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OSCILLATORY INTEGRALS AND FOURIER TRANSFORMS
OF SURFACE CARRIED MEASURES

MICHAEL COWLING AND GIANCARLO MAUCERI

ABSTRACT. We suppose that S is a smooth hypersurface in Rn+1 with
Gaussian curvature re and surface measure dS, it) is a compactly supported
cut-off function, and we let pa be the surface measure with dßa = u>Ka dS.
In this paper we consider the case where S is the graph of a suitably convex
function, homogeneous of degree d, and estimate the Fourier transform ßa.
We also show that if S is convex, with no tangent lines of infinite order, then
/*(*(£) decays as |í|_n''2 provided a > [(n + 3)/2]. The techniques involved are
the estimation of oscillatory integrals; we give applications involving maximal
functions.

1. Introduction. The purpose of this paper is to obtain estimates for the
decay at infinity of certain oscillatory integrals related to the Fourier transform
of surface carried measures. Let S denote a smooth hypersurface in Rn+1 with
Gaussian curvature n and element of surface measure dS induced by the Lebesgue
measure of Rn+1. We fix a smooth function w with compact support in Rn+1 and
a nonnegative number a and consider the finite Borel measure p.a, with dp,a =
\K.\awdS, which is carried by S. We seek conditions on S and a that guarantee
that the Fourier transform {p,a)~ of p,a satisfies the estimate

(1.1) \{ßar(0)\<c\e\-n'2     V0GR"+1.

This problem can be reduced to that of estimating the decay at infinity of an
oscillatory integral. Indeed, by introducing a smooth partition of unity on S, we
may assume that in a neighborhood of the support of w the surface 5 can be
represented as the graph of a smooth function / in C£°(R"). Thus there exists
a function u in C£°(Rn) such that dp,a — \ det f"(x)\au(x) dx. Hence the Fourier
transform of pa can be written as an oscillatory integral

Ia(f,u)(9)= [   exp[i{Ç-x + \f(x))]\det(f"(x))\au(z)dx,
Jr"

where 6 = (£, A) is a point in R"+1 ~ Rn x R. The method of stationary phase
(see, e.g., [H, Theorem 7.7.5]) shows that the decay given by the estimate

(1.2) |/a(/,u)(fl)| <c|t?|-"/2    V0GR"+1

is optimal, in the sense that for every nonlinear / one can find a function u in
Cc°°(Rn) and a unit vector 6 in R"+1 such that \Ia(f,u)(p<è)\ ~ CQ(/,w)p-"/2 as

Received by the editors October, 1, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 42B10, 42B25.
The second author was supported in part by funds of the Ministero della Pubblica Istruzione.

©1987 American Mathematical Society
0002-9947/87 $1.00+ $.25 per page

53
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 MICHAEL COWLING AND GIANCARLO MAUCERI

p —> oo. Moreover if det(/") never vanishes on the support of u, i.e. if the curvature
of S never vanishes on the support of w, (1.2) holds.

Our interest in this problem arose in connection with the study of maximal
averages of functions over hypersurfaces in Rn+1. Define for every t > 0 the "mean
value" operator

Mt<j>(x) = f <j>{x- ty)w(y) dS(y)   V0 G S(Rn+1)
Js

and the maximal operator

M<t>(x) = sup{|Mt0(:r)| : t > 0}.
One seeks conditions on the measure p. with dp = wdS that guarantee that for
some p in (1, +oo] the estimate

||M</>||P<cMP   V0GS(Rn+1)

holds. A generalization of the methods introduced by E. M. Stein in his study of
"the spherical maximal averages" [S, SW] reduces the problem to that of obtaining
decay estimates for the Fourier transform of the measure p [CM, SS]. In particular
if ß vanishes at infinity of order less than 1/2, one must obtain better decay for the
Fourier transform of the measure pa, where dpa = |/c|tt dp for some positive a. In
[CM] the authors exhibited a class of surfaces in R3 for which (pi/2)~ has optimal
decay, i.e.

l(/ii/arwi < c\e\-x  V0GR3.
In [SS] Sogge and Stein proved that (p2n)~ has optimal decay for any smooth

hypersurface S in Rn+1. In terms of oscillatory integrals this means that (1.2) is
satisfied for every u in C£°(Rn) if / is smooth and a = 2n.

