 Resultant flow field with and without perturbation 

The flow field calculated with a prescribed perturbation is compared with the free-

developing flow field to check the effects of the additional perturbation on the main 

features of the resultant flow field. Following the test runs, the cases concerned are 

calculated under the governing parameters of (KC, β) = (2, 200). The calculations are 

run for 100 flow periods to allow the flows to develop into the quasi-static phase III. 
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Both the flow development and the instantaneous flow properties calculated with and 

without the prescribed perturbation are compared and discussed. 

 Flow development 3.4.1

(a)  
Phase I II III 

(b)  
Phase I II III 

 

Figure 3.7 Flow development for the cases of (a) free-developing flow and (b) perturbed flow at (KC, β) = (2, 200). 

Probed along the line of (x/D, y/D, z/D) = (0, 0.51 0-4) as demonstrated in Figure 3.3. 

The flow developments over 100 oscillation periods are compared in Figure 3.7 for the 

free-developing case and the perturbed case. The figures are again obtained along the 

probe line shown in Figure 3.3. The three different phases in the flow developing 

process can be identified for both cases. The main features of each phase have been 

described in Section 3.3.3.2 and shall not be repeated here.  

Comparing the two cases, it is obvious that adding the perturbation reduces the duration 

of phase I, and the flow enters a 3-D phase II much earlier. This is because the added 

perturbation promotes the accumulation of the numerical residuals, and therefore 

triggers the three-dimensionality to develop earlier. Compared with the free-developing 

case, the perturbation brings the onset of 3-D forward from about 60th to about 30th flow 

period. In addition, the transient phase II is also shortened by the perturbation, lasting 

for only about 20 periods from N = 30 to 50, while for the free-developing case, phase II 

runs for more than 30 periods from N = 60 to roughly 95. After the transient phase II 
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persists for some periods, the balance between the evenly-distributed vortices is broken, 

and the flow enters phase III, where the vortices are unstable and shift along the 

cylinder span, causing the interactions between them. The ‘fork-like’ structures 

observed in the stripes stand for the merging of the two existing vortices. The 

instantaneous 3-D structures for this phenomenon is covered in Section 4.4.1 rather than 

here as it is not directly related to our concern for the present chapter. 

As seen from Figure 3.7, the interactive phase III begins at around N = 50 for the case 

with the added perturbation, which is more than 40 periods earlier compared with the 

free-developing case. Considering all the three phases experienced by the flow until the 

quasi-static Honji regime is reached, it is concluded that, in general, adding the 

perturbation accelerates the flow development by about 40 ~ 50%. 

Another observation worthwhile mentioning is that the number of vortex pairs formed 

throughout the 3-D stages is not altered by adding the perturbation. As can be seen in 

Figure 3.7, the number of resultant vortex pairs formed along the cylinder in both phase 

II and III is the same for the two cases. In phase II, both cases have six vortex pairs 

evenly distributed along the cylinder. When phase III starts, the number of vortex pairs 

is reduced to five as a result of vortex interaction. For a more precise comparison on the 

vortical structures, the characteristic wavenumber obtained through the FFT calculations 

is given in the next section. 

 Instantaneous flow behaviours 3.4.2

This section presents the comparison of the instantaneous flow properties between the 

free-developing and perturbed flows, including the characteristic wavenumber obtained 

through FFT, the pressure distribution along a near-cylinder circle around the 

circumference, the distribution of the three velocity components along probe lines, the 

circumferential distribution of the statistic axial velocity, and the visualization of the 3-

D flow field. 
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3.4.2.1 Characteristic wavenumber 
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Figure 3.8 Characteristic wavenumber for the free-developing case and the perturbed case at (KC, β) = (2, 200). 

Calculated through FFT at N = 100. 

The characteristic wavenumbers in phase III for the two cases obtained through FFT are 

compared in Figure 3.8. As is observed from Figure 3.8, both cases with and without 

perturbation bear the same dominant wavenumber of 1.2 (the maximum value from the 

curve), corresponding to five main vortex pairs (the same as demonstrated in Figure 3.7). 

In addition, the second peak value and even the third peak value of the two FFT curves 

match very well, and the trends of the whole curves for the two cases are also very 

similar. Recall that the perturbation prescribed is a random value both in space and in 

time, it is thus found that the random perturbation is filtered out as the flow field finally 

evolves into a Honji instability similar to the results of the free-developing case, with a 

characteristic wavenumber of 1.2. This means that the characteristic wavenumber 

reflecting the frequency of the Honji structures is not modified by adding the 

perturbation. 
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3.4.2.2 Pressure distribution 
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Figure 3.9 Pressure distribution along the cylinder circumference for the free-developing case and the perturbed case 

at (KC, β) = (2, 200). Calculated at N = 100 and probed in the plane of z/D = 2. 

Figure 3.9 presents the circumferential distributions of the mean pressure coefficient Cp 

for the two cases at N = 100. The measurement points are in the cross-sectional plane of 

z/D = 2, the axial location of which is indicated in Figure 3.13. The definition of Cp is 

given in Equation 3.7, in which Ps is the reference pressure taken from the pressure at 

the far field.  

3.7 

As demonstrated in Figure 3.9, the pressure distributions around the circumference 

calculated for the two cases agree quite well. It is observed that, for both cases, Cp bears 

a symmetric distribution with respect to the centre line (the x-axis) The largest value of 

Cp is found at  = 180°, which is the present front portion of the cylinder in relation to 

the instantaneous flow direction (which is the same as shown in Figure 3.1). The value 

of Cp is slightly smaller at  = 0°, i.e. the rear of the cylinder in relation to the flow 

direction, where Cp is close to zero. This means the pressure at the front of the cylinder 

is close to the far field value. Near the top and bottom of the cylinder (θ = 90° and 270°), 

Cp shows negative peaks, and has the largest distinction from the far field, as a result of 
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the Honji vortical structures. Although small differences between the peak values are 

found, they are in fact negligible and the overall trend of the circumferential distribution 

of Cp repeats that without the perturbation. 

3.4.2.3 Distribution of the velocity components 

The non-dimensionalized velocity components, namely ux, uy and uz,
 at N = 100 

calculated for both the free-developing case and the perturbed case are compared along 

two probing lines in the cross-sectional plane of z/D = 2. Results are plotted in Figure 

3.10 for the probe line of θ = 0° at the cylinder shoulders in the range of the added 

perturbation, and in Figure 3.11 for the probe line of θ = 90° at the cylinder crown 

within the range of the Honji instability. At the instant shown, the flow is at its peak, 

and the values of the velocity components at the far field is (ux/Umx, uy/Umx, uz/Umx) = 

(1, 0, 0). 

For the case of θ = 0° shown in Figure 3.10, the distributions of ux, uy and uz for the two 

cases agree fairly well, especially for the streamwise component of ux and axial 

component of uz. It is observed from Figure 3.10a that ux increases from zero at the 

cylinder surface to the value of one in the streamwise direction along y/D = 0. The other 

two velocity components, namely uy and uz, are both zero at the far field. However, in 

the region close to the cylinder, a positive uy can be observed in the range of 

approximately 0.5 ≤ x/D ≤ 1. Within this range, it is noticed that the positive uy for the 

perturbed case is slightly larger than that measured for the free-developing case, which 

is attributed to the added perturbation. The relative difference between the maximum 

values of uy/Umx for the perturbed and free-developing case is roughly 17%. This is 

because that the free-developing case at N = 100 is not as fully developed as the 

perturbed case. However, as shown in the figure, the general trend of the velocity 

distributions agree well with each other. 

For the distribution demonstrated in Figure 3.11, the recorded points close to the 

cylinder fall in the range of the Honji vortical structures. Therefore in the near-cylinder 

region, when increasing from the zero value resulting from the prescribed no-slip 

boundary condition at the cylinder surface, the component ux becomes larger than the 

free stream (= 1) due to the formation of the Honji vorticity, and is restored to a value of 
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one at locations further away from the cylinder. The distributions of ux from both cases 

have good consistency as shown in Figure 3.11a. For the other two components uy and 

uz, the velocity distributions close to the cylinder surface bear both a positive and 

negative value, again due to the formation of the vortical structures. Despite the 

negligible small differences observed in Figure 3.11b,c, the trends of the distribution 

curves are very similar. The velocity distributions within the Honji vortical structures 

obtained from both cases have good consistency for all three components. 

It is found that adding the perturbation results in no significant alteration of the 

distribution of the primitive velocity components either in the region after the cylinder 

where perturbation is applied or in the cylinder crown where the Honji vortices evolve. 

Still, a more rigorous comparison is given on the calculated standard deviation value of 

the axial velocity component in the next section. 
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Figure 3.10 Instantaneous velocioty components plotted against x/D (along θ = 0°) in the cross-sectional plane of z/D 

= 2 at N = 100. Ambient |ux/Umx| = 1, |uy/Umx| = 0, |uz/Umx| = 0. 
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Figure 3.11 Instantaneous velocioty components plotted against y/D (along θ = 90°) in the cross-sectional plane of 

z/D = 2 at N = 100. Ambient |ux/Umx| = 1, |uy/Umx| = 0, |uz/Umx| = 0. 
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3.4.2.4 Circumferential distribution of the statistic axial velocity 

A quantitative description that compares the free-developing flow with the perturbed 

case is given using the standard deviation of the axial velocity component (u’zstn), which 

can be calculated using Equation 3.4. As mentioned before, this value reflects the spatial 

growth of the instability around the cylinder circumference. 

Results obtained from the two cases are presented in Figure 3.12, from which it can be 

observed that the trends of the two curves are very close. Around the half circumference, 

for both cases the value of u’zstn grows in the range of θ = 0° to 110°, with the largest 

growth rate observed from 30° to 80° and a relatively flat slope afterwards until 110°. 

After that point, the value of u’zstn decreases quickly to zero at the opposite side of the 

cylinder when the locations are out of the Honji vortical range. Although the two cases 

show similar growing trend, there exist small differences in the absolute values of the 

calculated u’zstn. The largest difference in the value of u’zstn between the two cases is 

found at around 110°, where u’zstn for the perturbed case is larger than u’zstn for the free-

developing case by 9.8%. Therefore, the additional perturbation exerts no effects on the 

spatial growth trend caused by the instability in this case. 
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Figure 3.12 Instantaneous distribution of standard deviation of the axial velocity component (u’zstn) verses spatial 

phase angle θ around half circumference of the cylinder at N = 100, for selected data points with a uniform interval of 

15°. 
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So far, we have discussed the flow development and instantaneous flow properties such 

as the distributions of pressure and velocity components. The comparison between the 

free-developing case and the perturbed case shows good consistency. It is also 

necessary to present the 3-D flow structures obtained under the two cases for the 

evaluation of the effects of prescribing the additional perturbation. 

3.4.2.5 Three-dimensional flow structures 

(a)  

Right (bottom) 

plane 
Left (top) plane 

z/D = 2 plane 

(b)  

Left (top) plane Right (bottom) 

plane 

z/D = 2 plane 

 

Figure 3.13 Instantaneous structures of iso-surface of ωx near the cylinder for (a) perturbed case and (b) free-

developing case at (KC, β) = (2, 200). Plotted at N = 100. The view direction is illustrated by the coordinate system in 

each figure, which indicates that the figures are plotted in the direction of the major axis of the elliptic cross section. 

With respect to the x-axis, the left is regarded as the top plane (i.e. the circumferential range from θ = 0° to 180° as 

previous defined) and the right the bottom plane (i.e. the circumferential range from θ = 180° to 360°). 

To further confirm that the resultant flow field is not altered by the perturbation, the 

instantaneous flow structures at N = 100 in the quasi-static phase III are compared 

between the perturbed case and the free-developing case. The flow field is visualized 

using the iso-surface for the vorticity component ωx presented in Figure 3.13. Here the 

x-component of vorticity, ωx, is defined as . In Figure 3.13 the iso-

surfaces are given for the unit value of ωx = ± 1, with the two colours denoting two 

opposite directions of rotation. 

As seen in Figure 3.13, the resultant vortical structures from the two cases are very 

similar. All the features that can be observed in the instantaneous flow field for the free-

developing case (Figure 3.13a) can also be observed for the case calculated with 

perturbation (Figure 3.13b). For both cases, the resultant 3-D flow fields take the form 

of two arrays of five two-layer vortex pairs distributed at opposite sides of the cylinder. 

Each two-layer vortex structure consists of a pair of counter-rotating vortices, which are 
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rib-like in the top layer, and in the form of flat patches in the bottom layer. As observed 

in Figure 3.13, for both cases the two arrays are in a staggered arrangement. 

Nevertheless, a closer examination of Figure 3.13 shows two slight distinctions between 

the resultant flow fields from the two cases. It is observed that the five vorticity pairs on 

two sides of the cylinder are all complete and distinct for the perturbed case, while there 

is one vortex pair with half missing and only a single vortex remaining for the case of 

the free-developing case. This is in consistence with the flow development shown in 

Figure 3.7a, from which it can be seen that, at N = 100 (the instant shown in Figure 

3.13), a merging of two vortices for the free-developing case just finishes, which 

explains the remaining single vortex in Figure 3.13a. In addition, the vortices formed 

under the perturbed flow field (Figure 3.13b) generally appear to develop into a slightly 

fuller shape than the free-developing case (Figure 3.13a). This is probably caused by 

effects of the additional perturbation on slightly enhancing the instability of the fluid 

particles at the perturbed area, and those particles are then convected to the Honji region 

to result in stronger Honji vortices. Also, as mentioned previously, the addition of 

perturbation causes the instability to develop faster. However, these small distinctions 

do not alter the consistence of the main characteristics of the resultant vortical structures 

from the two cases both with and without the perturbation. 

3.5 Conclusions 

This chapter describes a method of introducing a lasting perturbation to the free-

developing flow field. This method borrows the idea from the direct stability analysis 

previously adopted for studying thermal dynamic stability problems [94, 98]. 

Under the chosen parameter group of β = 200 and KC = 2, the mathematical formulation 

and evaluation for the definition of an appropriate perturbation are discussed. Applied 

as a source term in the governing equations, the perturbation is lasting during the 

calculations in order to check the convective instability of the flow field. Also for this 

aim, the perturbation is applied at the shoulders of the cylinder so that it is out of the 

region at which Honji vortices form. The perturbation term is defined as given in 

Equation 3.3, and each term in the definition formula is evaluated based on two aspects: 
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one, the instability can be induced earlier and two, the main characteristics of the 

resultant flow field remain unchanged . Finally, the perturbation is determined to be 

with amplitude of 0.2, with a sinusoidal component consistent with the free stream, and 

is random along the cylinder span. 

Effects of the perturbation on the resultant flow field are evaluated by comparing the 

results obtained for both a free-developing flow field and a perturbed flow field under 

(KC, β) = (2, 200). Calculations are run for 100 oscillation periods for both the cases 

with and without the perturbation. It is found that a full development process for the 3-D 

Honji instability can experience three different stages, namely, phase I, phase II and 

phase III. Phase I stands for the featureless two-dimensional flow before three-

dimensionality appears. Phase II marks the onset of three-dimensionality caused by the 

Honji instability, which takes the form of evenly, distributed vortex pairs. Phase III is 

represented by the breaking of the balance between the evenly distributed vortices, and 

interactions between neighbouring vortices can be observed in this phase. Flow 

visualization in phase III shows that the two vortex arrays on two half planes of the 

cylinder distribute in a staggered manner with respect to the cylinder’s main axis. The 

three-phase flow development is typical for the calculations under the Honji instability, 

as shall be discussed in the following chapters. 

It is shown that applying a carefully chosen and evaluated perturbation fulfils our main 

objectives for applying the perturbed method. First, adding the perturbation at the two 

shoulders of the cylinder (θ = 0° and 180°) saves computational time as it induces the 

instability earlier, as demonstrated by the comparison of the flow developments between 

the free-developing case and the perturbed case; second, this method provides a way of 

introducing a lasting perturbation which enables us to check against the convective 

instability and hence to determine the intrinsic stability of the flow. Since adding the 

perturbation at the cylinder shoulders induces the vortical structures at the vertex of the 

cylinder to occur earlier, the Honji instability is regarded as a convective instability.  

At the same time, through comparisons conducted on several aspects including the flow 

development, quantitative values (such as pressure and velocity components) and 

visualization of the instantaneous flow structures, it is found that the additional 
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perturbation poses no significant influence on the free-developing field as to alter the 

key features of the resultant flow field. Hence the perturbation method is regarded as 

successful and, when necessary, can be applied to some of the main calculations 

discussed in the following chapters.   

The perturbation method is used in addition to the free-developing calculations in the 

main calculations described in both Chapter 4 and Chapter 5, where the perturbation 

method is used for checking against the convective instability for the cases that the flow 

field remains 2-D over 200 flow periods, so that the intrinsic stability of the flow field 

can be confirmed. In Chapter 5, for calculations of the flat cylinder case where the 3-D 

features are very weak, perturbation is also applied to stimulate the flow development. 

Another aim of applying perturbation for this case is to check if the Honji vortical 

structures can develop when slight perturbation is applied at the cylinder shoulders, i.e. 

to check against convective instability of the flow field.  
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CHAPTER 4  

HONJI INSTABILITY UNDER OBLIQUE INFLOW 

4.1 Aim of chapter 

In this chapter, we will examine the effects of an axial flow component on the resultant 

flow field under the governing parameters where Honji instability occurs around a 

circular cylinder immersed in a perpendicular oscillatory flow.  

4.2 Introduction 

Although many investigations of Honji instability at low KC and β values have been 

conducted which are of vital importance in providing some fundamental ideas, the 

understanding of this issue remains far from complete. Previous studies mainly focus on 

the situation where the flow approaches the cylinder perpendicularly. This chapter is 

going to examine an oblique oscillatory flow around a circular cylinder under Honji 

instability regime. 

There are few investigations concerning the features of Honji instability with regard to 

oblique incidence or flow past yawed cylinders. Previous studies on yawed cylinders 

addressing the issue of the effects of angle of attack mainly concern either steady 

current over an inclined cylinder or oscillatory flows around a cylinder at relatively 

large KC or β numbers where vortex shedding flow dominates. The majority of these 

studies focus on the discussion on the hydrodynamic force and the validation of the 

independence or cross-flow principle ([7], which states that the perpendicular force 

component on the cylinder is only related to the flow velocity component normal to the 

cylinder axis and is invariant of the angle of attack) rather than giving a detailed 

description of the flow field [35-40, 42, 62, 99]. 
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The primary aim of the present chapter is to extend our understanding of the Honji 

instability to the case where the incident flow is not perpendicular to the cylinder. 

Numerical simulations are carried out to investigate the influence of the incidence angle 

of the incoming flow on the Honji instability that occurs when the flow transits from 2D 

to 3D. The effect of angle of attack is assessed by introducing a suitable axial flow 

component parallel to the axis of the cylinder, to which point we shall return later. The 

present study is the extension to the study by An et al. [21], where oscillatory flow 

perpendicular to an isolated cylinder is examined in the subcritical flow regime and the

transition from 2-D flow to 3-D flow through Honji instability is observed. In the 

contents below, comparisons are made among the simulated flow fields of different 

oblique angles at β = 200, 300 and 400 and KC = 2. The governing parameters covered 

by the numerical calculations in the course of this study are illustrated in Figure 4.1. 

 

Figure 4.1 Flow regimes depending on KC and β. 

4.3 Methodology 

The computational problem is to solve the incompressible Navier-Stokes and continuity 

equations (given in Chapter 2 and Chapter 3). 

 Computational domain 4.3.1

The computational domain applied in this section is similar to that shown in Figure 2.1. 

Its dimension is 40D × 20D ×4D in the x-, y- and z- directions respectively. As 
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mentioned in Section 2.3.1, the free stream oscillates parallel to the x-z plane. For the 

oblique inflow concerned in this chapter, the flow velocity can be decomposed into two 

mutually perpendicular directions. As a result, the free stream has sinusoidal velocities 

in both the x (streamwise) and z (spanwise or axial) directions, as given in Equation 4.1. 

The flow incidence angle (oblique angle or angle of attack, α) is defined as the angle 

between the x-axis and the free stream velocity as shown in Figure 4.2. In this study, the 

velocity component normal to the cylinder span is the x-component of the inflow 

velocity (ux). The nondimensional amplitude of the oscillating flow component in the x-

direction is set to be a unit constant (Umx = 1) throughout the calculations and the 

incidence angle α is obtained by varying the amplitude of the axial flow in the z-

direction. 

 Initial and boundary conditions 4.3.2

The initial and boundary conditions are specified as that described in Section 2.3.5 with 

only one exception, i.e. the inlet and outlet boundary condition for flow past a circular 

cylinder at an oblique attack is given by 

 

  

4.1  

The angle of attack is defined as . Following this definition, larger 

incidence angle implies larger amplitude of the axial flow velocity. Figure 4.3 shows the 

incoming flow field under an attack angle of α. 
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free stream 

ux 
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Figure 4.2 A definition sketch for the angle of attack α. 

(a) α = 0° (b) α = 10° 

(c) α = 20° (d) α = 30° 

Figure 4.3 Velocity vectors from far-field (left) towards the cylinder (right) viewed normal to the oscillation plane for 

different incidence angles. 
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Numerical simulations are conducted to investigate the effects of flow incidence angle 

on flow characteristics around the cylinder at KC = 2 and β = 200, 300 and 400. 

According to An et al. [21], 3-D Honji instabilities exist in this KC and β range for a 

perpendicular approaching flow (i.e. α = 0°). The angle of attack, α, is in the range of 0° 

to 40° in the present study. The values of α chosen actually depend on the β value 

because, at a constant KC, the latter is related to the intrinsic three-dimensionality of the 

flow, as will be shown in the discussions given below. 

4.4 Flow development over 200 periods 

The three-dimensionality of the flow can be observed from the variation of the axial 

velocity along the cylinder span. Flow development is represented by the same 

approach of spatial-temporal figures used in Section 3.3.3. In total, 200 flow oscillations 

are calculated for all the cases to allow sufficient development of the flow field, and the 

results are presented in Figure 4.7, Figure 4.8 and Figure 4.9. 

 Flow development for α = 0° 4.4.1

The flow behaviours for the perpendicular inflow cases are first examined before 

comparing the differences resulted from various α values. It is observed that over the 

200T, the development of the instability can be divided into three main phases labelled 

in Figure 4.7 to Figure 4.9: phase I (for the 2-D featureless flow), phase II (for the 

transient evenly-distributed vortices stage) and phase III (for the interactive stage with 

axially shifting vortices). Descriptions of the characteristics for the three phases are 

given in Section 3.3.3. 

The generation of the new vortices and merging of the existing vortices observed in 

phase III results in the ‘fork-like’ structures shown in Figure 4.4a. The instantaneous 

flow structures at three instants during the transient period are illustrated in Figure 

4.4b,c,d, where we can see that an additional half vortex pair (circled in Figure 4.4b,c,d) 

appears between two existing vortex pairs and finally merges with the one of the same 

sign, causing the latter to be slightly stretched at N = 120 (Figure 4.4d). This process 

causes one vortex pair (the one with the same sign as the transient half period) to shift 
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along the cylinder, when other main vortex pairs remain to be at their original axial 

locations until they merge with the transient vortex pair to be generated next to each of 

them. The generation and merging of the vortex pairs, happening at two sides of the 

cylinder simultaneously (circled in blue dashed lines in Figure 4.4b,c,d), results in a 

slight shift of all pairs along the cylinder span. The transient vortex pair consists of two 

counter-rotating vortices similar to the other main vortex pairs. The reason why only 

half of the vortex pair can be observed in Figure 4.4 is attributable to the inequality of 

the two counter-rotating halves, i.e. the vorticity intense of one half of the vortex pair is 

simply smaller (ωx < 1.0) than that shown in the unit iso-surface for ωx = 1.0, as 

mentioned in the following paragraph. 

The mechanism of the generation of transient vortex pairs and merging of main vortices 

is explained through the process demonstrated in Figure 4.5. When the flow is 

intrinsically unstable, the numerical residuals during the calculations will accumulate 

and finally result in the transition from 2-D to 3-D. At early stage of the calculations, 

the flow first remains 2-D, until the accumulation of the residuals becomes sufficient to 

trigger the first appearance of three-dimensionality represented by the transient phase II, 

which appears in the form of vortex pairs evenly distributed along the cylinder. This 

type of structure lasts for some time before the balance between these equally spaced 

vortex pairs are broken by the increasing numerical residuals as the instability develops, 

which leads to the more active vortices. 

As shown in Figure 4.5a, the first vortex shifting is then observed which results in the 

merging of two neighbouring vortices (denoted by V01 and V02, with the first subscript 

representing the finished number of merging and the second subscript indicating the 

vortex sequence number along the cylinder). This process is the same as that described 

in An et al. [21] for the case of β = 300. The merging results in a new vortex pair 

(denoted by V1, from V01 & V02) that is stronger than the other main vortex pairs and 

located in the middle of the original locations of the former V01 and V02 (Figure 4.5b). 

As a result, the distance between V1 and its neighbouring vortex pair (V03) is larger than 

the average spacing between the main vortex pairs so that a new vortex pair is allowed 

to emerge. At the same time, the distance between V1 and V03 is smaller than the axial 

dimension of a proper main vortex pair; hence, the local vortex pair generated cannot 
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fully develop and is finally ingested by the neighbouring stronger vortex pairs, i.e. this 

new vortex pair is only transient. 

Figure 4.5c shows that the new transient vortex pair (T1) is consisted of two halves of 

counter-rotating vortices originating from two neighbouring vortex pairs, namely, V1 

and V03. Recall that V1 resulted from merging is more intense than the original main 

vortex V03, therefore the half vortex T1r close to and arising from V1 is stronger than its 

counter-rotating part (T1l). The inequality of the two halves (T1r & T1l as given in Figure 

4.5c remains through the transient growth of T1 for the next several periods with the 

most distinct formation seen at N = 110 (Figure 4.5c). 