Our goal is to improve this result for particular classes of functions /. In the
next section we obtain decay estimates for the oscillatory integral 7:

/(/, g, u){9) = / exp[i'(£ • x + \f(x))]g(x)u(x) dx,

where 8 = (£, A) G Rn+1, and, roughly speaking, / is a convex function homo-
geneous of degree d > 2, det(/") vanishes only at the origin, g is a homogeneous
function of degree z, Re z + n > 0, and u G C£°(Rn). These estimates show that,
when a > 1/2, Ia(f,u) = I(f,det(f")a,u) has the optimal decay in (1.2) for every
u in C%°(Rn). In §3 we apply these results to obtain sharp Z/p-estimates for the
maximal operator associated to a measure with compact support on the graph of
/•

In §4 we derive decay estimates for a one-dimensional oscillatory integral whose
phase function is convex, but no longer homogeneous. These results are applied in
§5 to prove that if S is a smooth convex hypersurface in R"+1 which has no tangent
of infinite order than (p,a)~ has optimal decay for a = [(n + 3)/2] (the integer part
of (n + 3)/2).

2. Oscillatory integrals with homogeneous phase. Let / be a real-valued
function, smooth on R™ \ {0}, and homogeneous of degree d > 2. Assume further
that for some positive constant a

(2.1) (f"(x)v,v) > a\v\2
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OSCILLATORY INTEGRALS AND FOURIER TRANSFORMS 55

for every v,x G R", with \x\ = 1. Then / is convex and det(/") vanishes only at
the origin. Let g be a smooth function on Rn \ {0}, homogeneous of degree z. If
Rez + n> 0 then g is locally integrable. Thus for u G C™(Rn) and 0 = (£, A) G
Rn x R we may consider the oscillatory integral T.

I{f, g, u)(6) = /    exp[¿(£ • x + Xf(x))]g(x)u{x) dx.
Jr"

Our goal in this section is to derive estimates for the decay of I(f,g,u)(9) as
\0\ —> oo. In particular we shall prove that if Rez + n > nd/2 then I(f,g,u)
has optimal decay.

The first step towards this result (which is Theorem 2.4 below) is Lemma 2.1 on
the geometry of the graph of /. This is followed by Proposition 2.2 on the Fourier
transform of the function x —► exp[if(x)]g{x). Lemma 2.3 is a technical result used
for proving Proposition 2.2, and the main result, Theorem 2.4, then follows.

LEMMA   2.1.   For any £ in Rn there exists a unique x(£) in R" such that
f'(x(0) — ~£- Moreover there exist constants b,c,c(d) > 0 such that

(i) 6|Ç|»/(*-D < |x(Ç)| < cl^/C-D,
(iï)\Ç + f'(x)\>c(d)a\x(0\d-2\x-x(l;)\,
(iii) |£; + /'(x)|>c(d)a|x|d-2|x-x(0|,

for every x in R".

PROOF. Since / is strictly convex and fix) > ad~1(d - l)"1|x|d by (2.1), the
set E = {x: f(x) = 1} is the boundary of a strictly convex body. For every x in E
let n(x) denote the exterior normal to E at x. Thus for every unit vector a in Rn
there exists xa in E such that

n(xc) = f'(x<7)\f'(x<r)\-1=a.