Finally, as seen at N = 115 in Figure 4.5d, the weaker half T1l is completely ingested 

and suppressed by the stronger half T1r. T1r then draws and connects to the same-signing 

half of the main vortex V03. Merging of T1 and V03 causes a temporary stretching of the 

same-signing half of V03 as well as an axial shifting of the whole V03, as observed in 

Figure 4.5d,e. At the same time, formation of V03 also marks the beginning of 

generation of another new transient vortex nearby, and the whole process will repeat 

itself again in the space between V2 and V04, where a new transient vortex pair T2 is 

spawned as shown in Figure 4.5e,f. 

The flow regime at (α, β) = (0°, 200) is regarded as a stable Honji regime because the 

interactions among the vortices in phase III are very weak. This is because the 

additional vortex pair generated temporally is weak and small compared with the main 

five vortices (as seen in Figure 4.4c, and therefore does not cause a fundamental change 

to the total wavenumber. The consistency in the characteristic wavenumbers obtained 

during the evolution of the transient vortex pair at instants in Figure 4.4 is evidenced by 

Figure 4.6 where the FFT (Fast Fourier Transform) of the axial velocity component is 

given. From Figure 4.6 we can see that, although the generation of the additional vortex 

causes the wavenumber to have a tendency towards 1.5 at N = 105 and 110, this vortex 

is so weak and transient that it does not change the dominant wavenumber, which is 1.2 

for all three Ns shown in Figure 4.4 and Figure 4.6. Considering the cylinder length to 

be 4D, the wavenumber value of 1.2 gives about five (1.2 4 = 4.8) vortex pairs, in 

consistence to that shown in Figure 4.4. The transient vortex pair only exists for about 
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15 flow periods. At N = 120 only five main vortex pairs remain (Figure 4.4d). Therefore, 

the amplitude spectrum in Figure 4.6 corresponding to N = 120 shows a very dominant 

wavenumber of 1.2. 

 

Figure 4.4 Demonstration of the generating and merging of an additional vortex in Phase III. Presented for the case of 

(α, β) = (0°, 200). The dashed circle in red is the probed side as in (a) locations of probing labelled in the spatial-

temporal development figure. The dashed circle in blue is the opposite symmetric pair. (b) ωx at t/T = 105.25, a new 

vortex pair is about to appear. (c) ωx at t/T = 110.25, the additional vortex pair coexists with the main pairs. (d) ωx at 

t/T = 120.25, end of merging. 
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 1 2 3  
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single vortex 
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single vortex 
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merged  
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Figure 4.5 Plane view demonstrating the generating and merging process of a transient vortex pair T1 in Phase III. (a) 

t/T = 100, the first merging of two neighbouring vortices. (b) t/T = 105, early appearance of the additional transient 

vortex pair. (c) t/T = 110, development of the transient T1, with two unequal halves clearly seen. (d) t/T = 115, 

ingestion of the weak half T1l. (e) t/T = 120, merging of the remaining half T1r and the neighbouring main vortex pair 

V03. (f) t/T = 125, completed one vortex interaction and shifting of V03. 
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Figure 4.6 Wavenumber calculated through FFT (Fast Fourier Transform Algorithm) during the evolution of one 

transient vortex at the corresponding moments of Figure 4.4a.  

 Comparison between different values of α  4.4.2

Figure 4.7 compares the evolution of uz/Umx for a flow with parameters β =200 and KC 

= 2 and the angles of attack at α = 0°, 10° and 20°. It can be seen from Figure 4.7 that, if 

the incidence angle of the flow is increased from 0° to α = 10° the initial 2-D structure 

changes to 3-D flow slightly later, with phase II starting at about N = 70 for α = 10° 

compared with N = 60 for α = 0°. It is noticed that for α = 10°, although the first 

merging of two equal vortex pairs happens at N ≈ 100, marking the onset of phase III 

and leaving six evenly distributed vortex pairs along the cylinder span, the persisting 

interactions between two pairs of neighbouring vortices is not observed. Neither 

observed is the shifting of all vortex pairs after generation and merging of an additional 

transient vortex never appears until N = 200. The less active vortex behaviours indicate 

the weakening of the flow instability. It is noted that there are six vortex pairs formed 

along the cylinder, compared with five in the perpendicular inflow case. The flow is 

further stabilised when α is increased larger to 20°, see Figure 4.7c. For α = 20°, the 

flow remains in the 2-D phase I throughout the calculation and no evidence of 3-D flow 

is observed. The instability never occurs with α higher than 20° and the flow 

development is the same as presented in Figure 4.7c.  
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(a)  
Phase I II III 

 

(b)  
Phase I III II 

 

(c)  

 

Figure 4.7 Evolution of the relative axial velocity component uz/Umx at β =200 and for angles (a) α = 0° (b) α = 10° 

and (c) α = 20°. 

The analysis of the vortex structures for α = 0°, 10°, and 20° suggest that larger angle of 

attack or an increase in the axial flow velocity weakens the Honji vortices. Further 

evidence of this observation is provided by calculations at higher β values of 300 and 

400, for which results are given in Figure 4.8 and Figure 4.9 for different values of α. 

To evaluate the effects of increasing β, the cases of α = 0° for β =300 and β =400 are 

first examined. As is expected, the 3-D instability becomes stronger as β increases while 

KC is kept constant, as reflected by the earlier start of phase II and stronger interactions 

among the vortices. When α = 0°, phase II starts earlier and is much shorter for β = 300 

and β = 400 (lasting for about 10 and 5 flow periods respectively), compared with the β 

= 200 case where phase II takes over about 30 flow periods from N = 60 - 90. In 
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addition, for β = 300 and β = 400, strong interactions between vortices can be seen in 

phase III, and the interaction at β = 400 is stronger than that at β = 300 (see Figure 4.8a 

and Figure 4.9a).  

Now the effects of increasing α for each β are discussed. In consistence to what is 

previously mentioned for varying α at β = 200, it is observed that the increase of α also 

reduces the 3-D instability of the flow for higher β values. As seen from Figure 4.8 and 

Figure 4.9, the interaction between vortices in phase III apparently weakens as α is 

larger. At α = 20° for β = 300 (Figure 4.8b), the interaction among the vortices is not as 

strong as that of α = 0°, and the weaker regular-ordered evolution indicates a reduced 

three-dimensionality. The flow development for α = 20° at β =300 (Figure 4.8b) appears 

very similar to that of α = 0° at β =200, with the shifting of vortex pairs clearly seen in 

phase III. However, six vortex pairs distribute along the cylinder span for 20° at β =300 

compared with only five for α = 0° at β =200. The case of α = 30° for β =300 seems to 

be dominated by the 2-D phase I as seen in Figure 4.8c. For β =400, a decreasing trend 

for three-dimensionality can also be seen with the increasing of α, reflected by the less 

irregularity of the velocity contours as α increases. For β = 400, the Honji modes occur 

at α = 30° where the flow develops into a phase III with six equally spaced vortices, but 

are suppressed once the angle of attack exceeds 40°.  
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(a)  
Phase I II III 

 

(b)  
Phase I II III 

 

(c)  

 

Figure 4.8 Evolution of the relative axial velocity component uz/Umx at β =300 and for angles (a) α = 0°, (b) α = 20° 

and (c) α = 30°.  
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(a)  
Phase I II III 

 

(b)  
Phase I II III 

 

(c)  
Phase I III II 

 

(d)  

 

Figure 4.9 Evolution of the relative axial velocity component uz/Umx at β =400 and for angles (a) α = 0°, (b) α = 20°, 

(c) α = 30° and (d) α = 40°.  

As mentioned in Section 2.1, in order to check the intrinsic stability for the cases of (α, 

β) = (20°, 200), (30°, 300) and (40°, 400), it is essential that these cases are evaluated 

against their possibility of being absolute unstable and convective unstable. First, for 

checking absolute instability, these cases were calculated with a pre-assigned 3-D flow 

field as the initial condition to see if the 3-D features amplify or diminish as the 
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calculation progresses. Figure 4.11 shows that the axial variation of uz/Umx is wiped off 

within 20 flow periods for all three cases and the flow resumes a 2-D featureless flow. It 

is noted that although Figure 4.11 only demonstrates the results probed at θ = 90°, it has 

been checked that around the circumference from θ = 0° to θ = 360° no axial variation 

remains. This result shows that the flow is absolute stable. Next for checking the 

convective instability, we conduct calculations by perturbing the flow field using the 

method described in Chapter 3. It is found that no Honji instability is triggered in the 

perturbed flow field after 100 flow periods and that the flow remains 2-D, as indicated 

by the development figures as shown in Figure 4.7c, Figure 4.8c, and Figure 4.9d. The 

flow is hence exempted from being convective unstable. Therefore, it is confirmed that 

the Honji instability is suppressed for the cases of (α, β) = (20°, 200), (30°, 300) and 

(40°, 400), and that the flows are intrinsically stable. 

(a)  

200                    205                       210                       215                      220  

 

(b)  

200                    205                       210                       215                      220  

(c)  

200                    205                       210                       215                      220  
  

Figure 4.10 Contours of the relative axial velocity component uz/Umx for demonstrating the 3-D dissipation under 

large α for the cases of (α, β) = (a) (20°, 200), (b) (30°, 300) and (c) (40°, 400).  
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The conclusion is that the larger the frequency parameter β, the larger axial flow 

component is required to suppress the 3-D Honji structure to grow until finally at some 

threshold, this instability mechanism can no longer operate. 
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Figure 4.11 Characteristic wavenumber obtained from FFT under different α for (a) β =200, (b) β =300 and (c) β 

=400 at N = 200. An offset between different α is applied in each figure for aim of clarity. 

The characteristic wavenumber obtained through FFT for the cases where the Honji 

instability exists is presented in Figure 4.11. The effects of increasing α are clearly seen 

for each β case evaluated here. At β = 200, a single dominant wavenumber is observed 

at both α = 0° and α = 10°. The dominant wavenumber changes from 1.2 to about 1.5, as 

α is increased from 0° to 10°. As mentioned before (see Section 4.4.2), at N = 200 six 

evenly distributed vortex pairs are observed for α = 10° because of the weakened 

instability, resulting in a wavenumber of 1.5. For the perpendicular incidence cases for β 

= 300 and 400 which are strongly unstable, no dominant wavenumber is identified. As α 

grows, a dominant wavenumber begins to stand out, and the value of wavenumber 

decreases with an increase in α, indicating that fewer vortex pairs are distributed along 
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the cylinder span. The dominant wavenumber read from Figure 4.11 and the number of 

vortex pairs counted from the instantaneous flow structures for each case is listed in 

Table 4.1. The number of vortex pairs is in consistence with the calculated dominant 

wavenumber. For β = 200, the flow field of α = 10° (with six evenly distributed non-

interacting vortices) is more stable than that of α = 0° (with five interacting vortices) as 

discussed in Section 4.4.2. The dominant wavenumber increased from 1.2 to 1.5 due to 

the increase of the number of vortex pairs. For β = 300 and 400, a decrease in instability 

with an increase of α is indicated by the fact that fewer interactions between vortices 

can be observed (represented by the standing out of a dominant wavenumber) and that 

fewer vortices are formed along the cylinder at large α. 

Table 4.1 Comparison of calculated wavenumber and the number of vortex pairs counted for all cases studied. 

β 200 300 400 

 wavenumber Number of 

vortex pairs 

wavenumber Number of 

vortex pairs 

wavenumber Number of 

vortex pairs 

α = 0°   1.2 5 2.4 10 2.2 or 3.2 9 or 13 

α = 10°   1.5 6 2 8 2 8 

α = 20°     1.5 6 1.5 6 

α = 30°       1.5 6 

 Flow regime dependence on α and β 4.4.3

The results obtained thus far are sufficient to identify three regions in a α-β space as 

sketched in Figure 4.12. Based on our observations, three distinct flow regimes are 

defined as the following:  

� Regime I for the unstable Honji regime; 
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� Regime II for the stable Honji regime; 

� Regime III for the two-dimensional vortex-free regime. 

Regime I arises at relatively large β and small α, where the flow is in the highly unstable 

Honji flow regime where neighbouring vortices interact strongly and frequently 

(merging and splitting). In contrast, within regime II, stable vortex modes hold which 

are seen as the typical mushroom-like structures. Last, within regime III, and at 

comparatively large values of α, the Honji mechanism is suppressed and featureless 2-D 

flow dominates throughout the calculations.  

It should be mentioned here that Figure 4.12 is provided only as a general guidance, and 

the boundaries between the various regimes are somewhat speculative. This is because 

in order to locate the boundaries more accurately it would require extensive and lengthy 

calculations that are unlikely to be particularly instructive, especially when it is realised 

that the precise positions of the transitions between the regimes are also functions of KC. 

 

Figure 4.12 Sketch of the approximate geometry of the three flow regimes in α-β parameter space for KC = 2. 

4.5 Developed flow structures 

Further information relating to the nature of the vortical structures formed around the 

cylinder can be obtained from visualization of the typical instantaneous flow structures. 
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In the following the vortex evolution within one oscillation period is discussed. The 

results given are for β = 200 and 400 but the same observations also apply to the case of 

β = 300, which is not discussed here to avoid repetition. 

 Description of the instantaneous structures 4.5.1

The 3-D vortical structures are viewed in terms of the iso-surface of the x-component of 

vorticity (ωx = 1) as illustrated in  for β = 200, and in Figure 4.14 for β = 400. The 

vortices are much more active at higher β (400) than lower β (200), and strong 

interaction between the vortices is observed at β = 400 for α < 30°. The interaction is 

impeded by the existence of an axial flow component. As mentioned previously, stable 

Honji structures occur when (α, β) = (0°, 200), (10°, 200) and (30°, 400). These 

structures appear as pairs of rib-like counter-signing vortices wrapping diametrically 

opposite sides of the cylinder, composed of two layers in the radial direction (see a, b 

and Figure 4.14d). For the oblique flow cases, the stable and regular vortical structures 

along the cylinder span are different from the typical Honji vortices formed under 

normal incidence, as shall be discussed later. At (α, β) = (20°, 200) and (40°, 400) the 

flow does not possess any 3-D property and remains purely 2-D. For these cases the 

cylinder is wrapped by axially invariant vorticity contours, as is seen from c and Figure 

4.14e.  

 

Figure 4.13 Instantaneous structures of iso-surfaces of ωx near the cylinder at KC = 2 and β = 200 for various values 

of the incident angle α. (a) α = 0°, (b) α = 10°and (c) α = 20°. Plot at N = 200. The view direction is illustrated by the 

coordinate system in each figure.  

(a) β = 200, α = 0  

Left (top) plane Right (bottom) 

plane 

(b) α = 10  (c) α = 20  
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(a) β = 400, α = 0  

Left (top) plane Right (bottom) 

plane 

(b) α = 10  (c) α = 20  

(d) α = 30  (e) α = 40  

 

Figure 4.14 Instantaneous structures of iso-surfaces of ωx near the cylinder at KC = 2 and β = 400 for various values 

of the incident angle α. (a) α = 0°, (b) α = 10°, (c) α = 20°, (d) α = 30°and (e) α = 40°. Plot at N = 200. The view 

direction is illustrated by the coordinate system in each figure.  

It can be concluded that the 3-D features of the flow under oblique flows (i.e. α ≠ 0°) 

differ from those corresponding to α = 0° in several ways. First, it is obvious that the 

vorticity distribution in oblique flow acquires a sheet flow that lies below the rib-like 

vortices attached to the cylinder surface. This sheet flow leads to the existence of a uni-

directional vorticity in the boundary layer. At α = 0° the two vortices in each pair are 

equally strong and symmetric and are perpendicular to the cylinder axis. In the oblique 

attacks, the vortex pairs are unbalanced and the two vortices in each pair are of unequal 

strengths and wrap around the cylinder (see most clearly in b). Last, for β = 200, the 

vortex pairs are distributed along the cylinder in a staggered manner when α = 0°, but sit 

side-by-side when the incoming flow is oblique. This is because as shown in the flow 

development figures, that at N = 200, for α = 0° the flow has reached phase III with 

persisting vortex interactions, while for α = 10° six evenly-distributed vortex pairs along 

the cylinder span is observed. The vortex distribution is staggered because of the 

shifting of vortices caused by the generating and merging of the transient vortex. Since 

the flow at α = 0° is intrinsically more unstable than that at α = 10°, the vortices are first 
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diametrically symmetric at phase II (similar as that shown in b), then become staggered 

in phase III as a result of vortex interactions.  

 Evolution of the two-layer structures within one flow period 4.5.2

The evolution of the two-layer vortical structure wrapping the cylinder surface in one 

period of the flow is studied in planes of x/D = 0 (perpendicular to the x-axis) and z/D = 

2 (perpendicular to the z-axis). The locations of the z/D (cross-sectional) plane are 

indicated by the dashed lines in the x/D = 0 planes. It should be noted that the cross-

sectional plane at a certain z/D value only reflects the evolution of specific vortices 

which can be shown in that plane. For the stable cases at β = 200, the vortices shown on 

cross-section planes such as z/D = 2 may reasonably present the behaviour of others as 

the vortices remain relatively identical along the cylinder span. However, for the 

strongly irregular cases of β = 400, the behaviours of the vortices in plane z/D = 2 only 

represent themselves, not the rest of the vortices at other axial locations. Nevertheless, 

for such cases we still analyse the behaviours of vortices on a chosen z/D in the hope of 

understanding the possible characteristics of a single unit under the unstable Honji 

regime through samples. 

4.5.2.1 Vortices in x/D = 0 plane 

The distribution of all the vortices along the cylinder span within one flow oscillation 

period is demonstrated in plane of x/D = 0 from Figure 4.15 to Figure 4.19. In each of 

these figures seven instants within one flow period are shown. In particular for the first 

half-period, five moments with an interval of T/8 are presented while only three 

moments with a T/4 interval in the next half period are given for aim of avoiding 

repetition. Figure 4.15 presents the plane view for all the vortices formed along the 

cylinder for the normal incidence case at β = 200. In consistence with the previous 

discussion, for α = 0° the flow near the cylinder surface gains a structure consisting of 

two layers of equal-sized vortex pairs, and the two-layer vortical structures are 

staggered with respect to the cylinder’s axial centre line. Both layers contain a pair of 

symmetric counter-rotating vortices and the two layers are counter-rotating as well to 

form a dipole-like four-vortex two-layer structure. The top layer extends further in 
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space to be more circular and the bottom layer underneath is much flatter and has a 

slightly longer axial span. The top pair identifies the stable Honji structure in which the 

vortex pair adopts the standard mushroom-like shape that results from the rolling-up of 

the shear layer. In contrast, the bottom layer that is attached to the cylinder surface 

presents the vorticity within the boundary layer formed along the axial direction. It is 

seen that the two-layer dipole-like vortical structure remains stable and stationary along 

the cylinder span throughout the period, and the oscillatory fluid velocity only alters the 

vorticity magnitude in the vortex pairs. At t*=1/4 where the ambient flow reaches its 

maximum value, the vortex pairs also appear to be the strongest. The flow evolution is 

repeated after every half oscillatory flow period. 

The results for α = 10° are demonstrated in Figure 4.15. It is noted that in the first half-

period (t* = 0 ~ 1/2), the axial flow component points to the right-hand side direction in 

the figure; in the next half period it reverses. As observed in Figure 4.16, the distinct 

dipole-like vortical structures disappear. Recall that b shows the existence of a sheet 

flow for this case. In Figure 4.16, it is seen that unlike the symmetric dipole-like 

structures formed at α = 0°, for this oblique inflow case, the sheet flow due to the axial 

flow component causes the imbalance in the two-layer vortical structures. The 

mechanism for causing the imbalance is easy to understand. When the axial flow moves 

along the cylinder span, the boundary layer generates strong vorticity near the cylinder 

surface. At the same time, due to the relatively strong axial flow during the half period, 

only very weak counter-rotating vortices are produced, except when the flow speed is 

small (at flow reversals, or after T/4). Hence the bottom layer is dominated by the sheet 

flow with uni-directional vorticity. At this α, the axial flow can reduce half of vortices 

(with opposite rotating direction) in the top layer, but is not strong enough to totally 

suppress those vortices with opposite rotation. As a result, the two-layer structure exists 

in a very unbalanced fashion, and becomes flatter in the radial direction due to the axial 

flow component. The vortex flow structure in the second half-period is in a mirror 

image with that in the first half period with respect to the centre of each two-layer 

structure, and the whole evolution repeats after one flow oscillation. 
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Figure 4.15 Instantaneous contours of x-component of vorticity in x/D = 0 plane for β = 200 and α = 0° within one 

flow period. -1.5 < ωx < 1.5. t* = t/T - 200. For the first ½ period the interval is ∆t* = 1/8 and for the second half 

period ∆t* = 1/4. 

 

(a) t*=0 

Upper bank 

Lower bank 

Axial centre line 

Two-layer four-vortex 

structure 

(b) t*=1/8 (c) t*=1/4 

(d) t*=3/8 (e) t*=1/2 (f) t*=3/4 

(g) t*=1 
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Figure 4.16 Instantaneous contours of x-component of vorticity in x/D = 0 for β = 200 and α = 10° within one flow 

period. -1.5 < ωx < 1.5. t* = t/T - 200. For the first ½ period the interval is ∆t* = 1/8 and for the second half period 

∆t* = 1/4. 

The observations described previously for the case of β = 200 are similar to the case of 

β = 400. In Figure 4.17, it is found that the vortex structure near the cylinder at β = 400 

for α = 0° also shows a two-layer structure, with the top layer being much more 

developed than the bottom layer. Due to the stronger three-dimensionality at this β 

value, the flow falls into the unstable Honji regime, which can be demonstrated by the 

much more irregular vortices distribution. The vortices are distributed irregularly along 

the cylinder surface. More vortex pairs form along the span compared with the case of β 

(a) t*=0 

Upper bank 

Lower bank 

Axial centre line 

(b) t*=1/8 (c) t*=1/4 

(d) t*=3/8 (e) t*=1/2 (f) t*=3/4 

(g) t*=1 
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= 200. Therefore, the span of each vortex and the distance between vortex pairs are 

smaller. In addition, the top layer vortices extend further away from the cylinder in the 

radial direction and become slender in the axial direction of the cylinder. Although 

Figure 4.9 shows a strong interaction between vortices, it is observed from Figure 4.17 

that within one oscillation period the vortices are stationary in the axial location of the 

cylinder. 

(a) t*=0 

Upper bank 

Lower bank 

(b) t*=1/8 (c) t*=1/4 

 

(d) t*=3/8 (e) t*=1/2 (f) t*=3/4 

(g) t*=1 

 

Figure 4.17 Instantaneous contours of x-component of vorticity in x/D = 0 plane for β = 400 and α = 0° within one 

flow period. -1.5 < ωx < 1.5. t* = t/T - 200. For the first ½ period the interval is ∆t* = 1/8 and for the second half 

period ∆t* = 1/4. 
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(a) t*=0 

Upper bank 

Lower bank 

(b) t*=1/8 (c) t*=1/4 

 

(d) t*=3/8 (e) t*=1/2 (f) t*=3/4 

(e) t*=1/2 

 

Figure 4.18 Instantaneous contours of x-component of vorticity in x/D = 0 plane for β = 400 and α = 20° within one 

flow period. -1.5 < ωx < 1.5. t* = t/T - 200. For the first ½ period the interval is ∆t* = 1/8 and for the second half 

period ∆t* = 1/4. 

The case of β = 400 and α = 10° is found to be very similar to that of β = 200 and α = 0° 

and is hence not presented here. The case of α = 20° and 30° are given in Figure 4.18 

and Figure 4.19. As the axial velocity component is increased, the irregularity weakens, 

and the vortical structures are more independent and distinctive with greatly reduced 

interactions between neighbouring vortex pairs. For these two cases with strong axial 

flow component, the vortices become oblique while the distance between two neighbour 

vortices becomes larger. The vortices also appear to be flatter at larger α. With the 
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cancellation and ingestion of the opposite fluid by the axial flow component, for α = 20°, 

the left-right counter-rotating distribution of the vortex pairs almost turns into top-

bottom counter-rotating vortex pairs; and for α = 30° the sheet flow completely merges 

with half of the vortex pairs and leaves the other halves to be revealed only at certain 

moments when the free stream is strong enough. 

(a) t*=0 

Upper bank 

Lower bank 

(b) t*=1/8 (c) t*=1/4 

 

(d) t*=3/8 (e) t*=1/2 (f) t*=3/4 

(e) t*=1/2 

 

Figure 4.19 Instantaneous contours of x-component of vorticity in x/D = 0 plane for β = 400 and α = 30° within one 

flow period. -1.5 < ωx < 1.5. t* = t/T - 200. For the first ½ period the interval is ∆t* = 1/8 and for the second half 

period ∆t* = 1/4. 
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4.5.2.2 Vortices at cross-sectional view 

From the instantaneous 3-D figures ( and Figure 4.14), we can see that for all the cases, 

the radial dimensions of the vortical structure are unequal along the cylinder 

circumference, i.e. at certain circumferential locations the vorticity has a larger spatial 

extent in the radial direction than at others. Therefore, the distribution of iso-surfaces of 

vorticity components appears to be “pointed”. This feature is also reflected in the cross-

sectional area figures from Figure 4.20 to Figure 4.24, from which we can see the 

unequal radial extent of one vorticity along the cylinder circumference, especially for 

the greater extended top layer representing the mushroom-like Honji vortices. Vortex 

behaviours around the cylinder circumference can be assessed by studying the cross-

sectional contours of vortices over one oscillation period. The cross-sectional planes are 

chosen to cut through the centre of a vortex, and the measurement locations are 

indicated in the x/D = 0 figures given in Figure 4.15 to Figure 4.19. 

In Figure 4.20 for the cross-sectional view of (α, β) = (0°, 200) at z/D = 2, the cylinder 

circumference is seen wrapped by only one vortex (Figure 4.20) throughout the half 

period. This is because the vortices distribute along the cylinder in a staggered manner 

for this case, as is mentioned before. The two-layer structures can be seen with the top 

layer in the shape of a dolphin. It seems that the ‘dolphin’s head’ (focus of the vorticity, 

or the larger end) follows the flow direction for the half period given. When the 

previous oscillation period finishes (Figure 4.20a), the focus of the top vorticity locates 

at about θ = 120° at the beginning of the half period shown. Then as the flow starts 

again in an opposite direction to the previous period, the ‘head’ is washed across the 

cylinder following the flow during that half; at the same time its strength increases due 

to the on-going enhancing of the accelerating ambient flow until t*=1/4. At this moment, 

the vorticies are the strongest. Then the ambient velocity reduces in speed while keeping 

its direction, and the vortices are then further washed down around the cylinder by the 

flow, until at t*=1/2. After that, flow reverses in the next half oscillation period and the 

procedure repeats in the opposite direction. Although the transfer of the vortices along 

the cylinder circumference is for both the top and bottom layers, it is apparently much 

stronger for the top layer, as observed in the figure. This is because the top layer is 
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further away from the no-slip constraints of the cylinder surface and the boundary layer, 

therefore more prone to be affected by the oscillatory ambient flow. 

(a) t*=0 

Flow reversal 

θ

(b) t*=1/8 

Flow direction 

θ

(c) t*=1/4 

Flow direction 

θ

 

(d) t*=3/8 
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θ
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Flow reversal 
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(f) t*=3/4 

Flow reversal 

θ

(g) t*=1

Flow reversal 

θ

 

Figure 4.20 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For β = 200 and 

α = 0°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second half period 

∆t* = 1/4. 

The vortices distribution is in a symmetric manner for the case of (α, β) = (10°, 200). As 

shown in Figure 4.16, the cross plane chosen for α =10° cuts through a pair of two-layer 

structures which are up-down symmetric with respect to the x axis. Therefore, two 

symmetric vortices can be seen surrounding the cylinder in Figure 4.21. With the 

existence of an axial flow component, the top layer vorticity appears to be weaker and 
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shorter while the bottom layer is stronger and covers a larger circumference than that of 

α = 0°. As shall be mentioned later, the bottom layer plays the role of the source of 

energy and momentum for the top vortices. As the flow accelerates so the two layers 

grow, but the bottom layer experiences a more apparent growth than the top one. It is 

also observed that the top layer is less extended in space and hence is pressed closer to 

the cylinder than that of α = 0°, which means the two-layer vortical structures are flatter 

under the effect of an axial flow component.   
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Flow reversal 

θ

(e) t*=1/2 
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Figure 4.21 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For β = 200 and 

α = 10°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second half period 

∆t* = 1/4. 
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Figure 4.22 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For β = 400 and 

α = 0°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second half period 

∆t* = 1/4. 

The cross-sectional plane at z/D = 2 for (α, β) = (0°, 400) is given in Figure 4.22. The 

location of the measurement cross section is indicated in Figure 4.17. The top-layer 

vorticity (denoted as vorticity ‘A’) viewed is also in a ‘dolphin-like’ shape with the 

radial extent varies with circumference. Throughout the oscillation period, the overall 

circumferential coverage of A remains more or less unchanged, covering about 1/4 

circumference spaning roughly from θ ≈ 45° to θ ≈ 135°. During this process, the 

bottom layer vorticity B transfers in an opposite direction to that of the top layer. Vortex 
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B also seems to cover roughly 1/4 circumference, similar to vortex A. In addition, it is 

observed that A and B are not aligned in the radial direction; rather, there is a small 

offset between the two. Bottom vorticity B is slightly thinner where the focus of the top 

vorticity A lies, i.e. where the top vorticity A has a larger radial span. 
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Figure 4.23 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For β = 400 and 

α = 20°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second half period 

∆t* = 1/4. 

Cases of (α, β) = (20°, 400) and (30°, 400) are presented in Figure 4.23 and Figure 4.24, 

respectively. The varying trend of the resultant flow field with the increase of α is 

similar to that observed at β = 200. As α increases, the bottom layer increases its 
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strength and circumferential coverage, and grows stronger and larger in both 

circumferential and radial directions than the top layer. However, the two-layer 

structure as a whole becomes flatter (less extended in the radial direction) at larger α, 

similar to the observations from the x/D = 0 planes. 
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Figure 4.24 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For β = 400 and 

α = 30°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second half period 

∆t* = 1/4. 
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 Energy transfer within one Honji vortex pair 4.5.3

The variation of the vortical structures with α is closely related to the energy 

transferring within the two layers. The evolution of a single vortex pair within half flow 

period is examined and its structure at four instants over the half period are shown in 

terms of vorticity contours (Figure 4.25) and streamlines (Figure 4.26). The cases 

studied here are two in the stable Honji regime: (α, β) = (0°, 200) and (10°, 200). 

Close-up views of a dipole-like four-vortex structure for the case of (α, β) = (0°, 200) 

are given in Figure 4.25a, visualised by contours of ωx. For α = 0°, this structure 

facilitates the bottom layer, which is smaller in size but more intense, to be a source of 

energy and momentum for the top mushroom-like vortices. The vorticity in the bottom 

layer entrains the flow from the outer field through rotation to the centre of the bottom 

pair and then pushes the flow upwards into the top pair (see also [21] and [23]). In this 

way vorticity is fed into the top layer to sustain the latter. As can be speculated, this 

transfer process benefits from the symmetric nature of the dipole-like structure. 

This mechanism is depicted vividly by the streamlines plotted in Figure 4.26a, where 

the flow near the cylinder surface rises up perpendicularly to its span before separating 

equally into two opposite directions to form the counter-rotating vortices of each Honji 

vortex pair (top layer vortices). In addition, the upper vortices also help in drawing fluid 

from the outer field during its rotation into the centre of the four-vortex structure. This 

part of fluid is also washed up together with the fluids drawn by the bottom pair. The 

symmetric Honji vortex pair can be observed throughout the half-period for α = 0° from 

the streamline visualisation in Figure 4.26a.  
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Figure 4.25 Vorticity contours of ωx for one Honji vortex pair for (a) α =0° and (b) α = 10° at t/T -200 = 0, 1/8, 1/4 

and 3/8 at β = 200 for the plane of x/D = 0. 

 

Figure 4.26 Streamlines of one Honji vortex pair for (a) α =0° and (b) α = 10° at t/T -200 = 0, 1/8, 1/4 and 3/8 for β = 

200. 

The evolution of the vortical structures considering the energy transfer is now discussed. 

Considering both Figure 4.25a and Figure 4.26a, it is seen that the variation of the Honji 

structure is consistent with flow oscillation. At the start of the oscillation, when the 

mean flow is zero, the pair of vortices is weak because the whole vorticity field is at a 

low value. As mentioned before, the strength of the top vortex pair depends on both the 
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bottom layer and the strength of the ambient flow. Therefore, once the oscillation starts, 

both the ambient flow and the flow within the bottom layer intensifies, enabling more 

energy supply and resulting in the growth of the top vortex pair (representing the 

mushroom-like Honji vortices). When the free stream reaches the first peak value (at t* 

= 1/4), the vorticity within the two-layer dipole-like vortices is the strongest. Then the 

ambient flow velocity starts to reduce, and less supply is provided for the Honji vortex 

pair, which therefore weakens until the minimum value again at the flow reversal (t* = 

1/2). The whole process then repeats itself for the following half period. During the 

whole process, the scale and shape of the vortical structure remain almost unchanged 

while its vorticity intensity varies. 

Modifications to the flow structures are noted when α = 10°, see Figure 4.25b and 

Figure 4.26b. The unbalanced vortex pair, with one vortex of the pair playing a clearly 

dominant role, is observed from the vorticity contours figure (Figure 4.25b), and the 

mushroom-shaped Honji vortices fail to form as demonstrated by the streamlines figure 

(Figure 4.26b). The disappearance of the Honji vortices is a consequence of the 

existence of the axial velocity component, which inhibits the energy transfer towards 

the top layer in several ways. First, as seen in Figure 4.25b, under the effects of the axial 

flow component, the bottom and top layer are both unbalanced with the bottom layer 

almost dominated by a uni-directional flow, and a merging of the same-sign vorticity 

from diagonal vortices of the top and bottom pairs exists. This structure causes the 

energy and mass transfer passage to be biased and most supply is directly imported into 

the dominant vortex (which merges with the bottom layer) in the top layer, resulting in 

the unequal vortices in the upper layer. In addition, another important supply for the 

formation and sustenance of the top-layer vortices provided by the outer flow is also 

limited as the axial velocity is an effective obstacle to the entrainment of the fluid from 

the outer field by the vortices. Last, the axial flow also exerts directly on the vorticity 

field generated by normal flow component by cancelling the opposite vorticity part and 

flattening the same vorticity, and results in the streamlines shown in Figure 4.26b. 

Subsequently the two-layer vortical structures under oblique inflow are not only 

unbalanced, but also smaller compared with the normal incidence case. 
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4.6 Dimension of the Honji vortices 

As is already noticed, the dimension of the Honji vortices is affected by addition of an 

axial flow component. Full description of the dimension can be gained through 

measurements of the three quantities: a radial extent (∆dr), an axial extent (∆dz) and a 

circumferential extent (∆dc), as defined in Figure 4.27. Among these three extents, the 

radial and axial extents are both plane extent at x/D = 0. 

It is noted that the dimension of the Honji vortices changes with time within one period. 

The dimensions given below are the maximum value in one oscillation, i.e. at the T/4 

when the free stream is at its peak value. Measures are only given for the cases falling in 

the stable HJ regime, which includes (α, β) = (0°, 200), (10°, 200), (20°, 300), and (30°, 

400). For these cases, the vortices arrange in a regular distribution along the cylinder 

span, and all vortex pairs are identical in size and strength, hence the measurements of 

one pair are taken to represent all Honji vortex pairs along the cylinder span. The 

dimensions of the Honji vortices measured are summarised in Table 4.2. 

 

Figure 4.27 Definition sketch of the dimensions of the Honji vortical structures. 

 Plane extent at x/D = 0 4.6.1

The dimension of the cross section of a Honji vortex pair is determined by 

measurements of the plane extent, which includes a radial extent (∆dr) and an axial 

extent (∆dz). As defined in Figure 4.27, the radial extent is the typical height of the two-

layer vortex pairs. The measured radial dimension for the cases studied are plotted and 

compared in Figure 4.28.  

Radial extent ∆dr 

x 
y 

z

Axial dimension ∆dz 
Circumferential 

dimension ∆dc 
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Table 4.2 The dimensions for one vortex pair for the selected cases. ∆dr is the radial dimension, ∆drc is the height of 

centre of the vortex (see Figure 4.28a), ∆drc is the radial height of the bottom layer (see Figure 4.28b) and ∆dz is the 

axial dimension of the vortex pair. Measured in plane x/D = 0. 

 β = 200 β = 300 β = 400 

α = 0° α = 10° α = 20° α = 30° 

 Left right Left right Left right Left right 

∆dr 0.35D 0.35D 0.27D 0.27D 0.2D 0.2D 0.1D 0.05D 

∆drc 0.13D 0.13D 0.13D 0.1D 0.13D 0.1D 0.1D N/A 

∆drb 0.05D 0.05D 0.06D 0.03D 0.05D N/A 0.05D N/A 

∆dz 0.61D 0.61D 0.61D 0.61D 

For the unbalanced cases (α > 0°), the two vortices in the top layer are not parallel. The 

lower vortex merges with the sheet flow in the bottom layer bearing the same sign, and 

therefore its vorticity centre is lower and closer to the bottom layer (reflected by ∆drc). 

In addition, as α increases, the bottom layer entrains more of the same-signing top layer 

vorticity, and therefore becomes stronger and thicker (reflected by ∆drb); on the contrary, 

its thickness is limited by the existence of the axial flow component, as the latter cancels 

and ingests the opposite-signing vorticity. The combined effects results the overall 

height (∆dr) of the vortex pairs to be smaller and the two-layer structures as a whole are 

flatter. 
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 (a)  

∆dr 

∆drc 

∆dz 

(b)  

∆dr 

∆dz 

 

∆drb 

(c)  

∆dr 

∆dz 

(d)  

∆dr 

∆dz 

Figure 4.28 Comparison of plane dimensions for one pair of Honji vortices for (a) (α, β) = (0°, 200), (b) (α, β) = (10°, 

200), (c) (α, β) = (20°, 300) and (d) (α, β) = (30°, 400) at KC = 2. Plot at N = 200. 

For the axial extent of the vortices, it is seen from Table 4.2 that the variation of ∆dz is 

not apparent among the measured cases. Recall that for (α, β) = (0°, 200) there are five 

main vortex pairs along the cylinder span, and for the other stable cases there are six. 

The lack of variation of ∆dz between these cases means the axial dimension of each two-

layer vortical structure remains unchanged between these cases, and the average 

distance between the vortex pairs is reduced slightly as more vortex pairs form along the 

cylinder. 
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 Circumferential extent 4.6.2

In order to examine the vorticity distribution along the cylinder circumference, Figure 

4.29 shows a plane view of the vorticity distribution against the cylinder span z/D and 

the phase angle θ recorded for a circuit of the nodes around the cylinder. The 

measurement points are located at the centre of the top of the vortical crown, where the 

mushroom-like vortices develop from obtaining momentum and energy from the bottom 

layer as well as the outside flow field. All cases given in Figure 4.29 apply the same 

range of ωx, therefore the relative difference in the circumferential extent at different α 

values can be obtained. 

(a)  (b)  

(c)  (d)  

Figure 4.29 Comparison of circumferential dimensions visualised by contours of ωx plotted along the cylinder 

circumference over the whole length of the cylinder for (α, β) = (a) (0°, 200), (b) (10°, 200), (c) (20°, 300) and (d) 

(30°, 400) at KC = 2. Plot at N = 200. The circuit plane probed is at the centre of the top layer vortices of the two-

layer Honji vortical structures. 
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For the case of (0°, 200), the previously staggering distribution of the five main vortices 

is also observed in circumferential distribution give in Figure 4.29a. The distance 

between the vortex pairs is unequal, due to the interaction with the transient vortex. For 

the oblique inflow cases shown in Figure 4.29b,c,d, the six evenly-distributed vortex 

pairs are symmetric with respect to the centre line (θ = 180° line). Comparing between 

Figure 4.29a for (0°, 200) and Figure 4.29b for (10°, 200) a slight decrease in the 

circumferential coverage can be observed for larger α. Similar trend is also observed at 

other β values when increasing α. However, as is noticed between Figure 4.29b,c,d and 

compared in Table 4.2, differences are negligible between these stable cases of (α, β) = 

(10°, 200), (20°, 300) and (30°, 400). For all these cases, one vortex typically extends 

42% of the whole circumference (in the range of about 150° of the total 360°). 

In addition, from Figure 4.29, the imbalance caused by larger α can also be observed: 

with the increase of α, the dominance of one vortex grows. The counter-rotating vortex 

pairs distributed along the cylinder span observed at (0°, 200) change into an array of 

uni-directional vortices. The most unbalanced case among all these stable cases falling 

in the stable Honji regime is (α, β) = (30°, 400). As can be seen in Figure 4.29d, the 

single-signing vortices almost cover the cylinder span as a whole stripe.  

For the cases of α > 0°, an interesting phenomenon observed for the vortex distribution 

shown in Figure 4.29 is that, in addition to being symmetric, they are also oblique with 

respect to the cylinder axis. It is noticed that the obliqueness in the vorticity orientation 

shown in Figure 4.29 is not in consistence with the incidence angle, but with a 

difference of about 5°. The measured inclination angle in Figure 4.29 is approximately 

5°, 15° and 25° for (α, β) = (10°, 200), (20°, 300) and (30°, 400), respectively. This is 

because, for an oblique approaching flow, as the flow reaches the cylinder, the flow 

direction is bent to be more perpendicular to the cylinder’s surface. This phenomenon is 

also reported by Sumer, B.M. and J. Fredsøe [7]. As a result, the inclination angle for 

the flow adjacent to the cylinder is smaller than its original angle of attack as in the far 

field. 
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4.7 The 2-D columnar flows at different β 

According to the calculations, the intrinsic three-dimensionality of the oscillatory flow 

around a circular cylinder may be suppressed by the addition of an axial flow 

component, when the latter is sufficiently strong. The resulting flow field is then a 

purely 2-D columnar flow wrapping around the cylinder with no evident variation along 

the cylinder span. This flow field close to the cylinder surface can be regarded as a 2-D 

oscillatory boundary layer flow. It appears that at larger β number the flow is more 

prone to 3-D instability so that a stronger axial flow is required to suppress the onset of 

the Honji instability. The present calculations show that the 2-D flow can be observed 

for the cases of (α, β) = (20°, 200), (30°, 300) and (40°, 400). 

The cross-sectional views for the three axial-flow resulted 2-D cases are presented in 

Figure 4.30. This figure shows that the oblique 2-D cases also assume a two-layer 

structure; however, this structure is clearly different from the 3-D four-vortex dipole-

like two-layer structures. For the 2-D two-layer structure shown in Figure 4.30, both the 

top and bottom halves of the cylinder surface are surrounded by two layers of sheet flow 

in opposing directions resulting from uni-directional flow past the cylinder surface. This 

two-layer structure is only observed at flow reversals, and breaks off once the flow 

starts, when each half of the cylinder is seen covered by a single vorticity only. A 

comparison between Figure 4.30a, b and c shows that, with larger axial flow component, 

the top sheet layer is stronger and covers larger part of the cylinder circumference. The 

top layer serves as the bottom layer in the previous oscillation. When the flow starts, the 

top layer dissipates and the bottom layer grows to become the only vorticity covering 

the cylinder. 
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Figure 4.30 Instantaneous contours of ωx in z/D = 2 plane for (α, β) = (a) (20°, 200), (b) (30°, 300) and (40°, 400) at 

t/T = 200. -1.5 < ωz < 1.5. 

The non-dimensional axial velocity component uz/Umx is plotted against y/D close to the 

cylinder in Figure 4.31. It is seen that for all three cases, the variation of uz/Umx is 

confined to the approximate range 0.5 < y/D < 0.8. uz/Umx increases first and then 

decreases at larger y/D, resulting in opposite-signing vorticities along the y-axis as 

observed in Figure 4.30. The component uz/Umx vanishes at y/D = 0.5 owing to the no-

slip condition applied at the cylinder surface, and is also virtually zero beyond y/D ≈ 0.8, 

in consistence with the far-field flow at the measurement moment. Also observed from 

Figure 4.31 is that, for greater β and α, the variation of uz/Umx becomes more abrupt 

with a larger peak value happening at a smaller y/D, i.e. closer to the cylinder surface. 

The sharp change at larger β and α leads to a stronger vorticity, in consistence with that 

(c) 
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in Figure 4.30. The value of uz/Umx for the case of (α, β) = (40°, 400) increases and 

decreases fastest with a peak value of uz/Umx ≈ 0.29 at y/D = 0.52. The case of (α, β) = 

(30°, 300) falls in the middle with a peak value of uz/Umx ≈ 0.21 at y/D = 0.53.The case 

of (α, β) = (20°, 300) is the last to reach the peak value (uz/Umx ≈ 0.13 at y/D = 0.54) and 

to disappear in the far field. This indicates that the 2-D oscillatory boundary layers have 

similar thicknesses, which are only slightly decreased by increasing the axial flow.  

 

Figure 4.31 Relative axial component uz/Umx against y/D in plane z/D = 2 for all three 2-D columnar flow cases. Plot 

for t/T = 200. 

4.8 Conclusions 

The aim of this chapter is to extend the study of Honji instability to the case when the 

far-field oscillatory flow is directed at an oblique angle to the stationary cylinder 

immersed in an oscillatory flow. Effects of the angle of attack (α) have been studied by 

introducing an axial velocity component in the flow field. The governing parameters 

concerned are at KC = 2 and β = 200, 300 and 400. Using a Petrov-Galerkin FEM as 

described in Chapter 2, the calculations are run for 200 flow oscillation periods for all 
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the cases in the present study. For the cases that the flow remains 2-D after 200 flow 

periods, the perturbation method described in Chapter 3 is used to confirm that the 

flows are intrinsically stable. 

First, the flow development for the 200 periods calculated is presented. For the cases 

where Honji instability operates, the flow developing process can be divided into three 

phases, namely, a 2-D phase I at the beginning of the calculation, a phase II with 

evenly-distributed vortex pairs and a phase III where interactions between neighbouring 

vortices are observed. The calculations show that the imposition of an axial flow 

component of basic flow tends to have a stabilising effect on the fluid motion for the 

cases where Honji instability occurs. Further increasing the value of α to a critical value 

can totally suppress the onset of Honji instability. It is speculated that for any value of β 

 KC there is a cut-off value of α beyond which the Honji mechanism is completely 

shut down. 

It is then summarised that as the angle of attack α varies so the developed flow pattern 

falls into one of three distinct classes (in the order of a decreasing three-dimensionality): 

an unstable Honji regime, a stable Honji regime and a featureless purely 2-D regime. 

The unstable Honji regime is marked by the strong interactions between vortices along 

the cylinder span. The cases with relatively high β and low α fall into this regime, which 

include the cases (α, β) = (0°, 300), (10°, 300), (0°, 400), (10°, 400) and (20°, 400). The 

stable Honji regime finds the cases with relatively low β or large α, including (α, β) = 

(0°, 200), (10°, 200), (20°, 300), and (30°, 400), with the prominent feature that the 

vortical structures along the cylinder span remain distinct and conduct no strong 

interactions between neighbouring vortices. The 2-D regime assumes when α is large 

enough, for the cases of (α, β) = (20°, 200), (30°, 300) and (40°, 400), where the flow is 

simply 2-D columnar flow around the cylinder. The boundaries between these zones are 

roughly mapped out in Figure 4.12; however, determination of the exact critical values 

is withdrawn here because it requires countless test runs that are impossible to be 

completely covered using the present numerical method. 

The instantaneous flow structures have been studied by way of vorticity visualization 

near the cylinder. It is seen that the vortical structure near the cylinder surface is 
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composed of two layers, namely, a relatively flat bottom layer and a more extended top 

layer. For a normal incidence flow, the two-layer structure is a dipole-like four-vortex 

structure with good symmetry. For an oblique inflow when the instability is still 

operative, the observed two-layer structure is significantly modified. Now the upper 

layer consists of an unbalanced pair of vortices while the lower layer is a uni-directional 

sheet flow, which generates a single-rotating vorticity under the no-slip constrains at the 

cylinder surface. A dominant vorticity is seen for the oblique vortical structures, and the 

merging of the same-signing vorticity from the top and bottom layers can also be 

observed. For these cases, it is noticed that the vortex array generated along the cylinder 

is symmetric and oblique to the cylinder span. However, the orientation of the oblique 

array has a roughly 5° difference with the direction of the flow in the far field. 

The dimensions of the vortical structures are also changed by introducing an axial flow 

component. The radial thickness of the two-layer structure reduces with the increase of 

α and the whole structure is pressed flatter at the cylinder. It is found that the axial 

extent of each two-layer vortical structure remains roughly unchanged when α is 

increased, therefore the distance between the vortex pairs is reduced as there are six 

vortex pairs along the cylinder for the cases of (10°, 200), (20°, 300) and (30°, 400), 

compared with only five for the case of (0°, 200). For a given β, the circumferential 

coverage slightly decreases as the axial flow intensifies. The oblique vortices generated 

under the oblique inflow cases (for the cases where Honji instability occurs) orient more 

perpendicular to the cylinder than the free stream in the far field.  

Evolution of the two-layer structures within one flow oscillation period is shown in the 

planes of x/D = 0 and z/D = 2. It is observed from the plane view of x/D = 0 that within 

one flow oscillation, the vortices remain at their axial locations, and only the strength of 

vorticity changes with the ambient flow. The periodicity and symmetricity of the 

vorticity evolution at α = 0° become mirror-image and unbalanced for the oblique cases. 

Figures of z/D = 2 planes show the circumferential evolution of a pair of two-layer 

structures. For the perpendicular inflow, the top and bottom layer have roughly the same 

circumferential coverage, while for the oblique inflow cases, the bottom layer covers 

larger circumferential span than the top layer. 
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The effects of α on the resultant flow field are explained through its influences on 

energy transfers within the two-layer structures. The formation and sustenance of the 

typical 3-D two-layer structure are found to relate to the energy and mass transfer within 

the structure. The bottom layer, which attaches to the cylinder surface, appears to be the 

main source of energy and momentum required for the generation and sustenance of the 

vortical structures in the upper stratum. At α = 0°, the perfect symmetric dipole-like 

two-layer structure is ideal for the supply to be transferred to the upper layer, which is 

in the form of mushroom-like vortices. However when the oblique Honji mechanism 

operates, the axial flow cancels and ingests vorticity of opposite sign, and hence causes 

the supply to be transferred more easily to the dominant part. This results in the 

unbalanced formation of the upper layer vortices and the total suppression of the upper 

vortical structures when the axial flow is strong enough. 

When the instability is suppressed by the axial flow, a two-layer structure can also be 

observed but only at flow reversals for the resultant 2-D columnar flow. This 2-D two-

layer structure is different from the 3-D two-layer structures in that the top and bottom 

layers for the 2-D cases are just two sheet flow layers covering the cylinder. It is found 

that the resulted 2-D oscillatory boundary layer thickness slightly decreases with a 

larger axial flow component. 
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CHAPTER 5 

INSTABILITY OF OSCILLATORY FLOW AROUND A 

CYLINDER WITH AN ELLIPTIC CROSS SECTION 

5.1 Aim of chapter 

The major purpose of the present chapter focuses on examining the effects of the elliptic 

cross sections under the Honji regime. 

5.2 Introduction 

This section investigates the effects of a varying cross section of the cylinder when it is 

elliptic, on the resultant flow structures near a cylinder under low governing parameters 

where Honji instability is known to occur for a circular cylinder. Chapter 4 considers 

the effects of an oblique inflow angle on the resultant fluid flow field under Honji 

instability. A natural and interesting problem would then arise to consider a 

geometrically analogous situation of a perpendicular flow approaching a cylinder with 

an elliptic cross section, which is discussed in this chapter. As shown in Figure 5.1, a 

circular cylinder immersed in an approaching oblique inflow, if viewed in the direction 

of the free stream, can be regarded as analogous to an elliptic cylinder immersed in a 

perpendicular inflow with the shape of an elliptic cross section appropriately chosen. 