For i in R" \ {0} set a = -£/|Ç| and x(£) = (\Í\l\f'{xa)\)xl^-^xa. Then it
is easily seen that /'(x(0) = ~t and \x({)\ ~ Ifl1/^-1). This proves (i). The
uniqueness of x(£) will follow from estimate (ii). To prove the estimate write, for
the sake of brevity, 4>(x) = £ • x +■ f(x). Then

4>'(x)(x - x(£)) = /   /"(x(0 + t(x - x(0))(x - x(0, x - x(0) dt
Jo

>o|x-x(c;)|2 f   |x(c;)-l-i(x-x(0)|<i_2di
Jo

by (2.1) and the homogeneity of /. Since it is easily see that

ix(o+t(x - x(e))i = \x(o\ ii - {ixior1!* - <o\}t\,
we have

(2.2) |«A'(x)| > a|x(0|d-2|^ - x(OI f II - {|x(OrX|x - x(0\)t\d-2 dt.
Jo

Since there exists a constant c(d) > 0 such that

/   |l-a<|d_2di >c(d)    Va>0,
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56 MICHAEL COWLING AND GIANCARLO MAUCERI

(ii) follows from (2.2). Interchanging the roles of x and x(£), we can use the same
argument to prove (iii).    □

Let Tf^g(x) = eli^g{x). Since Rez + n > 0, Tj^g defines a tempered distribution
on R".

PROPOSITION 2.2. If Rez + n > 0 then T>,ff G C°°(Rn). If further 0 <
Rez + n < nd/2, then there exists a constant c(f, g) such that, for every £ in Rn,

(2-3) \ffM)\<cif,g).
PROOF. The basic idea of the proof consists in expressing the Fourier transform

of the distribution Tf,g as an oscillatory integral with phase function 0(x, £) =
£ • x + /(x). The function x —» <f>(x, £) is in C2(R"), is smooth away from the
origin, and for every £ ^ 0 has a unique nondegenerate stationary point x(£). Then
we decompose the domain of integration into three regions: a neighborhood of the
stationary point that does not contain the origin, a neighborhood of the origin that
does not contain the stationary point, and a neighborhood of infinity. In the first
region the required estimate will follow by the stationary phase argument, while in
the last two regions it will follow by integration by parts.

If m G R we denote by Sm(R") the symbol class of all functions a in Coc(Rn)
such that for every multi-index a in Nn there exists a constant c(a) such that

|dQa(x)| <c(a)(l + |x|)m-|a|    Vx G Rn.

We shall prove first that if Re 2 + n > 0 then ff<g e C°°(R"). Let ç be a function
in CC°°(R") such that 0 < ç(x) < 1, ç(x) = 1 if ¡x| < 1/2, and ç(x) = 0 if |x| > 2.
Then, if çt(x) = ç(tx),

(2.4) ff M) = ¿m J e»l*Mg(x)it{x)dx

in S'{Rn). By (i) and (iii) of Lemma 2.1, for every positive R there exist positive
constants c2 and c(f,R) such that

K(x,OI>c2(l + |x|)d-1

if |fI < R and |x| > c(f,R). Now let V be a function in C^°(R") such that
0 < ip{x) < 1, -0(x) = 1 for |x| < c(f,R), and ip{x) = 0 for |x| > 2c(f,R). Set
X = 1 - rp. Then

(2.5)
TfM)= f    el*ix'°g(x)ï>(x)dx

Jr"

+  hm
t—0+

/    e^x^g{x)X(x)çt(x)dx.
JR»

The first integral in (2.5) is an entire function of f. To handle the second integral
consider the differential operator

n

Luix) = i^2dj(\<i>'x(x,0\-2dj<j>ix,Ou(x)),
■7 = 1

where the derivatives d3 are taken with respect to the variable x. The operator L
maps functions supported away from the origin in the symbol class Sm(Rn) into
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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the symbol class Sm_d(Rn). Moreover its formal transpose Ll satisfies L*e'* = el*.
Since the function x —» g(x)\(x)c(tx) is supported away from the origin and is in
the symbol class SRez(Rn) uniformly with respect to t in [0,1], by integrating by
parts k times we get

/    e^Vg(x)X(x)ç(tx)dx= [    e^x^ Lk(gXct)(x) dx,
Jr" Jr"

where Lk(gxçt) G SKez~d(Rn), uniformly with respect to t in [0,1]. Thus, if
k > Re z + n, then by the Lebesgue dominated convergence theorem

lim   Íet^x'VgXÇt(x)dx= í el^x^gX{x)dx.