The majority of the previous studies of Honji instability almost exclusively concern the 

circular cylinder case. To the best of our knowledge, studies of Honji instability around 

an elliptical cylinder are rare [17], despite its vital importance considering that elliptic 

cross sections are quite common in real industrial applications such as offshore 

engineering, maritime engineering and aeronautical engineering. 
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Figure 5.1 Definition sketch showing the analogy of oblique incoming flow over a circular cylinder to perpendicular 

flow over an elliptic cylinder. Only one dimension of the cylinder is elongated (x direction). y-axis and z-axis remain 

the same, while x axis is replaced using x’. 

The shape factor (K) and the incidence angle (α0) in the cross-sectional plane are two 

most important factors considered by most studies concerning flow around an elliptic 

cylinder. A definition sketch for shape factor K and incidence angle α0 are depicted in 

Figure 5.2, together with the phase angle denoted by θ (previously defined in section 

3.3.3). Note that, this incidence angle α0 is different from the angle of attack α discussed 

in Chapter 4, as the latter is an axial angle. The incidence angle denoted by α0 is in the 

x-y plane and defined as that between the flow direction and the major axis of the ellipse. 

The shape factor is defined as the minor to major axis ratio (see Figure 5.2), so that a 

smaller K indicates a flatter cross section.  

 

Figure 5.2. Definition sketch of the shape factor K and angle of attack α0. Following Figure 5.1, if D is the diameter 

of the circular cylinder, for the elliptic cylinder, the minor axis a = D and the major axis is b = D/k. 
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As mentioned in Section 1.2.1, previous research has considered flow around an elliptic 

cylinder under effects of both the shape ratio K and the incidence angle α0 under various 

flow regimes [43, 45-50]. However, work directly related to Honji Instability has been 

rare. The only work that has been found so far was a theoretical study by Hall [17]. Hall 

found that the most unstable point around the circumference of the cylinder was 

dependent on both K and α0. For the case of an oscillatory flow parallel to the major 

axis of the cylinder (i.e. α0 = 0°), it was found that the K-Taylor dependent curve 

representing the onset of the 2-D to 3-D transition appeared to be in a ‘cusp-shaped’ 

(reproduced in Figure 5.3). The curve, which bifurcates into two for K < 0.6½, divides 

the whole K-Taylor plane into three regimes. Under the lower curve, the flow is 2-D 

and above the upper curve, the 3-D Honji instability occurs. The area between the two 

curves stands for the unstable flow with another type of instability happening close to 

the cylinder’s shoulders, as shall be discussed later. The curves show that for an elliptic 

cylinder with a shape ratio K roughly > 0.5, a higher Taylor number is required for 

triggering the 2-D to 3-D transition than that required for a circular cylinder (i.e. K = 1), 

indicating that the flow is more stable as the cross-section becomes flatter. According to 

Hall’s analysis, the flow was most stable at K ≈ 0.7. In addition, the most unstable 

location also varies with K. At α0 = 0°, when K > 0.6½, the most unstable point is found 

at the crown of the cylinder, namely, at θ1 = 90° (and symmetrically 270°), while for K 

< 0.6½, the flow is more unstable at two other locations (θ2 and θ3, which can be 

calculated from Equation 5.1 proposed by Hall), away from the top and bottom of the 

cylinder. This means that, as K decreases, flow particles become unstable at θ2 and θ3 at 

a smaller Taylor number, before the points near θ1 (90° and symmetrically 270°) 

become unstable when higher Taylor number is reached. In other words, for the same 

KC, an instability develops at these two points (θ2 and θ3) for a smaller β number than at 

θ1. It should be noted here that the instability found at θ2 and θ3 near the shoulders of the 

cylinder is different from the Honji instability that occurs at the crown of the cylinder, 

i.e. at θ1= 90° (and 270°). The properties, behaviours and structures of this 3-D 

instability near the cylinder shoulders remain unknown in the literature. More details on 

Hall’s formulation for the case of α0 = 0° are given in Section 5.4. 

 and  5.1 
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Figure 5.3. Reproduction of Hall’s [17] figure 4 for the case of α0 = 0°. Upper curve represents the onset of Honji 

instability occurring at θ1 = 90° (and 270°), and lower curve represents another type of instability occurring at θ2 and 

θ3, the values of which can be calculated through Equation 5.1.  

As a theoretical study, Hall’s linear stability analysis focused on developing an 

analytical solution for the instability causing a 2-D to 3-D transition and deriving the 

governing parameters dependency curve (e.g. the H-Line given by Equation 1.4). 

However, no actual flow structures are given. In his paper, Hall mentioned an interest to 

see corresponding experimental results to confirm the cusp-shaped curve for α0 = 0°. 

However, no follow-up work on this has been found in the literature. 

Inspired by previous studies, particularly the theoretical study of Hall [17], the current 

study bears four main aims. First, the present study provides detailed descriptions on the 

resultant flow structures under various thicknesses of the cross-section (K value) for the 

Honji instability at α0 = 0°. Second, the other type of instability happening near the 

shoulders of the cylinder is examined for the first time. Third, the results are used to 

validate the cusp-shaped dependent curve for α0 = 0° provided by Hall’s linear stability 

theory. The effects of the elliptic shape of the cross section are reflected through 

analyzing these aspects. 

Bearing the main objectives in mind, 3-D numerical simulations are conducted under 

various values of K at the governing parameter values of interest. In this study, the flow 

oscillates in the direction of the elliptic cross section’s major axis (i.e. α0 = 0°). The 

shape ratio (K) is varied to examine its influences on the resultant wake structures near 

the cylinder. Effects of the shape factor on flow structures are discussed at the 

governing parameters chosen so that both the stable Honji instability regime (at (KC, β) 

K 
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= (2, 200)) and the unstable Honji regime (at (KC, β) = (2, 400)) observed for a circular 

cylinder are covered. Following Hall’s [17] theory, a critical shape factor of 0.6½ is used 

as the dividing value for our discussion. For K > 0.6½ the flow is most unstable at the 

top and bottom points, and the effects of K on the Honji instability are discussed by 

evaluating the cases of K < cos40°. For K < 0.6½ the effects of the flatness come into 

power to shift the most unstable locations to points closer to the shoulders of the 

cylinder. Another type of instability other than the Honji instability occurs at lower 

governing parameters. This instability is studied at K = cos40° and cos60°. 

5.3 Domain and Mesh 

(a) (b) 

Figure 5.4. Demonstration for mesh in the near-cylinder region for two sampling shape factors (a) K = cos40° and (b) 

K = cos60°. 

The dimension of the domain applied for the present study is again set as 40D × 20D × 

4D (recall that D = a, see Figure 5.2), in consistence with the previous chapters. The 

meshes used for different elliptic cases (K < 1) in this chapter are generated based on 

the circular cylinder mesh (K = 1), which is the same as used in previous sections. 

Details of the mesh resolution for the circular cylinder are provided in Chapter 2 and 

shall not be repeated here. For the elliptic cases calculated in this chapter, similar yet 

slightly finer mesh than the circular cylinder case is applied so that no further mesh 

validation for the elliptic meshes shall be given here. Details for achieving the similar 

mesh is described below. 
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In the calculations, the shape factor K is varied by keeping the length of the minor axis 

in y-direction fixed at 0.5D and increasing the length of the major axis in x-direction. 

Following this definition, as the cross section of the cylinder becomes flatter (i.e. K 

smaller), the circumference is longer; hence the circumferential boundary requires more 

nodes to ensure that the element sizes do not undergo a dramatic change. The 

circumferential element size variation between different meshes is smaller than 1 10-4. 

For the smallest K (i.e. the flattest cross section which has the longest circumference) in 

the present study, the number of nodal points along the cylinder’s circumference is 128, 

which gives a circumferential density of about 0.03, similar to that of the circular 

cylinder. As is seen in Figure 5.4, the strategy in mesh generation for elliptic cylinders 

is similar to that applied to the circular cylinder case: finer mesh is employed in the 

vicinity of the cylinder’s surface, and the mesh becomes coarser at locations further 

away from the cylinder. To give some general ideas about the discretization under the 

elliptic cylinder cases, the near-cylinder mesh of two K cases are given as examples in 

Figure 5.4. 

5.4 Discussion of Hall’s [17] theory 

Since the current numerical simulations are compared with Hall’s [17] linear stability 

analysis, before moving on to our results, we will first evaluate Hall’s theory for the 

case of α0 = 0° considering first order accuracy. According to Hall, the flow instability 

and unstable circumferential locations can be examined by considering the maximum 

values of Equation 5.2 (equation 4.2 given in Hall’s paper). In this equation, f(K, θ) 

represents S(θ) as in Hall’s notation. Following Hall’s formulation, f(K, θ) is the term 

containing the phase angle θ, i.e. the functioning term when performing derivatives with 

regards to θ for the aim of locating the most unstable points. 

5.2 

With α0 = 0°, the above equation can be rewritten as  
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5.3 

and plotted in Figure 5.5, which clearly reflects the dependence of the peak values of 

f(K, θ) (as given in Equation 5.3) on both K and θ. From Figure 5.5 it is seen that, for a 

circular cylinder (K=1), the maximum f(K, θ) value is found at θ1 = 90° (π/2), indicating 

the most unstable locations are at the vertex of the cylinder. This continues to be the 

case as K decreases, until after 0.6½ two other peaks of f(K, θ) occur at two more 

locations (θ2 and θ3). These two θ values are symmetric with respect to 90° (π/2) and can 

be calculated using Equation 5.1 as provided by Hall. The two new maximum values of 

f(K, θ) are larger than that found at θ1 = 90°, indicating higher instability at θ2 and θ3. 

This type of instability, which differs from the Honji instability, is resulted from the 

reduced gradient and flatter curvature at smaller K as shall be mentioned later. We will 

refer to this type of instability as the ‘Side instability’ in our discussions below. 

 

θ 

K 

 

Figure 5.5 Plot of f (K, ) as in 5.3 between 0 ≤ K ≤ 1 and . 

In his paper, Hall gave a dependency curve of the critical Taylor number on K, as 

reproduced in Figure 5.3. As shown in Figure 5.3, Hall’s prediction finds that when K < 

0.6½, the dependence curve bifurcates into an upper curve denoting the onset of the 

Honji instability, and a lower curve denoting the onset of the Side instability. As is seen 

from Figure 5.3, for the upper curve denoting the onset of Honji instability, the critical 

Taylor number increases with the decrease of K, which indicates that the Honji 

instability is less likely to occur around a cylinder with flatter cross sections. The whole 
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K-Taylor dependence plane is thus divided into three regions. Below the lower curve, 

the flow remains 2-D and above the upper curve Honji instability incepts. The region 

between the two curves represents the flow regime where only the Side instability 

occurs around the cylinder.   

Based on Figure 5.3, the KC–β dependence curve can be derived for each K value. 

Specifically, the second-order-accurate KC–β dependence curve for the circular cylinder 

case (K = 1) is plotted by Hall [17], which is shown to compare well with Honji’s [14] 

experiments. Later Hall’s KC–β dependence curve with first order accuracy is discussed 

in other studies concerning the onset of Honji instability including Sarpkaya [15, 18], 

An et al. [21] and Suthon and Dalton [22, 23]. They all showed that the dependence 

curve depicted with first order accuracy compares fairly well with the experimental and 

numerical results and can be used as a brief guidance for determining the flow regime 

under different KC and β values. Considering the effects of K for an elliptic cylinder, 

we now derive the flow regime dependence on KC, β and K with first order accuracy 

following Hall’s formulation. 

According to Hall, the dependence of the critical Taylor number Tc on these parameters 

reads: 

5.4 

Considering the aforementioned change of the number of maximum values at different 

K (see Figure 5.5), the dependence of Tc on KC, β and K are discussed in two K ranges 

separated by the value of 0.6½. The dependences of Honji instability and the Side 

instability on KC, β and K are determined for K > 0.6½ and K < 0.6½, respectively. 

 Dependence for the onset of Honji instability on KC, β and K 5.4.1

Since the most unstable points occur at θ = 90° (considering only the range of 0° < θ  < 

180°), substituting θ = 90° into Equation 5.4 results in 
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5.5 

Based on the definition of Tc given in Hall [17], we found  

5.6 

The relationship between KC, β and K to first order of accuracy can be obtained by 

substituting Equation 5.6 into Equation 5.5.  

5.7 

from which the critical K required for suppression of Honji instability as a function of 

KC and β can be derived. Specially, when K = 1 (the circular cylinder case), we have 

Equation 1.4, as mentioned by Sarpkaya[15, 18], An et al.[21] and Suthon and 

Dalton[22, 23].  

Using Equation 5.7 the dependence of KC on both β and K to the first order of accuracy 

is plotted as a 3-D contour surface in Figure 5.6. As can be seen, for every smaller K, 

the KC–β curve is higher than the one with larger K. This means higher KC and β values 

are needed for Honji instability to occur when K decreases, i.e. the flow is more stable 

around a flatter cylinder. The critical K value (or the critical flatness of the cylinder) at 

(KC, β) = (2, 200) and (2, 400) are estimated to be 0.54 and 0.30, respectively. 

 

K β 

KC 

Figure 5.6 Dependence of KC on both β and K as in Equation 5.7. 0 < β < 800 and 0 ≤ K ≤ 1. 
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 Dependence for the onset of Side instability on KC, β and K 5.4.2

When K is smaller than 0.6½, the most unstable points move from the crown of the 

cylinder (θ = 90° and 270°) to locations closer to the cylinder shoulders (θ = 0° and 

180°). The Side instability occurs at these locations which can be calculated from 

Equation 5.1. Replacing θ with K in Equation 5.4 and considering Equation 5.7, we can 

get the dependence of KC and β as a function of K as given in Equation 5.8. 

5.8 

Based on which we can draw the trend of the dependence of KC on both β and K in 

Figure 5.7. 

 

K 

β 

KC 

Figure 5.7 Dependence of KC on both β and K as in Equation 5.8. 0 < β < 800 and 0 ≤ K < 0.61/2. 

At this point it should be mentioned that Hall’s theory was derived based on the 

assumption of very small KC and very large β. In addition, the results presented by Hall 

are for the time-averaged flow field. Nevertheless, the analysis by Hall provides us with 

a theoretical basis for the influence of the governing parameters, namely, KC, β and K 

on Honji and Side instabilities. However, full description of the instantaneous fluid field 

must be gained through flow visualisations of either physical or numerical experiments. 

In the following, detailed flow behaviours and calculated flow field structures are 

discussed based on numerical simulations under selected governing parameter ranges. 
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5.5 Effects of K on Honji instability (K > 0.6½) 

At K > 0.6½, the flow is predicted to become most unstable at the crown (θ = 90° and 

270°) of the cylinder in the form of Honji instability. As shown in Figure 5.6, for a 

constant (KC, β), the flow becomes more stable with the decrease of K. When K is 

reduced to a certain threshold at a given (KC, β), further decreasing of K will suppress 

the Honji instability. The minimum K values for the Honji instability to operate would 

be respectively K ≥ 0.54 at (KC, β) = (2, 200) and K ≥ 0.30 at (KC, β) = (2, 400), 

calculated from Equation 5.7 proposed by Hall.  

In the following sections we shall discuss the flow calculated using the current 

numerical model under different values of K smaller than cos40° (cos40° is close to the 

value of 0.6½). Descriptions are given for both the flow evolution with time and the 

developed instantaneous flow structures for the cases concerned. Explanations on the 

observations for the effects of K are attempted from two aspects as discussed in Section 

5.8. 

 Flow development over 200 periods 5.5.1

The evolution of the instantaneous uz/Umx is sampled for 200 flow periods. The spatial-

temporal evolution of the non-dimensional axial velocity component recorded at (x/D, 

y/D, z/D) = (0, 0.51, 0 ~ 4) are presented in Figure 5.8 for the cases of (KC, β) = (2, 200) 

and (KC, β) = (2, 400). As mentioned in Chapter 4, for a circular cylinder perpendicular 

to the oscillatory flow, the flow at the parameter group (KC, β) = (2, 200) falls in the 

stable Honji regime, where the vortices formed along the cylinder span bear complete 

and distinctive mushroom-like shapes. For (KC, β) = (2, 400) the flow falls in the 

unstable Honji regime where the Honji vortical structures formed along the cylinder are 

unstable and interacting with each other. When the cylinder becomes elliptic, the 

stabilising effects of decreasing K can be observed for both the case of β = 200 and β = 

400. 

The evolutions of the flow field shown in Figure 5.8 and Figure 5.9 experience three 

phases: phase I for the 2-D potential flow, phase II for the orderly distributed vortex 

pairs and phase III for the interactive vortex pairs. Comparing between the results given 
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for different values of K, it is clearly shown that the developed three-dimensionality 

decreases as K becomes smaller (i.e. the cylinder is flatter) for both β = 200 and β = 400, 

which agrees with the theoretical prediction given by Hall [17].  

The results for the cases of β = 200 given in Figure 5.8 are studied first. Comparison of 

the evolution processes between K = 1 (Figure 5.8a), K = cos10° (Figure 5.8b) and K = 

cos20° (Figure 5.8c) shows that, as K decreases, the onset of 3-D features marked by 

the appearing of the evenly distributed stripes is delayed, which is reflected by the 

elongated phase I. As seen in Figure 5.8, the stripes can only be observed after 60 

periods for K = 1, after 90 periods for K = cos10° and after 110 periods for K = cos20°. 

In phase II, for both K = 1 and K = cos10° we can see six parallel stripes indicating six 

vortex pairs along the cylinder span. However, there are seven vortex pairs along the 

cylinder in phase II when K is further decreased to cos20°. There is also one more 

vortex pair for K = cos20° than K = 1 and K = cos10° when the flow enters the 

interactive phase III. As K is reduced, the vortex pairs become less active, as reflected 

by the decreasing interacting frequency with smaller K. During the vortices interaction, 

the evolution period for one new vortex pair to generate takes about 15 flow oscillations 

at K = 1, while for K = cos10° it takes slightly longer, about 18 flow oscillations. And 

for K = cos20° only one merging of the neighbouring vortex pairs is observed within the 

200 calculated periods. All this delay of the flow development and elongated process 

when K is reduced suggests that the flow becomes more stable. 

When K is further reduced to cos30°, the 2-D flow dominates throughout the free-

developing 200 periods calculated and the flow remains at phase I (Figure 5.8c). We use 

the two-step method described in Section 4.4.2 to check whether the flow is intrinsically 

2-D under this situation. First the test runs are conducted with a pre-assigned 3-D initial 

condition for this case. It is observed that as the calculations progress, the three-

dimensionality is finally suppressed. Then the calculations with a perturbation added at 

the sides of the cylinder also fail to reveal any three-dimensionality in the flow field 

after 100 flow periods. It is therefore concluded that the computed flow field is 

intrinsically stable for K = cos30° at (KC, β) = (2, 200). Considering the stronger 

stabilising effects of smaller K, it is speculated that further reducing K will also result in 



 

127 

the 2-D columnar flow and hence further decreasing K at (KC, β) = (2, 200) is 

withdrawn here. 

The flow development for the same K values at (KC, β) = (2, 400) are shown in Figure 

5.9, from which the same trend of 3-D weakening with smaller K is observed. However, 

as β is increased to 400, the flow becomes intrinsically more unstable, and the 3-D 

features appear earlier than those with β = 200. It is seen that for K = 1, cos10° and 

cos20°, the flow enters the interactive phase III shortly after calculation starts, after a 

short transient phase II characterised by stable vortices. Phase III, or the interaction 

phase, dominates the following calculated periods with a much stronger and higher-

frequency interactions between the vortices compared with the smaller β cases. The 

interactions of the vortices appear random along the cylinder span so that unlike the 

cases of β = 200, it is hard to distinguish the generation and merging of individual 

vortex pairs. Although the differences between the cases of K = 1, K = cos10° and K = 

cos20° are not obvious, a closer look at Figure 5.9a,b,c does spot a slight delay of the 

instability development as K decreases. However, as K is further decreased to cos30° 

(Figure 5.9d), obvious weakening of the irregular 3-D features is observed. Firstly, the 

onset of 3-D is delayed for more than 30 flow periods than that of larger K values. 

Secondly, phase II lasts for about 20 periods, which doubles that of larger K cases. 

Finally, the frequency of interaction in phase III becomes much lower for K = cos30°.  

The characteristic wavenumber is studied to give quantitative description of the vortical 

structures developed at different K. The wavenumbers calculated along the same 

probing line as shown in Figure 5.9 at N = 200 for all cases are compared in Figure 5.10. 

For β = 200, as K is decreased from 1 to cos10°, the dominant wavenumber remains 

unchanged at about 1.2, indicating there are five main vortex pairs along the cylinder 

span. This agrees with our observations in Figure 5.8. The corresponding wavelength is 

1/1.2 ≈ 0.83. The wavelength is reduced as K is reduced to cos20°. The dominant 

wavenumber read from Figure 5.10 for this case is roughly 1.5, which means there are 

six vortex pairs generated along the cylinder span, and the wavelength is 1/1.5 ≈ 0.67. 

For flow cases with strong three-dimensionality at (KC, β) = (2, 400) with K = 1, cos10° 

and cos20°, no dominant characteristic wavenumber is detected because of irregular 

high-wavelength interactions between the vortices. There are more than one major 
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values of wavenumber found for these cases as the flow is in a chaotic interaction stage. 

For a smaller K of the value cos30°, a dominant wavenumber (although relatively weak) 

emerges as the 3-D of the flow is simply weakened enough to allow the distinguishing 

of a unique dominant wavenumber. The dominant wavenumber reads for this case is 

about 2.2, which gives a wavelength of about 0.45. 

(b) K =cos10° 

 
Phase I II III 

 

(c) K =cos20° 

 
Phase I II III 

 

Figure 5.8 Spatial-temporal evolution of the non-dimensional axial velocity component over the 200 periods at KC = 

2 and β = 200 for various K values smaller than cos40°. Recorded along a probing line with coordinates of (x/D, y/D, 

z/D) = (0, 0.51, 0 ~ 4).  

(a) K = 1 
Phase I II III 

(d) K =cos30° 
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(a) K = 1 
II Phase I III 

(d) K =cos30° 

 
II Phase I III 

 

Figure 5.9 Spatial-temporal evolution of the non-dimensional axial velocity component over the 200 periods at KC = 

2 and β = 400 for various K values smaller than cos40°. Recorded along a probing line with coordinates of (x/D, y/D, 

z/D) = (0, 0.51, 0 ~ 4).  

(b) K =cos10° 

 
II Phase I III 

(c) K =cos20° 

 
II Phase I III 
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Figure 5.10 Characteristic wavenumber obtained from FFT under different α for (a) (KC, β) = (2, 200) and (b) (KC, β) 

= (2, 400) at N = 200. An offset between different K is applied in each figure for aim of clarity. 

These observations support the finding that small K is effective in destroying the Honji 

instability in the flow field near an elliptic cylinder. The detailed instantaneous Honji 

vortical structures generated under the effects of K is studied in the following section. 

 Instantaneous 3-D vortex structures 5.5.2

The instantaneous flow structures are studied using the results calculated for the 200th 

period. Similar to the method used in Chapter 4 the vortical structures formed near the 

cylinder surface are visualised using iso-surfaces of vorticity (ωx). The results presented 

in Figure 5.11 and Figure 5.12 are the views projected to a plane that is perpendicular to 

the streamwise direction. Since the dimension of the cylinder in the minor axis direction 

is fixed as one, the width of the cylinder shown in these figures is identical for all K 

values. 

Results for β = 200 at different shape factors are given in Figure 5.11. As observed in 

Section 5.5.1, in the 200th flow period the flow has entered a weak interaction phase for 

K = 1, cos10° and cos20°. Since the flow with β = 200 is in the stable Honji regime and 

the interactions between vortex pairs are weak and regular, distinct vortices can still be 

seen in Figure 5.11. Similar to that reported in Chapter 4, the vortical structures 

wrapping the cylinder surface are in two layers along the direction perpendicular to the 

cylinder’s span (z-axis). The two layers consist of the rib-like vortical tubes in the top 

layer sitting on a pair of flat counter-rotating vortices attached to the wall (an illustration 

of the plane view of this structure can be found in Figure 5.15, which shall be discussed 
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later on). The top layer with larger radial extent represents the typical Honji vortices in 

the shape of mushrooms. For K = cos30°, no vortical structures are present because no 

Honji instability develops and the flow remains in 2-D potential flow (phase I).  

Variation of K affects the distribution of the Honji vortex pairs, which arrange in arrays 

along the cylinder span. For the stronger 3-D cases at β = 200 (K = 1 and cos10° as in 

Figure 5.11a, b), the cylinder surface is wrapped by two arrays of five counter-rotating 

vortex pairs representing the Honji structures. As labelled in Figure 5.11, there is one 

array of vortex pairs at both the top (left to the x-axis in the figure) and bottom (right to 

the x-axis in the figure) half plane. The two arrays look similar but are not completely 

the same due to the interacting behaviours of the vortices in phase III. It is observed that 

for K = 1 the number of vortex pairs in each array is the same, however for K = cos10° 

six pairs are in the left array including one being the transient vortex while only 4.5 are 

in the right array. When K = cos20°, one more vortex pair is present (Figure 5.11c) and 

each array has six vortex pairs. It seems that the shape and dimension of every single 

vortex pair remain more or less unchanged for different K values. The existence of an 

additional vortex pair at small K values results in smaller distances between the vortex 

pairs than those with larger K cases. 

The 3-D structures given in Figure 5.11 are related to the flow development progresses 

at different K values. It is mentioned in Section 5.5.1 that the flow development at K = 

1 is slightly quicker than that at K = cos10° because of the suppressing effects of a 

smaller K. Regarding the axial shifting and interactions of theses two-layer vortices at 

the early stage of 3-D development (as discussed in Section 4.4.1), for K = 1, all the five 

main vortices have finished one interaction with a transient vortex and the associated 

axial shifting by the time of t/T = 200, as shown in Figure 5.8. As a result, five distinct 

vortex pairs can be seen in Figure 5.11a. However, for K = cos10°, only four shifting 

and associated merging of vortices have completed by t/T = 200, indicating a delay in 

the flow development. As seen in Figure 5.11b, there are six vortex pairs in the left 

array, which include five main vortices and one transient vortex pair. Following a 

similar process as that described in Section 4.4.1, the transient vortex pair labelled in the 

dashed circle in Figure 5.11b will merge with its neighbour and disappear in later 

periods. Then the vortices distribution along the cylinder’s whole span will look very 
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similar to that of Figure 5.11a. The flow is more stable and its development further 

delayed for K = cos20°. At this K, the vortex pairs are more evenly distributed as shown 

in Figure 5.11c, having just entered the interactive phase III. In addition, the vortex 

arrays generated on two half planes consist of the same number of vortex pairs. There 

are six vortex pairs in each array, i.e. one more than the cases of K = 1 and cos10°. 

However, it is observed that the dimensions of each vortex seem more or less 

unchanged; hence the neighbouring vortices are closer to each other. Finally, further 

decrease of K to cos30° leads to the suppression of 3-D instability near the cylinder, as 

observed in Figure 5.11d.  

(a) K=1 

Left (top) plane Right (bottom) 

plane 

(b) K= cos10° 

(c) K = cos20° (d) K = cos30° 

 

Figure 5.11 Instantaneous structures of iso-surfaces of ωx near the cylinder for various K < cos40° at (KC, β) = (2, 

200). Plot at t/T=200. The view direction is perpendicular to the direction of the major axis of the elliptic cross 

section. With x-axis as the boundary, its left is regarded as the top plane (i.e. θ = 0° to 180° as previous defined) and 

the right the bottom plane (θ = 180° to 360°). 

At β = 400 and K < cos30° the intrinsic three dimensionality in the near wake is so 

strong that vortices are strongly irregular with various sizes and strengths as shown in 
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Figure 5.12a,b,c. Compared with β = 200, the vortices cover a much larger portion of 

the cylinder in both the circumferential and axial directions. They extend across the x-

axis and interact with vortices from the other half plane. In consistence with our 

previous findings, 3-D behaviours become weaker as K decreases. In consistence with 

our previous observations, 3-D behaviours become weaker as K decreases. This is 

reflected by the ease of the vortex irregularity and the decrease of the circumferential 

coverage of the vorticity contours. For K = cos30° the vortices of both the top and 

bottom half planes remain disconnected with the vortices from the other plane (similar 

to the β = 200 case). Fewer interactions are observed and the vortices appear to be in a 

more distinct shape. However, unlike the cases at β = 200 which are more regular, the 

vortex arrays formed on two half planes of the cylinder look quite distinct with different 

number of vortices and the vortices are in various shapes. 

(a) β = 400, K = 1 

Left (top) plane Right (bottom) 

plane 

(b) K= cos10° 

(c) K= cos20° (d) K= cos30° 

 

Figure 5.12 Instantaneous structures of iso-surfaces of ωx near the cylinder for various K < cos40° at KC = 2 and β = 

400. Plot at t/T=200. The view direction is perpendicular to the direction of the major axis of the elliptic cross section. 

With x-axis as the boundary, its left is regarded as the top plane (i.e. θ = 0° to 180° as previous defined) and the right 

the bottom plane (θ = 180° to 360°). 
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 Circumferential distribution of vorticity at different values of K 5.5.3

This section studies the circumferential coverage of the vortices, using similar figure as 

Section 4.6.2. It has been noticed from the 3-D instantaneous flow visualizations that 

the circumferential span is affected by K. In addition, the axial extents of the vortices 

also seem to vary at different circumferential locations. In Figure 5.13 and Figure 5.14, 

a plane view of the contours of ωx for the recorded nodes at circuits located in the centre 

of the top-layer vorticity along the cylinder span is given for the different values of K 

studied at (KC, β) = (2, 200) and (KC, β) = (2, 400). From these extended plane views 

we can clearly see the circumferential distribution of the 3-D structures for each case. 

The results for the cases of β = 200 are given in Figure 5.13, from which it can be 

observed that there are some similarities between the vortex distributions obtained at 

different values of K. First, viewing along the cylinder span, it is seen that the vortices 

for all cases are horizontal and perpendicular to the cylinder span. Also, the vortices 

from the two arrays are interlacing and distribute in a staggered manner with respect to 

the cylinder axis. The counter-signing stripes indicate the counter-rotating vortices 

within each vortex pair, and these two vortices are equal and symmetric with each other.  

Although the circumferential distribution looks similar, several shape effects can be 

noted when K is varied. First, the strength of the overall vorticity field is weaker at a 

smaller K, indicating a reduced instability. Furthermore, with the decrease of K the 

circumferential span of the vortices also sees a decrease. The range of the cylinder 

circumference covered by the vortical structures is over 70% for K = 1, over 60% for K 

= cos10° and only about 55% for K = cos20°.  
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(a) K = 1  (b) K = cos10° 

(c) K = cos20° 

 

Figure 5.13 Comparison of circumferential dimensions visualised by contours of ωx plotted along the cylinder 

circumference over the whole length of the cylinder for (KC, β) = (2, 200). Plot in the range of -1.5 < ωx < 1.5 at N = 

200. The circuit plane probed is at the centre of the top layer vortices of the two-layer Honji vortical structures. 

For β = 400, the vortices distributions are not as regular as that shown for the β = 200 

cases, due to the strong interactions between the vortices. As can be observed from 

Figure 5.14, the vortical stripes representing the vortices are of various shapes and sizes 

along the cylinder span as well as along the circumference (θ). Compared with the cases 

of β = 200, it is seen that the stripes become shorter in the axial direction but longer 

along the circumference. The stripes are much narrower in z-direction because more 

vortices are generated in each array, and around the cylinder the vorticity contours span 

so long over the shoulder of the cylinder (θ = 180°) to connect with the same-signing 

vorticity in the other array. This indicates that the vortices between the top half plane 

and bottom half plane at certain axial locations pass around the boundary angle of θ = 

180° to interact with each other. All these observations reflect a stronger instability at 

higher β.  
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The stabilising effect of decreasing K is indicated by the facts observed which include 

that the vortex pairs are more orderly distributed, and that at the same time the strengths 

of the vortices slightly weaken, as indicated by the vorticity contours. It is noticed that 

when K is decreased from K = 1 to K = cos30°, although the cross section is largely 

flatter, the circumferential coverage of the vortices remains more or less unchanged. 

This is resulted from the combined effects of two reasons. For one thing, as K is smaller 

the flow is more stable and the three-dimensionality of the flow is weaker, which should 

lead to a decrease of the vorticity strength and a shortening of the circumferential 

coverage; on the contrary, the flattening of the cross-sectional area and elongation of the 

curvature result in a stretch of the vortices along the cylinder circumference, which 

increases the circumferential coverage of the vortical structures.  

(a) K=1 (b) K = cos10° 

(c) K = cos20° (d) K = cos30° 

 

Figure 5.14 Comparison of circumferential dimensions visualised by contours of ωx plotted along the cylinder 

circumference over the whole length of the cylinder for (KC, β) = (2, 400). Plot in the range of -1.5 < ωx < 1.5 at N = 

200. The circuit plane probed is at the centre of the top layer vortices of the two-layer Honji vortical structures. 
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 Evolution of Honji vortex structures within one flow period  5.5.4

The evolution of the two-layer vortical structures within one oscillation period is studied 

in both x/D = 0 plane and the cross-sectional plane of z/D = 2.  

5.5.4.1 Cross-sectional view of vortices 

The vortical structures in the plane of x/D = 0 within one oscillation period for a circular 

cylinder (K = 1) at (KC, β) = (2, 200) and (KC, β) = (2, 400) have been discussed in 

Section 4.5.1 and shall not be repeated here. The following discussions are then focused 

on the cases of K < 1. 

For the stable cases at β = 200 with K = cos10° and cos20°, the vortical structures 

formed near the cylinder are similar to that of the case K = 1. Distinct two-layer 

structures are distributed along the cylinder with the top layer more developed and 

extended in y-direction, while the bottom layer is flatter with a slightly longer axial span. 

The developed flow field obtained for K = cos10° shown in Figure 5.15 demonstrates 

five main vortex pairs along with an additional transient new pair. Among all the vortex 

pairs, three of them (almost covering half of the cylinder span) seem to have fully 

developed at this moment, with a core-to-core interval of roughly ∆z/D = 0.8. Similar to 

that of K = 1; these three vortex pairs also seem to have similar sizes and shapes with 

those of K = 1. The other three, which are circled in Figure 5.15, are attached close to 

each other at this moment and shall interact in later periods. It is speculated that at a 

later moment the whole vortical field along the cylinder will become just like that of K 

= 1 with five main vortices distributed along the cylinder span. However, the five-main-

vortex distribution is altered when K is further reduced to cos20°. As shown in Figure 

5.16, the case of K = cos20° sees six main two-layer vortex pairs on both banks which 

are in a staggered manner with respect to the cylinder axis. It can be observed from both 

Figure 5.15 and Figure 5.16 that within the period visualised here, the vortical structures 

seem to only vary in strength, while the location, shape and size of all vortices are 

hardly changed. It is found that the interactions between vortices (namely, merging of 

existing vortices and generating of new vortices) accomplish as the flow evolves but not 

within one oscillation period. 
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The plane view for β = 400 and K =1 is shown in Figure 4.17. For K < 1, the resultant 

flow fields for cos10° and cos20° are similar, therefore in order to avoid repetition the 

case of K = cos10° is omitted here. Figure 5.17 gives the evolution of vortices in x/D = 

0 plane for the case of K = cos20°. As the interaction and irregularity of the vortices 

weaken when K is reduced to cos20°, the two-layer structures that have a more 

extended top layer and a flatter bottom layer are in a more regular and distinct shape. 

The stabilization of the vortex behaviours indicates the flow becomes more stable as K 

reduces to cos20° from K = 1. At different instants within one period, the size and shape 

of each vortex show visible variation. With more vortices generated along the cylinder 

span compared with the cases of β = 200, the vortices are very close to each other, 

although no obvious interaction between neighbouring vortices is observed. However, 

there is neither generation nor dissipation of vortices throughout the oscillation period, 

and the number of vortices remains unchanged.  

As shown in Figure 5.18, further stabilization of the flow field is observed when K is 

reduced to cos30°. The vorticity field is further weakened compared with larger K 

values. With a more stable flow, the size and shape of each vortex pair seem to become 

more similar, and remain unchanged throughout the flow period. In addition, the flow 

field shows a better periodicity. At all instants during the period, the vortical structures 

are more distinct and the number of prominent vortex pairs can be identified to be seven 

on the upper bank and nine on the lower bank of the cylinder span respectively. Recall 

that the FFT analysis for this case shows a dominant wavenumber of roughly 2.2. This 

dominant wavenumber indicates approximately (2.2 4 = 8.8 ≈) 9 vortex pairs along the 

cylinder, which is in consistence with the present observation. 

The regular vortex structures for the case of K = cos30° at β = 400 should be 

distinguished from that obtained at β = 200. Unlike the cases of β = 200, the vortices 

demonstrated in Figure 5.18 have different shapes and sizes along the cylinder, 

especially in their radial extents (definition sketch given in Figure 4.27); the vortices 

bear larger variations in the radial span than in the axial span). In addition, there are five 

prominent pairs of vortices for β = 200 along the cylinder span so that each vortex pair 

covers an axial length of about 0.8D, while about 7~9 pairs of vortices can be identified 
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in Figure 5.18, meaning a distance between the cores of two neighbouring vortex pairs 

is about 0.5D. 

(a) t*=0 

Upper bank 

Lower bank 

(b) t*=1/8 (c) t*=1/4 

 

(d) t*=3/8 (e) t*=1/2 (f) t*=3/4 

(g) t*=1 

 

Figure 5.15 Vortex array in plane x/D = 0 in vorticity contours of ωx for one oscillation period. For (KC, β) = (2, 200) 

and K = cos10°. t* = t/T-200 and -1.5 < ωx < 1.5. Circled is the additional transient new pair. For the first ½ period 

the interval is ∆t* = 1/8 and for the second half period ∆t* = 1/4. 
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Figure 5.16 Vortex array in plane x/D = 0 in vorticity contours of ωx for one oscillation period. For (KC, β) = (2, 200) 

and K = cos20°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second 

half period ∆t* = 1/4. 
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Figure 5.17 Vortex array in plane x/D = 0 in vorticity contours of ωx for one oscillation period. For (KC, β) = (2, 400) 

and K = cos20°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second 

half period ∆t* = 1/4. 
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Figure 5.18 Vortex array in plane x/D = 0 in vorticity contours of ωx for half oscillation period. For (KC, β) = (2, 400) 

and K = cos30°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second 

half period ∆t* = 1/4. 

5.5.4.2 Vortices at cross-sectional view 

Evolution of the radial extent as well as the circumferential coverage of one two-layer 

vortical structure around the cylinder can be demonstrated in a cross-sectional plane 

view. Visualizations are given for the cross planes at z/D = 2 within one oscillation 

period. The locations of the visualization planes are indicated by the dashed lines shown 

in Figure 5.18. Again only the cases of K < 1 are discussed here, because the cases of K 

= 1 at (KC, β) = (2, 200) and (2, 400) have been covered in Section 4.5.2.2. 
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For (KC, β) = (2, 200) at K = cos10° and cos20°, the plane of z/D = 2 runs through a 

vortex pair in only one array, due to the staggering distribution of the two arrays. 

Therefore, in Figure 5.19 and Figure 5.20, the two-layer vortical structure can only be 

observed in the top half plane, and is consisted of a top-layer vorticity that is much more 

extended in the radial direction and a bottom-layer vorticity that is much thinner. The 

evolutions of the one sample vortex for K = cos10° and cos20° are very similar. As is 

also observed for the circular cylinder case during one period of oscillation, for the 

elliptic cases shown in Figure 5.19 and Figure 5.20, the focus of the top-layer vorticity 

also moves along with the free stream across the cylinder crown. Although the strongest 

vorticity is found at the peaks of the ambient flow (t* = 1/4 and 3/4), the centre of the 

vorticity reaches the top of the cylinder (i.e. at θ = 90º) at t* = 3/8 and at this instant the 

vorticity distribution is symmetric with respect to the y-axis. As the cylinder 

circumference is further elongated to a smaller K, it is noticed that the vorticity tends to 

accumulate at the slope before the cylinder crown (e.g. Figure 5.19b and Figure 5.20b), 

and to stretch when it is across the crown (e.g. Figure 5.19d and Figure 5.20d). This 

feature becomes more obvious as the cross section of the cylinder turns flatter. 

For the case of β = 400, since the results at K = cos10° and cos20° are very similar, 

therefore discussions for K = cos10° are omitted here. The cross-sectional views for the 

case of K = cos20° and K = cos30° are given in Figure 5.21 and Figure 5.22, 

respectively. As indicated by the dash lines in Figure 5.17, the measure plane of z/D = 2 

cuts through the centres of a pair of two-layer vortical structures from two arrays 

located on both banks of the cylinder span. These vortices are middle-sized among all 

the vortices along the cylinder span. The two vortex pairs happen to be symmetric with 

respect to the horizontal centre line, and they are also roughly symmetric with respect to 

the x-axis as can be viewed in Figure 5.21 and Figure 5.22.  



 

144 

(a) t*=0 

Flow reversal 

x

y

θ

(b) t*=1/8 

Flow direction 

(c) t*=1/4 

Flow direction 
 

(d) t*=3/8 

Flow direction 

(e) t*=1/2 

Flow reversal 

(f) t*=3/4 

Flow reversal 

(g) t*=1 

Flow reversal 
 

Figure 5.19 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For (KC, β) = (2, 

200) and K = cos10°. t* = t/T-200. -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second 

half period ∆t* = 1/4. 
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Figure 5.20 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For  (KC, β) = (2, 

200) and K = cos20°. t* = t/T-200. -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the second 

half period ∆t* = 1/4. 
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Figure 5.21 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For (KC, β) = (2, 

400) and K = cos20°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the 

second half period ∆t* = 1/4. 

For the (KC, β) = (2, 400) cases, it should be noted that the vortex structures vary along 

the cylinder, hence the cross-sectional views given here are just for one sampling vortex 

cut through by the measure plane. However, it is still necessary for us to study the 

behaviours of the sampling vortex in order to get some general ideas on the 

circumferential evolution for different K values under (KC, β) = (2, 400).  
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Figure 5.21 shows the cross-sectional view for the case of β = 400 and K = cos20°. It is 

observed that the radial extent of the probed two-layer structure is smaller and the 

structure is flatter compared with the one studied for β = 400 and K = 1 shown in Figure 

4.17. As can be seen in Figure 5.17, the probing plane cuts through the edge of the 

vortices at t* = 0 and the centres of the vortices at t* = 1/4 to 1. This indicates that the 

probed vortices undergo an axial shift of about half-an-vortex length during the 

oscillation period. As a result, the vorticity shown in Figure 5.21a appears weak at t* = 

0 because it is near the vortex edges. Then as the flow velocity increases, the top-layer 

vortices are swept along the cylinder circumference indicated by the movement of the 

dolphin-like structures, similar to that previously observed in other cases. As the two-

layer vortical structure is washed by the ambient flow and transfers around the cylinder, 

the uneven circumferential distribution of the vorticity with a focus observed at certain 

moments indicates the accumulation of the vorticity at locations before the vertex of the 

cylinder. At moments when the majority of the vorticity reaches the vertex of the 

cylinder (i.e. at θ = 90º), the vorticity is seen stretched so that it is more equally 

distributed and the focus of the vorticity disappears.  

Recall that for the circular cylinder case, the bottom layers cover a larger circumference 

than the top layers throughout the period. For the elliptic cylinder with K = cos20°, it is 

seen from Figure 5.21 that throughout the period, the bottom layer and top layer have 

almost equal circumferential coverage. However in the radial direction, the bottom layer 

is again much thinner than the top layer, as a result of being closer to the cylinder 

surface and confined by the no-slip boundary condition.  
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Figure 5.22 Vortex evolution in plane z/D = 2 by vorticity contours of ωx for one oscillation period. For (KC, β) = (2, 

400) and K = cos30°. t* = t/T-200 and -1.5 < ωx < 1.5. For the first ½ period the interval is ∆t* = 1/8 and for the 

second half period ∆t* = 1/4. 

When K is reduced to cos30°, the flow is further stabilized. It can be seen from Figure 

5.18 that the measure vortex pair is again middle-sized among all the vortices generated 

along the cylinder. From Figure 5.22 it is observed that, while the bottom-layer vortices 

cover a large portion of the circumference, the top-layer vortices reduces its coverage at 

certain moments. The radial extent of the top-layer vortices also reduced at this case, 

which is also an indication of reduction in the strength of instability. With a flatter cross 

section, the top-layer vorticity is distorted into the typical ‘dolphin’s shape’ as described 
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in Section 4.5.2.2, i.e. the vorticity contour is no longer evenly distributed and non-

symmetric with respect to the y axis. The large end of the vorticity is the dolphin’s head, 

representing the accumulation of large amount of vorticity. At the elongated slope is 

found to be more apparent, see for example Figure 5.22a,b,e. The top layer has its 

largest circumferential extent at the moment t* = 3/8, as it is stretched when it is swept 

across the cylinder crown. As a result, at this moment the radial extent of the top-layer 

vorticity is most uniform around the cylinder yet the smallest within one period. 

The accumulation and stretching of the vorticity demonstrate that as the cylinder 

becomes flatter, the transfer of the vorticity over the top of the cylinder becomes less 

likely to accomplish. The overall instability of the flow field reduces with the decrease 

of K, as reflected by the fact that the vortical structures have better periodicity and are 

weaker in strength. In addition, the radial extent as well as the circumferential coverage 

of the top layer vortices is smaller compared with those with a larger K value. 

5.6 Side instability (K < 0.6½)  

In this section we briefly examine the other instability indicated by the lower curve in 

Figure 5.3. According to Hall’s prediction, when K is too small to induce the Honji 

instability, another type of 3-D instability may occur closer to the shoulders (or sides) of 

the cylinder under the effects of an elongated curvature. This indicates that at a small K 

for a certain value of the governing parameters (KC, β) where the Honji instability is 

suppressed, the Side instability may be observed. The dependence between KC, β and K 

for the onset of the Side instability is plotted in Figure 5.7. To evaluate the Side 

instability, in this study we examine two K values at (KC, β) = (2, 400): one is K = 

cos40° which is close to 0.6½ and the other is K = cos60°. The results obtained through 

the present numerical model are compared and evaluated against Hall’s theoretical 

prediction. 

 K = cos40°
 5.6.1

At the value of cos40° (≈ 0.766), K is very close to but slightly smaller than the 

predicted critical value of 0.6½ (≈ 0.774) for the bifurcation of the two instabilities. The 
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theoretically predicted governing parameters that lead to both the Honji instability and 

the Side instability at K = cos40° are plotted in Figure 5.23, from which it can be seen 

that the two curves are very close.  
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 Honji Instability: KCβ1/4= 6.543

 Side Instability: KCβ1/4= 6.540

 

Figure 5.23 Dependence of KC on β for K = cos40° for the Honji instability and the Side instability. Calculated from 

Hall’s theory with first order accuracy. 

The spatial-temporal flow development and the instantaneous 3-D structures generated 

under the case of K = cos40° at (KC, β) = (2, 400) are visualised in Figure 5.24. It is 

found that for this case, the Honji instability still develops. As is expected, the flow 

evolution is delayed and the resultant vortices are less active compared with those at 

larger K values (e.g. K = cos30°). From Figure 5.24a, the onset of 3-D is first observed 

at around N = 85 with 10 evenly distributed vortex pairs, which become unstable and 

begin to interact at around N = 110. The 3-D flow field shown in Figure 5.24b shows 

two vortex arrays distributed along the cylinder representing the Honji vortices. The 

cross sections of the two arrays on two banks of the cylinder are viewed in Figure 5.24c, 

from which the typical symmetric two-layer four-vortex Honji pairs are clearly 

observed. Since K is so small that the 3-D flow around the cylinder is more stable, the 

vortices are distinct and regular. Compared with those at larger K values (e.g. cos30°), 

the vortices have become more uniform and similar in size and shape to each other as 

shown in Figure 5.24b,c. These vortical structures around the cylinder are stretched by 

the elongated curvature, and therefore have larger circumferential coverage, as can be 
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clearly viewed in Figure 5.24d. In addition, the accumulation of the vorticity at 

locations slightly lower than the cylinder vertex is obvious, demonstrated by the large 

dolphin’s head in Figure 5.24d. 

According to Hall’s prediction, both the Honji instability and the Side instability can 

develop at (KC, β) = (2, 400) with the shape ratio of K = cos40°. However, based on the 

observations given above, it is impossible to determine the existence of the Side 

instability. At this K value, since the Honji instability over the cylinder crown is still 

observed and the accumulated vorticity at the slope before the cylinder crown still 

connects with the Honji vorticity around the cylinder crown, a complete dolphin’s shape 

is observed in Figure 5.24b,c,d. It is therefore hard to distinguish the vortical structures 

formed under the Side instability because even if they are generated, they merge with 

the Honji vortices, which have a large circumferential coverage as seen in Figure 5.24d. 

This is probably because the critical governing parameters at this K for the two 

instabilities are very close. However with the cylinder being further flatter, the 

accumulation of vorticity close to the sides of the cylinder does demonstrate a trend of 

disconnecting with the Honji instability, which forms at the cylinder crown. 
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Figure 5.24 Demonstration of the vortical structures formed for K = cos40° at (KC, β) = (2, 400). (a) Spatial-temporal 

flow evolution over 200 flow periods calculated. (b) Instantaneous 3-D vortical structures visualised by the unit iso-

surface of ωx. (c) Vortices in the plane of x/D = 0 and (d) vorices viewed in the plane of z/D = 2. 

 K = cos60°
 5.6.2

As K reduces from the value at the bifurcation of the two curves in Figure 5.3, the 

difference between the critical governing parameters for the Honji instability and the 

Side instability increases. The dependence curves for the two types of instability at K = 

cos60° by Hall’s prediction are compared in Figure 5.25.  

Previous results have demonstrated a delayed flow development with the decreasing of 

K. In order to accelerate the calculations with a small K of cos60°, the calculations are 

performed with a perturbation method described in Chapter 3. It is found that our 

calculated results seem to present a flow field that is more stable compared with Hall’s 

prediction. According to Hall’s theory as given in Figure 5.25 for this K value, both the 

Honji instability and the Side instability would occur at (KC, β) = (2, 400). However, 



 

153 

the present results obtained from the numeral simulations show that only a weak Side 

instability occurs while the Honji instability cannot be observed for the case of (KC, β) 

= (2, 400) with K = cos60°.  
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Figure 5.25 Dependence of KC on β for K = cos60° at (KC, β) = (2, 400) for the Honji instability and the Side 

instability. Calculated from Hall’s theory with first order accuracy. 

To confirm that the Side instability is an intrinsic flow behaviour, and also to confirm 

that the Honji instability indeed ceases to form for this case, calculations are performed 

again with a 3-D initial flow field where Honji vortices exist. The perturbation is also 

removed in this calculation to allow the flow to develop freely. The time evolution 

figures and the instantaneous flow structures at the beginning and the end of this 

calculation are shown in Figure 5.26 and Figure 5.27. The instantaneous flow structures 

given in Figure 5.27a are obtained under (KC, β) = (2, 1500) with K = cos60°, where the 

two-layer Honji vortices at θ = 90° and the side vorticity near the cylinder shoulders 

coexist yet are separated from each other. This flow field is used as the initial condition 

for the flow development calculation conducted at (KC, β) = (2, 400), the spatial-

temporal evolution process is given in Figure 5.26. It is clearly seen that, as the 

calculation progresses, the Honji instability (stripes in Figure 5.26a) fades away quickly 

while the Side instability (stripes in Figure 5.26b) persists although with a slightly 

decreased intensity at early steps after the calculations are commenced. The resultant 3-

D flow field after 20 oscillation periods is visualised in Figure 5.27b where only the 
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side vortices can be observed. It is thus confirmed that suppression of the Honji 

instability and development of the Side instability are intrinsic flow features at (KC, β) 

= (2, 400) for K = cos60°.  