The latter integral converges absolutely and defines a smooth function of f. Con-
sequently

Tf,g(0= [   e^%^ + LkgX](x)dx,
Jr"

Tf,g[£) is a smooth function of f, and

\ff,giO\<c(g)   viel < l-
Then to obtain estimate (2.3) we only need to investigate the behavior of Tf,g{t;) as
|f | —> oo. Letting w = f/|f| and performing the change of variables x = |f l1^-1^
in (2.4), we get

m-{z+n)/(d-l)ffM)

= lim   f   exp^lfl^-1)^ ■ y + f(y))}g(y)çt(y)dy.

Estimate (2.3) is then an immediate consequence of the following lemma.    D

LEMMA 2.3.   Let r > 0, cj G Rn, |w| = 1. Define

I Jr.
'R

lim   /    exp[ir(u ■ y + f{y))]g{y)ít{y) dy.
X~*0+ J\\\n

Then there exists a constant C3, independent of u, such that

\Iu(r)\<c3(l+r)-min(Rez+n'n/2}    VrGR+.

PROOF. Let <j>(y,u) = u-y + f(y), u,y'mRn, \w\ = 1. The function y -> 4>(y,u)
is in C°°(Rn\{0})UC2(R") and, by Lemma 2.1, has a unique critical point y(u) for
every unit vector uj in R". Moreover there exist positive w-independent constants
C4,cs,eo,£i, such that

(i) £0 < |y(w)| <£i,
(ii) Wy(y,w)\ > c4(l + {y])"-1 if \y - y(u)\ > 1,
(iii)det(^(y(«),«))>cBl
(iv) |3£0(y,w)| < c(a)\y\d-W VyeRn\ {0}, Va G N", |a| > 2.
Since these estimates hold uniformly with respect to w, |w| = 1, we shall forget

altogether the dependence on u and write <f>(y) instead of (¡>(y, uj) and y0 instead of
y{oj). Now let ipi,ip2, and V3 be C°°(Rn)-functions such that

(a) 0 < A.< 1, Eti lfc = 1,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b) i¡>\ has support in a ball B\ of center y0 which does not contain the origin,
(c) ip2 has support in a small ball B2 of center the origin, to be chosen later,

which does not contain yo-
Using this partition of unity we can write

Letr</>(!/)^)çt(2/)d2/ = ^7,-(i,r),
j=l

where Ij(t,r), j = 1,2, is the integral over Bj. Now

Jim Aftr) = h(r) = [    e"*Mg(y)My)dy,
t-»0 jRn

this is an oscillatory integral, with a smooth phase function which has a unique
nondegenerate stationary point in the support of the amplitude. Thus by the
stationary phase theorem [H, Theorem 7.7.5] there exists a constant c§ such that

|/i(r)|<c6(l + r)-m/2    Vr>0.

Next
lim I2(t,r) = I2(r) = f   eir^g(y)^2(y)dy.