The appearance of the Side instability has several differences compared with the Honji 

instability. Unlike the Honji instability, where the two-layer vortex pairs form, the 3-D 

structures induced by the Side instability are simply one-layer single rotating vortices in 

the form of flat patches attached to the cylinder surface. Also, for the cases of larger K 

values at β = 400 where Honji instability occurs, there are five Honji vortex pairs 

formed along the cylinder. However at K= cos60° there are only four side vortex 

patches distributed along the cylinder span as demonstrated in Figure 5.27b. As a result, 

the distance between the cores of the vortex patches is larger compared with that of the 

Honji pairs.  

(a)  

200                    205                       210                       215                      220  

(b)  

200                    205                       210                       215                      220  

Figure 5.26 Spatial-temporal evolution of contours of the relative axial velocity component uz/Umx for K = cos60° at 

(KC, β) = (2, 400) with a 3-D initial condition. (a) For the Honji instability, probed at θ = 90° along the cylinder and 

(b) for the Side instability, probed at θ = 165° along the cylinder.  
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(a)  (b)  

 

Figure 5.27 Instantaneous structures of unit iso-surfaces of ωx near the cylinder for K = cos60° at (KC, β) = (2, 400). 

(a) Results for β = 1500 at N = 200. (b) Resultant flow field for β = 400 after 20 flow periods using (a) as the initial 

condition.  

In addition to the 3-D view of the instantaneous flow structure given in Figure 5.27b, 

for a full description of the vortical structures, the cross-sectional planes of two vortex 

patches representing the Side instability around the cylinder circumference with an 

interval of ∆θ = 5° are visualised in Figure 5.28. It is noted that one of the most unstable 

locations at K = cos60° calculated from Equation 5.1 by Hall’s theory is about 152°. 

This is within the range of about θ = 150° to 170° for the Side instability in the form of 

axially varying vortex patches to be observed in Figure 5.28. Along the circumference, 

the vortex patches are flat with small radial extent, and only grow slightly in the axial 

span. The largest and strongest patch is observed at θ = 165°, where the axial extent is 

about 0.44D and the distance between two vortex patches is roughly 0.54D. The radial 

extent at this θ is about 8% of the axial extent. 

The one-period evolution process of the vortex patches is demonstrated in a time 

sequence in Figure 5.29. The oscillation starts in the positive direction of the x-axis. 

Four evenly distributed vortex patches form at the first peak as seen in Figure 5.29b. 

These vortex patches are observed close to the shoulders at the current front side (i.e. 

the side confronting the incoming flow) of the cylinder. These four patches are not 

identical; rather, two of them are relatively weaker and cannot be observed at certain 

moments. The patches slightly extend along the cylinder circumference washed by the 

ambient flow over the half oscillation period before the flow reverses, so that they 
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slightly stretch while moving towards the top of the cylinder as seen in Figure 5.29c. 

However the elongated curvature causes the vortex patches to fail to reach to the 

cylinder crown (  = 90°) before the opposite oscillation starts. The vortex patches are 

then washed back to the shoulders by the opposite flow as the latter increases. At the 

same time, the intensity of the vortex patches are also weakened, causing the two 

weaker vortex patches to vanish. The flow field at the end of the oscillation looks 

identical to that at the beginning and the evolution process then repeats in the next 

period. During the whole process, it is observed that the vortex patches only form at the 

side which serves as the front side when the first oscillation starts. 

(f)  = 150° 

(h)  = 145° 

Figure 5.28 Plane views of the instantaneous structures near the cylinder for K = cos60° at (KC, ) = (2, 400) given 

by contours of x in the planes in the range of  = 145° to 175° with an interval of  = 5°. The contours shown are in 

the range of 80% of the maximum x plotted at N = 200. 

(a)  = 175° 

(c)  = 165° (d)  = 160° 

(e)  = 155° 
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Figure 5.29 Evolution of unit iso-surfaces of ωx near the cylinder for K = cos60° at (KC, β) = (2, 400). Iso-surface at 

80% of the maximum ωx, which varies in the range of ±0.007 during one period. Plotted for t* = t/T – 200 = (a) 0, (b) 

1/4, (c) 1/2, (d) 3/4 and (e) 1. 
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5.7 Comparison with theoretical prediction 

 Contradictions 5.7.1

So far the numerical results for the cases evaluated have demonstrated Hall’s finding 

that the flattening of the cylinder’s cross section can exert a stabilising effect on the 

transition from 2-D to 3-D flow. However, contradictions are found when comparing 

between the current calculations and that predicted by Hall’s theory with first order 

accuracy for both the Honji instability and the Side instability discussed in the previous 

contents.  

As mentioned before, the critical shape factor K for suppression of the Honji instability 

at (KC, β) = (2, 200) and (2, 400) are 0.54 and 0.3, respectively, predicted using Hall’s 

theory with first order accuracy. In other words, this means in Hall’s theory the Honji 

instability can be observed at the two (KC, β) groups for a cylinder with any K larger 

than the values given. However, the calculated flow field seems to be more stable than 

predicted at different K values. The present calculations have shown that a K value of 

cos30° (about 0.87) is sufficient to keep the flow in the 2-D regime for (KC, β) = (2, 200) 

and that the transition from 2-D flow to 3-D flow only occurs at the cylinder shoulders 

in the form of a so-called Side instability at K = cos60° (0.5) for (KC, β) = (2, 400). This 

means that the critical K values leading to the suppression of the fluid instability found 

from the present calculations are larger than that predicted by Hall’s first-order linear 

stability theory.  

Further confirmation of this contradiction is also provided by comparing the resultant 

flow properties at smaller K. For K = cos60° studied in Section 5.6.2, the theory 

predicts that the Side instability should be observed at (KC, β) = (2, 200), see Figure 

5.25. And when the governing parameters are increased to (KC, β) = (2, 400), both 

Honji and side instabilities are expected to occur. However, our numerical simulations 

showed that the flow is intrinsically 2-D stable for the case of (KC, β) = (2, 200) with K 

= cos60°, i.e. no 3-D instability of any type near the cylinder arises. For the case of (KC, 

β) = (2, 400) with K = cos60°, it is found that only a weak Side instability would occur 

while the Honji instability cannot be observed. Compared with the present study, it is 
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seen that Hall’s linear stability analysis with first order accuracy seems to ‘over-

estimate’ the instability at relatively lower (KC, β) values evaluated in the present study, 

from which the flow appears to be more stable than that predicted. Possible reasons for 

this observed contradiction is given below. 

 Possible explanations 5.7.2

Before going into the possible explanations, it is worth mentioning the good prediction 

provided by the current numerical scheme with respect to the circular cylinder case. A 

3-D direct numerical simulation of An et al. [21] used the same calculation model to 

study oscillatory flow around a circular cylinder. It was found that the numerical model 

was able to identify the three distinctive flow regimes as β varied in the range of 100 to 

600 at a constant KC of 2 (same with the present study). Other than demonstrating the 

detailed flow structures of Honji instability during the transition from 2-D to 3-D, the 

study also showed good accordance of the predicted flow regime at the corresponding 

governing parameters with those available in theliterature. This proved that the current 

numerical scheme is capable of providing direct numerical simulations for the Honji 

instability observed in an oscillatory flow near a circular cylinder. However, as 

mentioned in the previous section, there exists some contradicts in the comparison of 

the current results with the theoretical results of Hall, for which possible explanations 

are discussed in the following. 

The first possible explanation of the over-estimation of the hydrodynamic instability by 

Hall with respect to the current numerical results is attributed to the assumption based 

on which Hall’s theory was developed, namely the prerequisite that the KC number is 

very small while β is very large. Even so, at small (KC, β) values such as that concerned 

in the present study, Hall shows in his paper that the predicted dependence curve of KC 

and β for the onset of the Honji instability compares relatively well with the 

experimental results obtained by Honji for the circular cylinder case. However, the 

theory may not work well with the elliptic cylinder case when another parameter (the 

shape factor K) is involved, especially when this parameter also serves as another factor 

which has a stabilising effect on the flow field. It is possible that with the shape factor 

as an additional parameter, the theory may apply reasonably well for the situation under 
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a sufficiently large β, but the cases evaluated here with β = 200 and 400 may not fulfil 

this requirement. One evidence for this argument is that by slightly increasing β from 

200 to 400, the Honji instability can be observed at cos40°. Still, further proof may be 

provided through experiments which are not found in the literature so far.  

Another possible reason for the contradiction in the threshold K values is possibly 

caused by the neglect of higher-order terms in Hall’s equation (in this study only the 

first-order dependence is given). To show this is the case, the dependence curves plotted 

with both first order and second order accuracy are compared in Figure 5.30. As can be 

seen in Figure 5.30a, the two curves calculated are very close, but large differences 

appear when β is small. For a better comparison, the relative difference of the critical 

KC is plotted against β in Figure 5.30b. It can be observed that the 2nd order effects drop 

off significantly as β increases from 0. At β = 200, the critical KC calculated with 2nd 

order accuracy (KCc2) is larger than that with 1st order accuracy (KCc1) by 

approximately 5.6%. A flatter curve shows that results obtained from both cases are 

more consistent at larger β values (recall one of the prerequisites of Hall’s theory is 

large β). The difference reduces to roughly 4.7% when β is increased to β = 400, from 

which point further increase of β only results in a slight difference less than 5%. 

Particularly, a constant value of approximately 3% for β values larger than 1400 can be 

observed. This means the higher order terms play a less important role at large β values. 
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Figure 5.30 Dependence of KC on β for K = 1 for the Honji instability in the range of 0 < β ≤ 2000. (a) Comparison 

between the two cases calculated with first order accuracy and second order accuracy. (b) Relative difference of the 

critical KC with β, in which ∆KC=KCc2-KCc1, in which KCc1 is the critical KC obtained with first order accuracy and 

KCc2 is the critical KC obtained with second order accuracy. 
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It has been demonstrated that, although with the inclusion of the 2nd order term, the 

critical KC value is only increased by about 5.6% for β = 200 and less than 5% for β = 

400. The predicted KCc2 is still smaller than our numerical results, i.e. our calculated 

flow field is more stable. This bifurcation is attributed to the high-order nonlinear 

effects. As mentioned by Hall, the high-order nonlinear effects excluded from Equation 

1.4 have stabilising effects on the flow field. It should be pointed out that Hall also gave 

a brief evaluation of his theoretical results, claiming that “it is possible that higher-order 

nonlinear effects eventually cause these perturbations (to the basic state, added by the 

author) to equilibrate” and that “our nonlinear calculations do in fact suggest an 

increasingly likely breakdown in the basic flow structure when the Taylor number is 

increased”. 

5.8 Mechanism of the K effects 

 Geometric variation with K 5.8.1

The results presented so far show the stabilising effects of reducing K, in consistence 

with the findings of Hall’s linear stability analysis. Geometric variations of the cylinder 

as K reduces include the flatness in the flow direction and sharpness of the cylinder 

shoulders facing the flow. The resultant flow field near the cylinder is closely related to 

these geometric variations at different K values. 

 Mechanism of K effects considering  5.8.2

It is known that the Honji instability over the crown of the cylinder (θ = 90°) is related 

to the separation of the shear layer at the rear of the cylinder when the required 

governing parameters are matched. The separation is induced by the large value of   at 

the rear when the body is blunt. By gently streamlining the blunt body, separation of the 

fluid particles can be prevented because the value of  reduces.  

Following a similar reasoning, the mechanism resulting in the Side instability can be 

described. As shown earlier, the Side instability happens when K for certain values of 
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the governing parameters is small enough to suppress the Honji instability, while not 

too small to induce any three-dimensionality. As the cylinder takes a more streamlined 

shape, the pressure gradient   near the top of the cylinder (θ = 90°) decreases to a 

critical value that no flow separation occurs. However as the K value reduces,  

increases at the two shoulders of the cylinder (θ = 0° and 180°) where the curvature 

sharpens. Under the combined effects of these two aspects, finally at a certain K, the 

Honji instability at θ = 90° would be suppressed, while the Side instability is triggered 

near two shoulders of the cylinder. This also explains why the locations of the Side 

instability are dependent on the particular curvature under a specified shape factor.  
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Figure 5.31 Distribution of the pressure coefficient around the circumference for different K values at the first 

velocity peak N = 1 (or t/T = 0.25). Measure circuit is composed of the nodal points next to the cylinder edge in the 

plane of z/D = 2. 

To assist our discussions here, distribution of the pressure coefficient Cp around the 

cylinder circumference is plotted in Figure 5.31 for varying K values at the first peak 

value of the free stream. At this time the flow remains 2-D, therefore Figure 5.31 is 

identical along the cylinder axis and is applicable for both β = 200 and 400. The effects 

of the various K values on the resultant pressure distribution around the cylinder are 

clearly observed in Figure 5.31. It is shown that the absolute values of Cp at the cylinder 

shoulders (0°, 180° and 360°) are the same for all K values. However, at these locations 

the variation of Cp is more abrupt for a smaller K value, which means the pressure 

gradient increases by reducing K. On the contrary, the pressure gradient at the top and 

bottom of the cylinder (90°, 270°) reduces largely when K is decreased, as indicated by 
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the flatter curve near these locations shown in Figure 5.31. This explains the increase of 

 at the cylinder shoulders and the decrease of  at the vertex of the cylinder, which 

causes the onset of Side instability and the suppression of the Honji instability, 

respectively. 

An important observation from Figure 5.31 associated with the development of the Side 

instability is that an abrupt variation appears between every 1/4 circumference 

(symmetrically, between 0° ~ 90°, 90° ~ 180°, 180° ~ 270° and 270° ~ 360°) as K 

decreases. Under the effects of the decreasing K, Cp has a trend to remain more 

constant-like over a larger portion of the cylinder. Take the case of K = cos60° for 

example, this portion ranges roughly from 30° to 150°. In the range between 0° and 30° 

and between 150° and 180°, Cp experiences an abrupt change. These two sudden 

changes happen near the two shoulders of the cylinder, and are resulted from the 

sharpening of the two shoulders of the cylinder with the flattening of the cross section. 

The large value of  resulted from the abrupt change of Cp at these locations leads to 

the generation of the local Side instability. It can be observed from Figure 5.31 that, for 

a different K, the abrupt change of Cp is found at a different θ; therefore the locations of 

the Side instability vary with the value of K. 

 Mechanism of K effects considering energy transfers 5.8.3

Another possible explanation of the K effects on the fluid instability can be given by 

considering the physics of the fluid particle movement. As the cross section of the 

cylinder gets flatter and the major axis becomes longer while the minor axis remains 

unchanged, the excursion involved for the fluid particles to move across the top of the 

cylinder from the front to the rear ends increases, thus more momentum and energy are 

needed to accomplish such a movement. Insufficient input of momentum and energy 

would result in the fluid particles to be constrained at one side of the cylinder before the 

next flow reversal and hence separation is prevented. In addition, a small KC value 

means the flow period is short, and the duration of flow in one direction is not long 

enough for the fluid particles to travel to the cylinder crown. Furthermore, a small β 

value indicates the flow has relatively large viscosity, for which more energy is required 

in order for the fluid particles to move along the circumference of the cylinder. Under 
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the combined effects of all these three influencing factors, when a certain condition is 

met, the fluid particles fail to move far enough to reach the crown of the cylinder to 

induce the Honji instability, before the next half period starts where the flow runs 

oppositely and the particles are washed back again. This may then result in the Side 

instability, which is confined at locations close to the cylinder shoulders. 

5.9 Two-dimensional Columnar Flows 

It has been noticed that, when K is small enough, the instability never occurs and the 

flow remains two-dimensional. Now we will discuss the characteristics for the 2-D 

columnar flow field resulted when the cylinder’s cross section is flat enough. The 

specific value of K to suppress the onset of three-dimensionality depends on the value 

of (KC, β). For a larger β value at a constant KC, smaller K is required, because the 

cross section needs to be flatter for inhibiting the stronger 3-D flow at larger β. In our 

calculated cases, it is found that the flow remains two-dimensional at K = cos30° for 

(KC, β) = (2, 200). For this case, the instantaneous flow structures as well as the one-

period evolution of the 2-D flow field near the cylinder will be discussed in the 

following sections. 

 Instantaneous flow structures 5.9.1

The resultant 2-D flow near the cylinder surface is simply a 2-D columnar flow 

generated due to the no-slip boundary condition applied at the cylinder surface. In the 

whole flow field the axial flow never develops, hence the vorticity components ωx and 

ωy remain zero. As a result, in the following contents, rather than ωx which is used to 

illustrate the 3-D vortical structures, ωz is adopted to demonstrate the 2-D columnar 

flow structures near the cylinder. 



 

165 

(a)  (b)  

 

Figure 5.32 The two-dimensional columnar flow wrapping around the cylinder for the case of (KC, β) = (2, 200) at K 

= cos30°, illustrated by the instantaneous structures of vorticity ωz near the cylinder using (a) unit-amplitude iso-

surfaces and (b) contours in z/D = 2 plane. Plot at N =200.  

The instantaneous 2-D columnar flow structure is demonstrated in Figure 5.32. As is 

shown, for the 2-D case, the cylinder surface is wrapped by two layers of counter-

rotating columnar vortices attached to the cylinder surface forming the sheet-like 2-D 

boundary layer. This two-layer structure is very flat and the top layer is much more 

closely attached to the bottom layer compared with the 3-D cases. From the cross 

section shown in Figure 5.32b it can be seen that the two layers are symmetric with 

respect to the main axis of the cylinder’s cross section. The sheet-like vortices bear a 

good resemblance to the “attached vortices” reported by Williamson [56] in his 

experimental study for flow near an oscillating circular cylinder at low KC numbers. 

The vortex layer denotes the rotation of the fluid particles due to the no-slip constraint 

applied at the curvature. 

 Evolution within one period 5.9.2

Evolution of the 2-D columnar vorticity is illustrated in Figure 5.33 by the contours of 

ωz at seven moments within one flow period. In the first half period, five moments are 

chosen (t* = 0 to t* = 1/2). For the second half period (from t* = 1/2 to t* = 1) only one 

intermediate instant (i.e. t* = 3/4) is included. The evolution of the columnar vortex 

structures is seen clearly from the first half period, for which more instants are 

presented. By looking at one complete period we can see the good periodicity of the 

structure, namely, the repetition of the resultant flow structures at moments with a gap 

of T/2 (e.g. see t* = 1/4 and t* = 3/4).  
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It is observed from Figure 5.33 that, for all moments during the flow period, the 2-D 

columnar vortex structures developed around the cylinder circumference are divided 

into symmetric halves with respect to the horizontal centre line. Therefore, only the 

vortex pair generated in the top half plane is studied here. The two layers in the top pair 

are denoted as A1 and B1 at the beginning of the oscillation (Figure 5.33a). At this 

moment, the structures shown are resulted from the oscillation just completes, and a 

large top layer vortex A1 with its focus at about θ = 180° and a thin bottom layer B1 can 

be clearly seen. A1 has a larger radial extent than B1 at moments close to flow reversal 

(t*=0, 1/8, 1/2 and 1) due to the fact that the top layer gets to develop more freely as it 

is further away from the cylinder boundary.  

The onset of the following oscillation sees the transfer of the major vortex across the 

cylinder circumference following the ambient flow. During this process, B1 starts to 

increase in thickness and pushes A1 further away from the cylinder, which then 

becomes thinner. When the flow oscillation reaches its peak at t*=1/4, B1 grows thicker 

than A1. In addition, B1 is no longer evenly distributed across the half circumference, 

rather it has developed a focus at θ = 0°. After t*=1/4, the flow begins to decrease but 

the flow direction persists, therefore the vortex continues to move across the cylinder 

curvature following the direction of the flow. At t*=3/8, it is seen that A1 is swept past 

θ = 90° and seems about to be shed. At the same time, a new bottom layer (C1) 

underneath B1 emerges. Now B1 becomes the new top layer and C1 the new bottom 

layer. The previous top layer vortex A1, weak and small, remains loosely attached to the 

new two-layer structure. With the majority located at the cylinder side, B1 has the 

tendency to detach from the cylinder surface. However, this will not happen as the 

oscillatory flow soon reverses. The strength of the vortices reduces with the continuous 

weakening of the ambient flow until the next flow reversal (t*=1/2). The process then 

repeats itself in the opposite direction in the following half period, where the attached 

weak A1 shall be dissipated but never shed because of the flow reversal.  

Evaluation of the evolution process reveals that although the flow structures at the 

beginning of the one period look the same as that at the end of the period, the vortices 

are different and are actually newly generated during the oscillation. During the period, 

the vortices are attached to the cylinder surface while the generation of new vortices and 
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dissipation of the old vortices occur. The evolution process of the vortices is in 

consistence with that reported by Williamson for the attached vortices regime. 
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Figure 5.33 Vortex evolution in the plane of z/D = 2 by contours of ωz for one oscillation period. For (KC, β) = (2, 

200) and K = cos30°. t* = t/T-200 and -2 < ωz < 2. For the first half period the interval is ∆t* = 1/8 and for the second 

half period ∆t* = 1/4. 

5.10 Conclusions 

This chapter concerns the resultant flow field for an oscillatory flow around an elliptic 

cylinder of different cross-sectional shape ratios (K). Effects of the shape ratio on the 
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transition from 2-D to 3-D flow are investigated at low KC and β values where the 

Honji instability operates.  

A detailed discussion is given to compare the numerical results with those obtained 

based on a linear stability method suggested by Hall [17]. In consistence with the results 

by the linear stability analysis, the numerical results showed that the strength of Honji 

instability decreases with the shape factor K of the cylinder. However, numerical model 

appears to give different predictions of the critical K value below which Honji 

instability is suppressed. The reasons for this are attributed to (1) the linear stability 

method proposed by Hall is based on an assumption of small KC and large β values and 

(2) the non-linearity of the flow at the parameter ranges are not investigated in the 

theoretical study.  

As a complement to Hall’s theory, the present study gives extensive visualizations and 

descriptions on the resultant 3-D Honji vortical structures around cylinders of different 

shape ratios. Reduction of K inhibits the 3-D development as well as changes the 

behaviours of the resultant flow structures. Although it is found that the typical two-

layer four-vortex dipole-like vortex pairs representing the Honji vortices can be 

observed for the 3-D cases for a cylinder with different shape ratios, the vortices around 

the circumference become stretched by the elongated curvature at small K, and the 

overall coverage of vortices over the cylinder surface is slightly reduced. The forming 

of the dolphin’s head (representing the accumulation of vorticity) before the cylinder 

crown grows with the decrease of K, until finally the curvature is flat enough for a ‘Side 

instability’ to occur near the shoulder of the cylinder.  

The flow features under the Side instability are evaluated for the case of K = cos60° at 

(KC, β) = (2, 400). At this K value, the extent of the elliptic curvature is too large and 

the shear layer becomes too thin for the flow under this governing parameter value to 

form vortical structures at the vertex of the cylinder. As a result, the Side instability 

appears in the form of flat one-layer single-rotating vortex patches attached to the 

cylinder surface at locations closer to the cylinder’s sides facing the incoming flow. 

While five main Honji vortices can be observed at this particular (KC, β) values for 

large K values, there are only four vortex patches representing the Side instability along 

the cylinder span. Once the Side instability occurs, the vortex patches can be observed 
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throughout the oscillation period, being only slightly stretched along the curvature by 

the ambient flow. 

The mechanisms of reducing K to cause the suppression of the Honji instability and to 

lead to the Side instability can be accounted for in two aspects, namely, by considering 

the variation of the pressure gradient and the energy transfer at smaller K. The fluid 

particles within the high  region are more unstable and instability is likely to happen 

within this area. As K decreases, the pressure gradient along the circumference 

decreases at the flatter cylinder vertex, while increases at the sharper shoulders. At some 

point, the pressure gradient at the cylinder vertex is not sufficient to cause the Honji 

instability; however, at the two shoulders of the cylinder, the pressure gradient may be 

large enough to cause another type of instability, namely, the Side instability. 

Considering the physics of fluid particles, more energy of the fluid particles is lost 

through travelling longer distance over the cylinder’s flatter and elongated curvature. 

Therefore, the energy is not sufficient either for the fluid particles to curl, reverse and 

shoot upwards along the circumference to the cylinder vertex to generate the Honji 

vortices, or for transferring energy and momentum upwards in the radial direction to the 

fluid particles further away from the cylinder to form the top layer of Honji vortices. As 

a result, for the flow around elliptic cylinder with a sufficiently small K under certain 

governing parameters, only the Side instability in the form of one-layer vorticity can be 

generated at a lower location close to the cylinder shoulders. 

Also discussed in this chapter are the characteristics of the resultant 2-D columnar flow 

when K is further decreased. It is found that the cylinder surface is covered by 2-D 

columnar flows for the case of (KC, β) = (2, 200) at K = cos30°. Neither the Honji 

instability nor the Side instability occurs, and no axial flow develops for the 2-D flow 

field. The cylinder surfaced is wrapped by a pair of axially-uniform sheet-like vortices 

equally dividing the whole circumference. The sheet-like vortices are also in the shape 

of a two-layer structure with counter-rotating vortices resulted from the no-slip 

boundary conditions applied at the cylinder surface. The periodic flow evolution 

demonstrated by the vorticity contours of ωz shown in the cross-sectional view indicates 

that the flow is in the attached-vortices regime, as reported by Williamson [56].  
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CHAPTER 6  

THE EFFECT OF A PIGGYBACK CYLINDER ON THE 

FLOW CHARACTERISTICS IN OSCILLATORY FLOW 

6.1 Aim of chapter 

In this chapter, 2-D numerical simulations of oscillatory flow around a pair of cylinders 

of unequal diameters are conducted in order to investigate how the presence of the 

smaller cylinder affects the resultant flow field as well as the hydrodynamic forces 

acting on the main cylinder. The contents in this chapter are as published in Yang et al. 

[80], with small denoting alterations, such as labels of the figures (and the table) and the 

parameter expressions used, for keeping consistence of the thesis as a whole.  

6.2 Introduction 

Offshore structures frequently are constructed from various cylindrical components and 

need to be able to resist forces that can be very large in extreme conditions. The details 

of the flows and forces present are critically dependent on the precise structure at hand. 

It appears that relatively little research has been conducted on the study of all but the 

most elementary cases. The objective of this chapter is to extend the knowledge of the 

well-studied time-periodic fluid motion which impinges normally on a long, stationary 

cylindrical tube to the situation when a second cylinder is introduced into the flow. The 

principal goal is to understand how this additional feature affects the forces and flow 

characteristics present in the single-cylinder situation. 

In more detail, a geometry is envisaged in which there is a primary (relatively large 

diameter) cylinder but nearby there is a secondary (or ‘piggy-backing’) cylinder of a 

smaller diameter. The piggy-backing cylinder is expected to trigger hydrodynamic 

interference, and therefore change the key properties of the flow structure near the main 

cylinder. An efficient design of complex structures incorporating multi-pipe 

components is reliant on a full understanding of the effects the small cylinder may have 
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on the larger but it seems that analysis of this issue is limited at best and is certainly far 

from being comprehensive. The present study is intended to shed more light on this 

important problem. 

The knowledge of the flow structures around and the fluid induced forces on a single 

cylinder in a sinusoidal oscillatory flow is now generally well established and accepted. 

There have been extensive experimental investigations of this type of flow and some 

significant results have been detailed by, among others, Keulegan and Carpenter [11], 

Sarpkaya [54], Maull and Milliner [55], Williamson [56], and Justesen [57]. In addition, 

numerical studies have been conducted by Wang and Dalton [58], Zhang and Zhang 

[59], Dütsch et al. [60], An et al. [21, 61] and Zhao et al. [62]. An accessible summary 

of some interesting phenomena with respect to flow structures and vortex properties has 

been given by Zdravkovich [63]. In particular, careful practical work enabled 

Williamson [56] to give a detailed description study of a sinusoidal flow around both an 

isolated cylinder and a pair of identical cylinders in a subcritical flow regime. 

Williamson was able to identify a number of distinctive flow patterns depending on the 

Keulegan-Carpenter (KC) number that is defined formally in Section 6.3 below. In 

particular, he found that the magnitude and frequency of the fundamental lift force are 

both related to the number of large vortices being shed in each half cycle. The 

connection between vortex evolution and the force variation had earlier been studied by 

Zdravkovich and Namork [64] and Sarpkaya [25]: both attributed an increase in the lift 

force to the wake asymmetry induced by vortex shedding and convection. For the in-

line-force, one difficulty associated with achieving a good description of this force 

arises in the method adopted. In practice, this in-line force is often decomposed into two 

components using normalized force coefficients as derived within the classic Morison 

equation [29]. However, this equation applies strictly to steady flow and it is arguable 

whether it continues to hold in unsteady regimes. This point is further discussed later in 

the paper. 

Compared with the aforementioned investigations the single cylinder case, the 

hydrodynamic interferences between two cylinders are much more poorly understood 

despite its clear wide application (see for example, Carstens and Sayer [65]). Moreover, 

many of the investigations using this more complicated geometry consider steady flow 
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as opposed to the practically more relevant oscillatory case. Zhao et al. [66] carried out 

a numerical study of flow past a pair of  cylinders of differing diameters in steady flow 

and discussed the properties of the force coefficients, pressure distribution and vortex 

shedding patterns as the smaller cylinder is moved relative to the larger. It was found 

that the key factors that influence the flow field around a pair of cylinders include the 

gap ratio, the diameter ratio and the angle of attack of the incident flow. Zhao et al. [67] 

subsequently extended this work to higher Reynolds numbers and incorporated a 

turbulence model. Studies under sinusoidal oscillatory flow conditions include those by 

Williamson [56], Bearman et al. [100], Sarpkaya [15], Obasaju et al. [101] and Justesen 

[57] to mention but a few. Williamson [56] studied the forces on a pair of identical 

cylinders moving harmonically in otherwise quiescent fluid and found that when the 

cylinders are in close proximity the vortex-shedding patterns are significantly modified 

and the lift and in-line forces are significantly affected. Mclver and Evans [68] 

described an approximate method for calculating forces on fixed vertical cylinders in a 

plane wave, and concluded that the flow structure and fluid forces can be strongly 

influenced by the interaction effects between the cylinders. Less is known about the 

case when the two cylinders have unequal diameters. Carstens and Sayer [65] used 

linear potential theory to study the hydrodynamic interaction in this problem and gave 

their results in terms of the added mass and damping between two unequal vertical 

cylinders in oscillatory flow. Williamson [69] also studied the fluid forces on two 

neighbouring cylinders with unequal diameters, but he focused on ascertaining the 

hydrodynamic interference effects of the flow field of the larger cylinder on the smaller 

one.  

The present work concentrates on a two-dimensional numerical simulation of a 

sinusoidal oscillatory flow past a pair of cylinders consisting of a main cylinder and a 

nearby piggyback of diameter one-fifth that of the principal (see Figure 6.1). The aim is 

to assess how the presence of the secondary cylinder influences the flow patterns and 

fluid forces under sinusoidal oscillatory flow conditions. Simulations are carried over a 

range of Keulegan-Carpenter numbers that span the important flow regimes of both 

practical and academic interest; details are given in Section 6.3. All the calculations 

relate to subcritical flow where the flow has a turbulent wake and a laminar boundary 

layer. Both visualisation and force coefficients are examined in this study. 
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Figure 6.1 The relative positioning of the two cylinders within the computational domain. 

The remainder of the paper is organised as follows. In Section 6.3 the governing system 

of equations is developed and the numerical schemes are described. Then, in Section 6.4, 

the main results are analysed and these are drawn together in Section 6.5 with some 

discussion and concluding remarks. 

6.3 Formulation 

Consider the motion around a pair of infinite cylinders placed in an incompressible fluid 

that far from the cylinders is oscillatory with amplitude Um and with angular frequency 

ω. The period of the oscillation is then T ≡ 2π/ω. Two important dimensionless 

properties of the flow are the Keulegan-Carpenter number KC and the frequency 

parameter β defined by 

6.1 

respectively; here D is the diameter of the primary (larger) cylinder and ν is the 

kinematic viscosity of the fluid.  

Relative to standard Cartesian co-ordinates scaled on D, the continuity and Navier-

Stokes equations can be written as 

The continuity equation 
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6.2 

The Navier-Stokes equations 

6.3a 

6.3b 

here u and v denote the fluid velocities normalised by Um in the x- and y-directions 

respectively, p is a dimensionless fluid pressure and t is a dimensionless time. 

When the cylinders are placed in a moving fluid, the ambient flow exerts a force which 

is composed of pressure and friction terms. This resultant force is often best examined 

by finding its components in two mutually perpendicular directions: a lift in the vertical 

direction and an in-line force in the horizontal. If τ0 denotes the wall shear stress on the 

surface of a cylinder of radius R and θ is the usual polar angle measured from the 

positive x-direction, the lift and in-line forces per unit length of cylinder are given by 

6.4a 

6.4b 

respectively. In practice these forces are frequently expressed in terms of corresponding 

force coefficients CL and CF which are simply the requisite forces normalised with 

respect to ρDU2
m/2, where ρ is the fluid density. 

For a cylinder sitting in an ambient purely oscillatory flow, the in-line force FF is often 

characterised by reference to the Morison equation in which the force is decomposed 

into two parts according to 
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6.5 

here CD and CM are known as the drag and inertia coefficients. In practical cases, these 

coefficients can be computed via a least-squares calculation using the time history of the 

measured in-line force. 

In all the calculations below β was fixed at 100 for KC = 4, 8, 16 and 24, which means 

that the corresponding Reynolds number Re = UmD/ν ≡ βKC lies in the range 400 ≤ Re 

≤ 2400. 

According to Sumer and Fredøe [7], the flow under the parameters chosen is turbulent, 

which is the dominant regime in real situations. As pointed out by Sarpkaya [25], the 

force on a circular cylinder is inertial-dominate for KC ≤ 10; for larger KC it is 

otherwise drag-dominated. Hence the KC values chosen here cover both regimes. The 

frequency number β was kept fixed at a relatively low value for computational 

efficiency. The KC numbers used here are chosen so as to describe flow regimes each 

with its own distinctive vortex shedding pattern (see Williamson [56]). It is to be hoped 

that the results presented in this study are of both practical and academic importance in 

understanding the effects on the physics of flow and the hydrodynamic force on the 

main cylinder caused by a neighbouring piggyback cylinder. 

 Numerical methods 6.3.1

The governing equations were solved using a finite element model based upon that 

developed by Zhao et al. [66]. Complete details of the method can be found in that 

paper so only the salient points are summarised here. A rectangular computational 

domain of dimensions 60D  30D was used, with the centre of the main cylinder fixed 

at the middle of this domain and the x,y-co-ordinate axes aligned so that the far-field 

oscillation of the flow is parallel to the x-axis; see Figure 6.1. The piggy-backing 

cylinder, which has a diameter of 0.2D, is placed so there is a gap normalised as g/D 

between the two cylinders and the line joining their centres makes an angle αp with the 

positive x-direction.  
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(b) 

(a) 

 

Figure 6.2 An illustrative example of the computational mesh in the vicinity of (a) an isolated cylinder and (b) the 

pair of cylinders. 

Table 6.1 Mesh property for a single cylinder case. Nb: circumferential nodes number; Yn: element size in the radial 

direction next to the cylinder boundary; Np: total number of nodes and Ne: total number of elements in the domain. 

Mesh  Nb Yn Np Ne 

M1 80 0.005 10,020 6,959 

M2 110 0.0015 11,378 7,315 

M3 130 0.001 13,734 9,333 

M4 170 0.0005 16,584 11,758 

The typical computational meshes for both an isolated cylinder and the two-cylinder 

system are illustrated in Figure 6.2. For an isolated cylinder (Figure 6.2a), the 

computational elements formed a four-node quadrilateral finite element mesh across the 

entire region. For the two cylinders (Figure 6.2b), structured four-node elements were 

applied in areas close to the cylinder surfaces and near the edges of the rectangular 
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domain while remainder of the domain was discretised using triangular elements. As a 

guideline as to the total number of elements involved, when the gap g/D = 0.4, there 

were 17,435 separate areas concentrated in the form suggested in Figure 6.2. In this case 

there were 140 nodes distributed around the circumference of the main cylinder and 70 

nodes located on the smaller. 

The simulation was initiated with the velocity fields set to zero across the entire domain. 

On the inlet side of the domain the evolution of the unsteady velocity field was 

prescribed to be (u, v) = (Um, 0) sin ωt. At the outflow boundary the gradient of velocity 

and pressure were set to be zero. The boundary conditions on the remaining two (top 

and bottom) boundaries, consisted of symmetry requirements that were imposed by 

demanding that the normal derivatives of the velocity components and pressure be zero. 

Last, standard no-slip conditions were imposed on the surfaces of the cylinders. 

 Validation of the model 6.3.2

Although the present numerical model has been shown to work well for both an isolated 

cylinder and for a two-cylinder system in a uniform flow [66, 67], some initial 

benchmarking was carried out to ensure that reliable results could also be expected 

under unsteady flow conditions.  

First some mesh-density experiments were used to verify that the nodes were 

sufficiently closely spaced to ensure accurate results. The effect of the mesh density on 

the resulting precision is considered for the isolated cylinder case. Four different meshes 

with the same structure but different densities as listed in Table 6.1 were adopted in 

order to assess the mesh dependency. The mesh structures with different densities have 

similar geometries to that shown in Figure 6.2a. The KC number for the single cylinder 

validation calculation was 20 and the frequency number β was set to 196. This case 

corresponds to a Re number of 3920, which is higher than the highest Re number to be 

investigated under the piggyback condition (KC = 24 and β = 100, resulting in a Re = 

2400); also experimental data for validation of the results is available at β = 196. The 

convergence of the numerical results was tested by way of an examination of the 

pressure coefficient Cp (defined as Cp = (p - pa)/(ρDU2
m/2) where pa is specified as the 

pressure at a fixed point). The distributions of Cp along the cylinder surface at the phase 
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of π/4 for the four meshes listed in Table 6.1 are plotted in Figure 6.3. It is seen that 

good agreement of the results is achieved between all four of the meshes; indeed the 

curves for Meshes 3 and 4 almost overlap each other over the whole cylinder surface. 

Little change of results is identified with any further refinement of the mesh. In view of 

the twin desires of requiring accuracy of solution while maintaining computational 

efficiency, Mesh 3 was chosen for all the subsequent calculations.  

 

Figure 6.3 Distribution of pressure coefficient Cp along the cylinder surface (KC = 20, β = 196). 

Results obtained using the selected mesh were then compared with some in the 

literature to gauge the performance of the model in predicting the flow behaviour and 

hydrodynamic forces. The model was validated by comparing the computed flow 

structure with that seen in the experiments described by Williamson [56] for oscillatory 

flow around a single cylinder. Without dwelling on the details, it is sufficient to note 

that Williamson reported a number of key changes in the flow structure as the KC 

number is increased and that the predictions were able to track these bifurcations with 

good accuracy and with excellent agreement in the form of the associated flow structure 

and the vortex shedding phenomena. Furthermore, the transverse and in-line forces 

calculated using the present computational model were compared with both the 

experimental results of Obasaju et al. [101] and the numerical results described by An et 

al. [61], all at KC = 17.5 and β = 196. Figure 6.4 gives a comparison of the results, and 

good agreement is found for both CL and CF. Given that the present computations are 

two-dimensional whereas the experiments were three-dimensional this provides some 

justification for concentrating on two-dimensional simulations. In addition, whilst An et 

al. [61] included a k-ω turbulence model in their formulation, this appears to make little 
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qualitative difference to the results despite the fact that the flow parameters are certainly 

in the regime where turbulence is expected. Thus in order to explore a wide range of 

parameter combinations for the present piggyback configuration, for the remaining 

numerical results the coding was restricted to two-dimensional simulations without an 

explicit turbulence model. 

6.4 Results 

The presence of the piggy-backing cylinder is anticipated to have a significant effect on 

the flow that would exist around an isolated cylinder as the interference between the two 

is likely to provoke changes in the wake structure. The present calculations considered 

flow simulations at the four values KC = 4, 8, 16 and 24 respectively and, for each of 

these, examined five gap ratios g/D=0.1,…,0.5. Moreover, this study investigated the 

flow structures over a range of αp defined to be the angle between the positive x-

direction and the line joining the centres of the cylinders, see Figure 6.1. It is sufficient 

to restrict αp to no more than 90°, because the flow reversal inherent in sinusoidal 

behaviour means that this range is able to account for all the possible flow structures 

that can arise. With this in mind, it is then possible to identify three basic types of flow 

configuration. The first, known as the tandem arrangement case, arises when the centres 

of the cylinders align with the basic flow, αp = 0°. Next are the staggered arrangements, 

which were investigated for the three angles αp = 22.5°, 45° and 67.5°. Last comes the 

obvious ‘side-by-side’ arrangement, αp = 90°, in which the centres of the cylinders are 

joined by a line perpendicular to the oscillatory flow far away. For ease of reference, the 

notation (αp, g/D) is henceforce adopted to refer to the particular cylinder geometry. 
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(a) 

(b) 

 

Figure 6.4 Comparison of the calculated force coefficients (a) CL and (b) CF with Obasaju et al. [101] and An et al. 

[61]’s results. 

The influence of the piggyback cylinder on the lift and in-line force of the main cylinder 

is determined by the interactions of the vortex shedding from the two cylinders. At a 

given β value, the vortex shedding behaviour varies with the KC number. The results of 

Williamson [56] demonstrate that when KC = 4, attached symmetric vortices form 

around the main cylinder. When KC is doubled the flow is then in a transverse shedding 

regime with one vortex shed each half-period. When KC =16, two vortices are shed in 

every half-period and this increases to three when KC =24. To relate Williamson's 

research to the present study, his results are based on the KC number definition using 

the primary cylinder diameter; therefore, in the present study, the KC number with 

respect to the piggyback cylinder (whose diameter is 1/5 of the primary cylinder) is 

increased by a factor of five, which suggests that vortex shedding will occur around an 

isolated piggyback cylinder for all the cases calculated here. It can be predicted that the 

CL 

CF 

t/T 

t/T 
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wake field due to the small cylinder influences that of the main cylinder, and so affects 

the force on the main cylinder. Details of the interactions of the flow structures and the 

resulting force coefficients are discussed below. 

 The lift force acting on the main cylinder 6.4.1

6.4.1.1 KC = 4 

As a general rule the lift force becomes significant only when KC number is larger than 

about 5 [25], so the lift should be negligible for an isolated cylinder at KC = 4. In order 

to assess the effect of the small cylinder on the lift force experienced by the main one 

we examine the value of CLrms, which is the root-mean-square value of the lift force 

coefficient. Figure 6.5 shows the dependence of CLrms on the piggyback cylinder 

position when KC = 4. The presence of the piggyback cylinder has a significant effect in 

most cases excepting the situation αp = 0° when the two in-line cylinders act like a 

single body and generate a non-vortex-shedding vertical symmetric wake structure, 

similar to that of an isolated cylinder. The wake symmetry is broken by the piggyback 

cylinder whenever αp ≠ 0°, which leads to a fundamental change in the fluid field, which 

in turn results in a considerable increase in CLrms (as mentioned in Section 6.2, the lift is 

a result of the pressure gradient which increases as the up-down asymmetry of the fluid 

field grows). The value of CLrms tends to grow with αp and this enhancement is more 

pronounced at the smaller gaps. At larger separations beyond g/D = 0.3, it seems that 

the lift coefficient behaviour for the cases studied fell into two distinct groups. In 

addition for most values of αp the maximum lift coefficient arises when g/D ≈ 0.3; 

presumably if the cylinders are closer together there is considerable destructive 

interference while if they are more widely separated the mutual interaction is quite weak 

and the flow is similar to that around an isolated main cylinder with an associated zero 

lift. Previous studies have shown that the asymmetry of the fluid field near the cylinder 

is caused by either the generation or the shedding of the vortices which means the 

variation in the lift force acting on the cylinder surface is closely related to the evolution 

processes occurring in the vortices near the body. Therefore in order to gain insight as to 

why the lift force is preferentially magnified at (90°, 0.3), it is helpful to trace the 

development of vortices around the main cylinder and thereby understand how the lift 
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might be affected by the existence of the piggyback. One strategy to achieve this goal is 

to study a selection of instantaneous vorticity contours of the αp = 90° (or side-by-side) 

arrangement and compare these with the reference isolated cylinder problem. Some 

useful plots are reproduced in Figure 6.6 for the three gaps g/D = 0.1, 0.3 and 0.5. 

 

Figure 6.5 Root-mean-square values of the lift force as a function of the gap ratio g/D when KC = 4. 

For ease of discussion the vortex pair on the main cylinder is referred to as M1 (the 

upper vortex) and M2 (the lower) and the corresponding pair on the piggyback as N1 

and N2. When the small cylinder is placed close to the main, at g/D = 0.1, M1 and N2 

are quite small and weak compared to their corresponding partners M2 and N1. It can be 

seen in Figure 6.6a that there is a tendency for N1 and M1 to amalgamate which in turn 

suppresses vortex N2. The upshot is that the wake flow behaves more-or-less as if the 

two vortices M2 and the resultant of N1, N2 and M1 behave rather like one large vortex 

pair around the two cylinders combined in a single body. It is the small difference 

between the sizes and strengths of the two components of this one large pair that 

generates a lift force that is quite small. 

When the gap ratio is increased to 0.3, the vortices of M1 and N2 are more easily 

distinguished due to a much stronger gap flow; it is pointed out that N2 is now large 

enough to form a distinctive pair with its neighbouring vortex, see Figure 6.6c,d. This 

pair is shed during a half-cycle of the flow oscillation period and a stronger asymmetry 

in the wake flow is set-up which leads to an enhanced lift coefficient compared to the 

narrow-gap g/D = 0.1 configuration. 
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However, as the gap ratio is increased yet further to g/D = 0.5, the asymmetry of the 

wake structure reduces again and hence the lift coefficient drops. It can be seen in 

Figure 6.6e,f that the vortex structure is somewhat more symmetric than its counterpart 

in Figure 6.6c,d as a consequence of the fact that the flow field around the main cylinder 

is less affected by the piggyback cylinder as it is moved further away. The vortices 

formed around the main are hence more independent of the particulars of the wake 

around the piggyback, thereby forming a more symmetric flow field akin to the single 

cylinder case.

      (e)   (f)  

      (c)   (d)  

      (a)   (b)  

 

 

Figure 6.6 Instantaneous vorticity contours and the associated wake structure for the side-by-side arrangement with 

KC = 4. All plots are shown at phase 3T/8 of the flow period and the left-hand panels relate to gap-widths g/D = 0.1, 

g/D = 0.3 and g/D = 0.5 (reading down). The corresponding right-hand plots are zoomed-in versions of their left-hand 

counterparts. In all plots solid contours indicate positive vorticity and dashed contours denote negative vorticity. The 

labelling of vortices is described in the text. (a, b) g/D = 0.1, (c, d) g/D = 0.3 and (e, f) g/D = 0.5. 
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6.4.1.2 KC = 8, 16 and 24 

Thus far the paper has concentrated on the lift force when KC = 4 but now the case of 

larger KC is addressed. In order to facilitate the following discussion, it is easiest to 

consider an interference coefficient for the lift force defined to be CLint = CLrms/CL∞ in 

which CL∞ is the root-mean-square value of the lift force coefficient acting on the main 

cylinder when the piggyback is completely absent from the flow. This coefficient, 

which is very similar to one adopted by Williamson [56], is a quick gauge of the effects 

of the piggyback cylinder; clearly a value CLint > 1 indicates the lift on the main cylinder 

is increased by the piggyback cylinder. It should be noted that this coefficient defined 

by ratio is proved to be inappropriate for investigation at smaller KC (for the present 

study, KC = 4 as discussed) because then the reference coefficient CL∞ for the isolated 

cylinder is close to zero as a result of strong symmetry in the wake flow and the ratio is 

no longer a robust quantity. The dependence of CLint on the geometries of the cylinders 

and at various KC numbers is illustrated in Figure 6.7. 
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(c) 

(b) 

(a) 

 

Figure 6.7 The lift interference coefficient CLint as a function of gap g/D for various values of KC. (a) KC = 8, (b) KC 

= 16, (c) KC = 24. 

At KC = 8, see Figure 6.7a, the most dramatic influence of the piggyback cylinder on 

CLint is observed when αp = 0°, in which case the lift force is reduced regardless of the 

gap ratio. For other αp values the change is less pronounced and the lift force is not very 

different with that when there is only a single cylinder in the flow. A simple explanation 

for this observation can be inferred from an inspection of the corresponding flow field 

as shown in Figure 6.8a,b. When the piggyback cylinder is laid in tandem with the main 

cylinder (i.e. αp = 0°), the arrangement behaves like a streamline body. It is clear that 
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under such arrangement the presence of the piggyback cylinder inhibits the shed 

vortices being swept across to the other side of the wake in a similar manner to the 

function of a splitter plate. As a result, the main influence of the piggyback cylinder 

appears to be that the two constituent vortices are more balanced and have improved 

symmetry with respect to the midline (cf. Figure 6.8a,b). The details of the effect of the 

piggyback cylinder change with the gap ratio. For g/D up to about 0.2, the gap is 

sufficiently small for the upper vortex to wrap around the piggyback. As can be seen in 

Figure 6.7, the maximum reduction of the lift happens when g/D = 0.2 for this is the 

largest gap for the upper vortex to still be able to wrap around the piggyback cylinder. 

At larger g/D the effects of the piggyback cylinder are weakened, as the spacing is 

sufficient to prevent vortices from surrounding the small cylinder, and the resulting 

stronger gap flow allows the lower vortex to pass through the gap region. The upshot is 

that the wake field loses much of its symmetry and thereby increases the lift (see Figure 

6.8c as an example). When the piggyback is placed at a non-zero αp position it is 

noticed that the drop in the lift force is much less significant. This is a consequence of 

the fact that irrespective of the gap value the topology of the vortex shedding is still 

essentially that of a transverse flow regime; in other words an asymmetric regime 

reminiscent of that present when only a single cylinder is in the flow (see, for example, 

Figure 6.8d). 

Further sub-plots in Figure 6.7 reveal how the flow develops at yet larger values of KC. 

By the stage when KC = 16 the lift force on the main cylinder tends to be significantly 

affected and reduced by the presence of the piggybacking cylinder. This influence 

appears to be least significant when the cylinders are in a tandem arrangement with the 

secondary cylinder lying directly behind (or in front of) the primary and, in contrast, 

most important when the cylinders are side-by-side. An examination of the flow field 

for αp = 0° when g/D = 0.1 and 0.2 (see Figure 6.9b,c) suggests that in these cases the 

gap is sufficiently small to permit the lower vortex shed by the large cylinder to wrap 

around the small cylinder. For these gap sizes the two vortex pairs shed during one flow 

period are similar to those generated behind a single cylinder in as much that the vortex 

pairs are again located in the first and third quadrants. However, when the gap is 

increased to g/D = 0.3 or 0.4, the two pairs change direction and are shed in the opposite 

quadrants, possibly as a result of the fact that these gap sizes are critical in the sense that 
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the piggyback cylinder is located so that it hinders the stretching of the upper vortex 

while simultaneously elongating the lower vortex. As shown in Figure 6.9d as the gap 

grows further so a stage is reached when the piggyback sits comfortably within the 

upper vortex, and the two vortex pairs revert to the top-right and bottom-left quadrants. 

In general, the vortex pairs are thrown off in the quadrants opposite to those where the 

stretched vortex is positioned. Moreover, the pressure field generated by the piggyback 

cylinder when combined with that of the main cylinder tends to lessen the asymmetry of 

the flow field thereby restricting the overall lift force. 

 

 

Figure 6.8 Flow structures for KC = 8 and at phase 3T/8 of the flow period. The four cases relate to various positions 

of the secondary cylinder. (a) Only the primary cylinder present. For other plots (α, g/D) = (b) (0°, 0.2); (c) (0°, 0.5); 

(d) (22.5°, 0.4). 

Once KC = 24 the lift is enhanced in almost all cases. An isolated main cylinder within 

a flow at this KC number gives rise to a vortex shedding regime of three vortices per 

half-period. Such a wake flow possesses significant asymmetry (as shown in Figure 

6.10a). The increase in the lift after the smaller cylinder is added in the nearby field is 

attributable to the strong vortex field formed near the smaller cylinder when KC is large. 

It is noticeable in Figure 6.7c that for a gap g/D = 0.2, the lift present is almost exactly 

that for a single cylinder independent of the inclination angle αp. This suggests strongly 

      (c)   (d)  

      (a)   (b)  
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that in this regime the vortices formed by the main cylinder are hardly affected at all by 

the piggybacking cylinder (good examples of this behaviour are seen for αp = 0° in 

Figure 6.10b and for αp = 22.5° in Figure 6.10c and it is apparent that the small cylinder 

is not subsumed by the main vortices). At larger gaps, the main vortices occupy the 

wake of the small cylinder again because the main vortices become increasingly 

stretched (examples include αp = 0° in Figure 6.10d and αp = 22.5° in Figure 6.10e). 

      (c)   (d)  

      (a)   (b)  

 

Figure 6.9 Flow structures for KC = 16 and at phase 3T/8 of the flow period. The four cases relate to various 

distances between the cylindres in all instances α = 0°. (a) Only the primary cylinder present. For other plots the gap 

g/D = (b) 0.1, (c) 0.2 and (d) 0.5. 

The computations for values KC > 4 suggest that for moderately elevated KC the lift 

coefficient is slightly reduced with the largest influence occurring when the cylinders 

are in the tandem arrangement aligned with the oncoming oscillatory flow (αp = 0°). As 

KC grows so the lift coefficient only changes slightly, but the most dramatic effects 

occur when the angle αp dictating the orientation of the cylinders moves away from zero. 

It is only when KC becomes as large as 24 that the lift coefficient appears to show any 

tendency to exceed its value when no piggyback cylinder is present. 
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(e) 

      (c)   (d)  

      (a)   (b)  

 

Figure 6.10 Flow structures for KC = 24 and at phase 3T/8 of the flow period. The four cases relate to various 

positions of the secondary cylinder. (a) Only the primary cylinder present. For other plots (α, g/D) = (b) (0°, 0.2), (c) 

(22.5°, 0.2), (d) (0°, 0.5) and (e) (22.5°, 0.5). 

 The effect of the piggyback on the in-line force 6.4.2

Traditionally the in-line force experienced by the main cylinder is assessed by appeal to 

the Morison equation (Equation 6.5) in which the drag and inertia coefficients CD and 

CM are evaluated by fitting with experimental or numerical data. However, there is 

some debate (see, for example, Williamson [56] or Dütsch et al. [60]) as to whether it is 

legitimate to use this strategy for the in-line force. There are two grounds for this 

concern: not only is the method extremely sensitive to the exact phase position of the in-

line force peaks but it is also known to perform poorly when the force profile is not 
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precisely periodic. In view of these aspects, the present study implemented the Morison 

procedure for irregular flow patterns by calculating period-averaged coefficients. 

Unfortunately it was found that the computed coefficients vary wildly and could not be 

considered reliable. This approach was therefore abandoned and a more effective 

determination of the key coefficients was attempted using a direct computation of the 

in-line force coefficient CF (Equation 6.4b). 

As noted earlier, the lift force is attributable to the asymmetry present in the vortex field 

between the upper and lower half planes. In a similar way, the part played by the 

piggyback cylinder in fixing the in-line force component acting on the main cylinder 

can be thought of in terms of the asymmetry of the vortex field in the left and right half 

planes. There is an inherent left-right asymmetry in the vortex field even when there is 

only the primary cylinder in the flow giving rise to an in-line force coefficient CF∞ 

which is non-zero for all KC. Thus, in order to most easily illustrate the difference 

between the flows with and without the piggyback cylinder, it is helpful to define an 

interference coefficient for the in-line force according to CFint = CFrms/CF∞. Plots of this 

quantity as a function of cylinder geometry at different KC numbers are given in Figure 

6.11. 

Figure 6.11 shows that the in-line force changes more significantly when the gap is 

small. In addition, a stronger effect is also seen for large inclination angles α = 67.5° or 

90° for all KC numbers except for the case when KC = 16, at which the reductions in in-

line force for small angles are almost as significant as the increases for large angles. An 

explanation for this observation can be proposed, following a similar approach for the 

CL discussion, by analysing the changes of pressure difference between the upwind and 

lee-wake of the primary cylinder with the absence and presence of a nearby small 

cylinder. 

For the case of an isolated main cylinder, due to the periodicity of the oscillatory flow, 

the upwind and lee-wake side with respect to the main cylinder take turns to form at the 

left (or right) plane of flow field near the cylinder every half flow period, and the 

vortices shed during two half periods are symmetric. Therefore the absolute pressure 

difference between the upwind and lee-wake sides of the two successive half periods is 

the same. This symmetry of vortex shedding is disrupted by the inclusion of the 
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piggyback on one side of the primary cylinder, and the piggyback has its greatest 

influence when placed close to the primary. The vortex evolution over the first and 

second half-periods is altered by interference with the secondary cylinder. When the 

vortex is generated on the same side as the piggyback is located a high pressure centre is 

formed near the vortex area and is enhanced by the small cylinder. 

(d) (c) 

(b) (a) 

 

Figure 6.11 In-line interference coefficient CFint as a function of gap g/D and for various values of KC = (a) 4, (b) 8, 

(c) 16 and (d) 24. 

When the two cylinders are placed in a tandem arrangement (see, for example, Figure 

6.12c,d), it is not straightforward to apply the pressure difference method to predict the 

influence on the in-line force. Under this arrangement, in one half of the period the 

vortex shedding occurs on the same side as the piggyback and in the next half-period on 

the opposite. The pressure field generated around the small cylinder causes the pressure 

field across the primary cylinder to be asymmetric over successive half oscillation 
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periods. In comparison with the single cylinder case, over the half-period when the main 

vortex is formed in the half plane containing the small cylinder, the pressure difference 

between the upwind and lee-wake planes is larger; however, in the next half-period 

when flow reverses and the main vortex is formed in the opposite half plane, the 

pressure difference across the primary cylinder is smaller. Nevertheless, the reduction of 

pressure difference across the primary cylinder in general can be predicted from the fact 

that the in-line cylinder causes the two-cylinder system to act more like a streamlined 

body, which explains the decreases of CF under influences of a small cylinder for most 

cases studied. 

      (e)   (f)  

      (c)   (d)  

      (a)   (b)  

 

Figure 6.12 Flow structures at phase 3T/8 and 7T/8 of two successive half periods with KC = 8 and gap g/D = 0.3. (a, 

b) Single cylinder, (c, d) α = 0° and (e, f) α = 90°. Plots in the left-hand column correspond to phase 3T/8 and those 

on the right 7T/8. 
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When α is large (plots for α = 90° are shown in Figure 6.12e,f) the blockage effects of 

the cylinder system are enhanced, and the piggyback cylinder is located between the 

upwind and lee-wake in two successive half periods, and hence tends to increase the 

pressure difference during both the first and second half periods. This in turn induces 

significant asymmetry in the upwind and the lee-wake of the flow happening across the 

whole period with the consequence that the in-line force increases. 

These flow structures lend credence to the main findings presented in Figure 6.11. 

However, it is worthwhile to make mention of the specific case when KC = 16 and α < 

67.5°.The conclusion to be drawn from Figure 6.11c is that at these smaller angles the 

in-line force seems to be slightly reduced when compared with the single cylinder 

results. A careful study suggests that this behaviour can be traced to the manner in 

which the vortex field interacts with the piggyback cylinder although a detailed 

quantitative explanation remains unknown at this juncture. 

6.5 Discussion 

The principal concern in this paper has been to demonstrate and understand how the 

introduction of a piggybacking cylinder into an oscillatory flow affects and drives the 

structures around and the hydrodynamic forces on a main cylinder. It is seen that the 

piggyback cylinder has two key roles to play and the magnitudes of these are a joint 

function of the gap between the cylinders and the orientation of their line of centres to 

the direction of the far-field flow. The secondary cylinder induces a pressure field of its 

own and attracts the vortices shed by the main structure. In addition, the flow through 

the gap between the cylinders appears to be the factor that governs whether vortex 

shedding occurs. If the gap is too narrow the flow through it is weak compared to the 

suppression effect of the piggyback cylinder and this is enough to prevent the vortex 

spawned from the main cylinder and nearer the secondary to be shed. The upshot then is 

that the vortex on the side away from the gap is the one that is thrown off. In contrast, 

when the gap is sufficiently wide, the gap flow is stronger and the influence of the 

piggyback smaller. Then the vortices (including the part of both the main vortex and the 

piggyback vortex) in the gap region are shed. It should be remarked that as g/D → ∞ so 
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CLint, CFint → 1 because then the piggyback cylinder in the far-field has no influence on 

the main cylinder at all. 

For the lift force, the resultant fluid field is determined by the original vortex shedding 

regime of the main cylinder under different KC numbers plus the influence of the small 

cylinder. Larger asymmetry in the upper and lower half fluid field as a result of the 

interaction of the vortices induced by the two cylinders leads to larger lift. The most 

notable effect of the piggyback cylinder is observed when KC = 4. At this stage the 

existence of the small cylinder distorts the original symmetry of the attached vortices 

formed around the main cylinder. The resulting asymmetric flow field is characterised 

by a vortex shedding flow around the main cylinder which results in a remarkably 

dramatic change in the lift force. The effect is rather less marked for other values of KC, 

presumably due to a less severe pressure gradient being induced by the asymmetry of 

vortex field in the near wake. The asymmetry of the main vortex field is already very 

strong for KC = 8, 16 and 24. The lift is mainly decreased for KC = 8 and KC = 16 

owing to the asymmetry decreasing under the influence of the small cylinder. Further 

increase of the KC number to 24 gives slightly increasing lift for all cases, which is 

attributable to the stronger vortex field caused by the addition of the pressure field due 

to the small cylinder. 

Turning next to the in-line force, the simply normalized in-line coefficient CF is adopted 

here instead of the Morison coefficients because the latter is found to be inappropriate 

on evaluating aperiodic regimes. It has been seen that in the presence of the piggyback 

cylinder the in-line force on the main cylinder is more likely to be increased. The 

influence on the in-line force is more pronounced for a closer neighbouring piggyback 

cylinder. The trend is that a relatively large α value (67.5° and 90°) tends to increase the 

in-line force at small gap ratios. The enhanced asymmetry of the upwind and lee-wake 

of the main cylinder within the two half periods is responsible for the increasing of in-

line force. 

In theory, this paper provides a possibility for developing an intuitive approach for 

predicting the trend of change of hydrodynamic forces acting on a primary body by 

examining the trend of asymmetry of the nearby flow structure. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Aim of chapter 

This chapter provides a summary of the key outcomes of the research presented in the 

present dissertation, based on which suggestions for future research are also discussed. 

7.2 Summary of the present study 

This thesis describes a fundamental investigation on oscillatory flow around cylindrical 

structures under low governing parameters (KC, β) through a numerical approach. Both 

2-D and 3-D calculations have been conducted with the latter as the major focus of the 

present dissertation. A comprehensive study has been given on the situations when an 

isolated cylinder of infinite length is immersed in a sinusoidal oscillatory flow at the 

flow regime where the 2-D to 3-D flow transition occurs under the effects of 

hydrodynamic instability, in particular, the Honji instability. Under the scenarios 

concerned, flow behaviours have been evaluated thoroughly regarding both the time-

varying flow development and instantaneous flow behaviours. 

The research has been conducted through direct numerical simulations on the numerical 

model generated to represent the physical problem. The calculations of the flow field 

have been realised by a streamline upwind Petrov-Galerkin’s finite element method. 

Details of this method including the algorithm and setting-up of the numerical model 

(e.g. the mesh dependence study) have been covered in Chapter 2. In addition, Chapter 

3 has introduced a new perturbation method for tackling problems of hydrodynamic 

instability, such as the Honji instability. After a careful definition of the perturbation as 

provided in Chapter 3, this method was then applied to several cases discussed in 

Chapter 4 and Chapter 5, for the purpose of accelerating the flow development as well 



 

197 

as examining the intrinsic stability of the flow field by checking against the possibility 

of convective instability. 

Results obtained through the method described in Chapter 2 and Chapter 3 have been 

reported in Chapter 4, Chapter 5 and Chapter 6. Calculations were conducted both in 2-

D and 3-D numerical simulations. For the 2-D and 3-D flow, we look at different 

aspects of the flow behaviours. Most of the present dissertation has been devoted to 

discussions of the hydrodynamic instability which causes the flow to evolve from 2-D 

to 3-D, for which two scenarios have been evaluated under the chosen values of the 

governing parameters, as reported in Chapter 4 and Chapter 5. In addition, Chapter 6 

presents a 2-D simulation on oscillatory flow near a two-cylinder system at low 

governing parameters similar to those used in the 3-D calculations.  

Calculations in Chapter 4 have been performed to examine the flow behaviours for a 

slightly oblique inflow around a circular cylinder under the Honji instability regime. 

This is the first time that the oblique flow effects on the Honji instability have been 

investigated. A summary of the key outcomes from this investigation reported in 

Chapter 4 can be listed in four aspects given as follows: 

1) Flow development: 

� By comparing the flow development processes at different angles of attack (α), it 

is found that the axial flow component has a stabilising effect on the near-

cylinder flow, and that this effect is stronger with a larger α. Increasing the axial 

flow component by enlarging α may eventually result in a 2-D stable flow field, 

where the Honji instability is completely suppressed.  

� Based on our current numerical results, effects of α at different β values on the 

resultant flow fields have been summarised in a β-α plane for a constant KC = 2, 

as given in Figure 4.12. With the variation of β and α at a constant KC value, the 

flow may fall into one of the three possible regimes, namely, an unstable Honji 

regime marked by strong interactions between the formed vortices, a stable 

Honji regime with regular and distinct vortical structures, and a featureless 

purely 2-D regime.  
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� The flow is intrinsically more active at a larger β, while being more stable at a 

larger α. Therefore, under the combined effects of these two parameters, the 

unstable Honji regime was found at (α, β) = (0°, 300), (10°, 300), (0°, 400), (10°, 

400) and (20°, 400), the stable Honji vortices are observed at (α, β) = (0°, 200), 

(10°, 200), (20°, 300) and (30°, 400), and the 2-D flow field results when (α, β) 

= (20°, 200), (30°, 300) and (40°, 400).  

2) The instantaneous Honji structures: 

� The Honji vortical structures generated under the oblique inflow are visualized 

in detail for the very first time. The shape and size of the structures are modified 

by the existence of the axial flow component compared with the typical Honji 

structures generated for the perpendicular inflow case. The two-layer vortical 

structures for the oblique cases are biased, with the rotation of half of the pair 

apparently stronger than the other. When α is large enough, only the dominant 

vorticity remains in the top layer, while the opposite-rotating weak vorticity is 

completely ingested by the axial flow component. In addition, the bottom layer 

only appears as sheet flow attached to the cylinder for such cases.  

� For the oblique inflow cases, the vorticity pairs in the two arrays along the 

cylinder orient obliquely to the cylinder, however the inclination angle is 

roughly 5° smaller than that of the free stream. This is because the oblique flow 

always tends to redirect to be more perpendicular to the cylinder, as it passes the 

cylinder surface. 

� In addition, the dimensions of the oblique vortical structures are different from 

those of the perpendicular inflow cases. The oblique vortices generally appear to 

be shorter in the circumferential extent and slender with reduced radial as well 

as axial extents, due to the weakness of the flow field resulting from the effects 

of the axial flow component.  

� Evolution of the instantaneous vortical structures within one oscillation period 

for the oblique inflow cases has also been compared with that of the 

perpendicular inflow cases. Due to the flow reversal every half period, the two 
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counter-rotating vorticities in the top layer (as observed for the perpendicular 

case) take turns to dominate and the sheet flow in the bottom layer reversals 

consistently with the axial flow component. Therefore, for these cases, the flow 

evolution becomes mirror-imaged every half period. 

3) The 2-D flow resulting from large α: 

� The near-cylinder flow remains 2-D when the instability is suppressed by the 

axial flow component. These cases include (α, β) = (20°, 200), (30°, 300) and 

(40°, 400). The instantaneous flow structures also show a two-layer structure, 

however this structure is axially invariant along the cylinder and consists of two 

columnar sheet vorticities caused by the no-slip boundary condition.  

4) Mechanism of the stabilising effects of α:  

� Mechanisms for causing the suppression of the instability have been explained 

by considering the energy and momentum transfer of the fluid particles as the 

latter are conveyed around the cylinder following the ambient flow. The biased 

vortical structures formed under the effects of the oblique inflow are in an 

unfavourable form for the equal distribution of the energy and momentum 

between the vortices. As a result, the structures become more unbalanced with 

more energy and momentum injected into the dominant vorticity; while at the 

same time, the two-layer structures become flatter under the effects of the axial 

flow that confines the flow particles closer to the cylinder.  

Geometrically, oblique flow around a circular cylinder is similar to a perpendicular flow 

around an elliptic cylinder. Hence, Chapter 5 arose naturally to consider the shape 

effects of the cylinder’s cross section on the resultant flow field under the same 

governing parameters. The principle outcomes from the work reported in Chapter 5 are 

organised in the following four themes: 

1) Flow development and instantaneous flow structures: 

� Referring to a previous theoretical study by Hall [17], Chapter 5 provides 

visualizations of the flow structures to study the effects of the cross-sectional 
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shape on the instability that causes the 2-D to 3-D flow transition. This is the 

first time that details of the flow field around an elliptic cylinder are described to 

validate Hall’s theory. A full description of the resultant vortical structures 

formed under different values of the shape ratio K are gained through presenting 

the flow development as well as the instantaneous flow characteristics. 

� It is found that a cylinder with a more streamlined elliptic cross section tends to 

stabilise the nearby flow field, while at the same time modify the characteristics 

of the instability-induced vorticies.  

� For the case of K = 1 where Honji instability occurs near the top of the cross 

section of the cylinder, decreasing K causes a delay in the development of the 

instability. In addition, although the two-layer symmetric vortex pairs appear to 

be similar between different K values, these vortices become attenuated due to 

stretching around the circumferential curvature. At the same time, a large 

portion of the vorticity is likely to accumulate close to the sharpened shoulders. 

� Further reducing K may result in a ‘Side instability’ in the form of axially 

varying vorticities at the near-shoulder region. Unlike the two-layer mushroom-

shaped Honji vortices found at the top of the cross section, the Side instability 

takes a form of flat alternating vortex patches, which distribute along the 

cylinder distanced at a value similar to their individual axial span.  

� When K is below a certain value, i.e. the cylinder reaches a critical flatness, the 

3-D instability is suppressed and the near-cylinder flow field remains 2-D. The 

columnar 2-D flow wrapping around the cylinder evolves in a similar fashion to 

that reported by Williamson [56]. 

2) Mechanisms for the stabilising effects of K: 

� The mechanisms for the alteration of the resultant flow field caused by variation 

of the shape factor are explained from two aspects. Firstly, considering the 

change of the pressure gradient around the circumference of the cylinder, a 

flatter cylinder is in a less favourable shape for the Honji instability to occur, 
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while is more favourable to cause a Side instability. This is attributed to the 

pressure gradient experiencing a reduction near the Honji region and an 

increment near the cylinder shoulders.  

� Secondly, an elongated curvature causes the fluid particles to lose more energy 

and momentum before they travel to the top region to form the Honji vortical 

structures. In addition, for our cases with small KC and β, the period of the 

oscillation is short and the viscosity of the flow is large, both of which inhibit 

the flow particles from climbing over the circumference. This explains the 

accumulation of the vorticity at locations lower than the top of the cross section. 

As a result, as the cylinder becomes flatter, the instability drops to locations 

closer to the cylinder shoulders, before K is small enough to result in a 2-D 

stable flow. 

3) Evaluation of Hall’s [17] theory: 

� Evaluation of Hall’s [17] linear stability theory with first order accuracy is 

discussed associated with the present calculations. Numerical results obtained in 

this study have proved the general trend predicted by Hall, i.e. the Honji 

instability is weakened by reducing K. Nevertheless, our calculations have 

shown a more stable flow field than that predicted by the theory for the cases 

concerned.  

� Possible reasons for the inconsistency are proposed as the following. Firstly, the 

present study has been conducted at relatively small governing parameters of 

(KC, β) = (2, 200) and (2, 400), while Hall’s theory is limited at high β and low 

KC. Although a relatively good comparison of Hall’s theory with Honji’s 

experimental results has been shown for the case concerning a circular cylinder, 

it is possible that, with an additional influencing parameter, namely the shape 

ratio K, the theory may not work well beyond the limiting range of large β and 

small KC. Secondly, the discrepancy is attributed to the neglecting of higher 

order terms, which play a more important role at smaller governing parameters. 

It has been shown that the inclusion of a second order term leads to a higher 

critical curve for the onset of the instability, which stands for a more stable flow 
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than that predicted with first order accuracy. Finally, the non-linear effects, 

especially the higher order non-linear effects may also serve to stabilise the flow 

field, as mentioned by Hall [17]. 

Chapter 6 concerns a 2-D numerical simulation for the aim of assessing the possible 

influences of a near-by small cylinder on the flow patterns as well as fluid forces of the 

main cylinder. The calculations have been carried out on an oscillatory flow around a 

piggybacking-cylinder system under the subcritical flow regime at low values of (KC, 

β). The main contribution of the study described in Chapter 6 is that it provides a very 

straightforward method to predict the trend of the change of the fluid forces on a 

cylindrical structure by evaluating the symmetry of the nearby flow field. This method 

is of potential significance to practical applications. The major findings arose from the 

work presented in Chapter 6 are mentioned below. 

� The original vortex shedding of the main cylinder is disturbed by the additional 

pressure field induced by the nearby piggyback cylinder. The ultimate flow field 

under the different governing parameters, which determines the resultant 

hydrodynamic forces on the main cylinder, is largely affected by the gap flow 

generated between the two cylinders.  

� Considering the effects of the governing parameters as well as the influences of 

the small cylinder, the hydrodynamic forces exerted on the main cylinder are 

found to be closely associated with the symmetry of the flow field close to the 

cylinder. The lift force is related to the symmetry of the upper and lower halves 

of the cross section of the cylinder, while the in-line force is influenced by the 

symmetry of the upwind and lee-wake of the cylinder. As a rough guide, a large 

asymmetric flow field leads to an increase of the forces.  

7.3 Recommendations for future research 

Although this thesis has presented an elaborate study on different aspects considering 

the near-cylinder flow behaviours under low values of KC and β, there still exist some 

limitations which need to be addressed in future studies. Based on the results obtained 
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so far, the following recommendations are made to advance the findings reported in this 

thesis: 

Recommendations for future studies of 3-D hydrodynamic instability: 

1. The present study has shown a stabilising trend of the flow behaviours by 

increasing the axial flow component or streamlining the cylinder’s cross section, 

which may completely suppress the hydrodynamic instability that causes a 2-D 

to 3-D transition. However, this study is limited to certain values of angle of 

attack (α) and shape ratio (K) at selected (KC, β) groups. Calculations at other 

values of governing parameters should be considered in order to gain a more 

comprehensive understanding of these influencing factors. In particular, special 

attention is raised for the limiting cases such as a pure-axial flow with α = 90° 

and the flat plate with K = 0. 

 

2. In addition, determination of the exact critical values of the governing 

parameters that maintains the 2-D stable flow was not covered in this thesis, 

because it requires countless test runs that are impossible to be completely 

covered using the present numerical method. However, a more accurate 

dependency curve for the onset of instability definitely provides a useful 

guideline for future studies. It is possible that the perturbation method described 

in Chapter 3 will be extended with some further effort to facilitate calculations 

for determining precise critical values. 

 

3. This study of the hydrodynamic instability topic only focuses on descriptions of 

the flow development and the detailed flow structures. From the practical point 

of view, in future work it would be necessary to study the hydrodynamic forces 

subject to possible influences of angle of attack (α) and shape ratio (K), when 

the flow is under 2-D to 3-D transition caused by hydrodynamic instability, and 

the possible influences of angle of attack and the shape ratio.  

 

4. It would be very useful if the numerical results can be verified and validated 

against results obtained through physical experiments. Difficulties in conducting 
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such experiments might include obtaining the desired governing parameters 

under laboratory conditions, ensuring that the hydrodynamic instability observed 

in experiments is an intrinsic flow property and not caused by other disturbances, 

and detecting the onset of small 3-D features efficiently. 

 

Recommendations for future study of 2-D unequal cylinders: 

 

1. In a follow-up study for the 2-D piggyback system, the dimensions of the two 

cylinders should be varied to reveal possible alterations to the flow field. In 

addition, more relative locations of the piggyback cylinder should be examined. 

 

2. It is also worthwhile extending the current 2-D simulations to 3-D simulations, 

which then allows us to consider the possible 3-D effects on the resultant flow 

structures and the hydrodynamic forces.  

 

3. 3-D calculations can also be performed for the purpose of studying the Honji 

instability under the effects of a piggyback cylinder in the proximity of the main 

cylinder. Similar to the 2-D study, the main influencing factors to be examined 

may include the relative size and location of the piggyback cylinder. 

 

4. Again, laboratory experiments on the same topic are highly recommended for 

verifying and validating the results obtained through the numerical method 

discussed in this thesis. 
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