Integrating by parts k times, where k is the largest integer less than Re z + n, we
get

I2(r)=r-k [    e^^Lk(g^2)(y)dy,
Jr"

where
n

Lf(y) = iYidAW{yT2d34>(y)f(y)].
j=i

An easy induction argument shows that Lk(gtp2) is a sum of terms (L:>g){Lk~:>ip2);
in this product, one factor is homogeneous and the other is smooth and com-
pactly supported. Therefore the function ag = Lk(gip2) is in the Besov space
■^Rea-fc+n(!*■")• Moreover if we choose B2 sufficiently small there exists a C2 dif-
feomorphism $ of a neighborhood of the origin onto B2 and a unit vector v in Rn
such that <f>o $(x) = v ■ x. Thus h(r) — r~k[(ag o $)|$'|]^(rü) and so

\I2(r)\<c7r-(Rez+nK

Finally to estimate ^(i, r) we integrate by parts j times, obtaining

h(t,r) = r-t [eir*MVagiy,t,r)dy,

where ag[y, t,r) — g(y)ç(trëy)xl)3(y) is a symbol of class SRez(Rn), uniformly with
respect to t,r > 0. Thus since L maps symbols in 5m(Rn) supported away from
the origin into 5m_d(R"), we have for all j large enough

I3(r)=  lim h(t,r) = r-t Íe^^L](g^3)(y)dy.
t *o+ j

This shows that I3{r) is a rapidly decreasing function of r as r —► oo, and completes
the proof of Lemma 2.3.    D
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THEOREM  2.4.   If 0 <Rez + n then there exists a constant c = c(n,f,g,u)
such that

\I(f,g,u){9)\ < c|0|-minW2'(Re2+")/d>    y«? G R"+1.

In particular ifRez + n> nd/2 then

\I(f,g,u){e)\<c\e\-n'2    V0GRn+1.

Since for a real, det(/")a is homogeneous of degree an(d — 2), the following
corollary is an immediate consequence of Theorem 2.1.

COROLLARY 2.5.   Ifa> 1/2 then there exists a constant c — c(n,a,f,u) such
that, when 0 = (f, A),

/   exp[¿(f • x + A/(x))] det(/"(x))au(x) dx
Jr"

<c\e\ -n/2

PROOF OF THEOREM 2.4. Now if t > 0 and x G Rn let Stx = tx.  Since g is
homogeneous of degree z we have for every A > 0

eiWg(x) = \-*'d[Tf,g6»/d](x).

Hence, for 0 = (f, A) in R" x R and u in Cc°°(Rn),

l(f,g,u)(0) = \-z/dl(Tf,g6xl/ä)ur(0
= *-{*+n)/dl(ff,gSx-1,ä)*u](t).

Therefore, if 0 < Re z + n < nd/2, we have by Lemma 2.3,

(27) l/i/.y.uîWI^A-^'+^llf^iiooiiûiii
<c(/,y)||û||,A.

If Re z + n > nd/2, by the same argument we get

(2-8) lIUg^MlKc^gMlxFurW^2,
where £ — Rez + n- nd/2 > 0. Notice that

||(|x|e«)l1 = ||(|x|er*û||1<oo1

since û e S(Rn) and (|x|£)~ is a homogeneous distribution of degree — n — e. Thus
combining (2.7) and (2.8) we get

W,g,u)(6)\ < c{f,g,u,6)\e\-™^n'2^ez+nVd\

in any cone T(6) = {(f,A): |f| < ¿A}. If A < 0 the same estimate follows by
considering the conjugate of I(f,g,u)(6). To estimate the oscillatory integral in
the complement of one of the cones Y(6) we use Proposition 2.2. Let

h(x)=h(x;tX) = \t¡\-1(t:-x + Xf(x)).

We claim that there exist constants ¿o, e > 0 such that

(2.9) inf{\h'{x)\: x G supp(«)} >e   V|f| > <50|A|.

Indeed h'(x) — |f|-1(f + A/'(x)) and by Lemma 2.1, there exists a unique x(f/A)
such that /i'(x(f/A)) = 0, unless A = 0 in which case (2.9) is trivial.   Moreover
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|z(£AM| ~ If/AI-1/^-1).   Thus there exists 60 > 0 such that for |f| > 60\X\ we
have dist(x(f/A),supp(u)) > 1. Finally, by (iii) of Lemma 2.1, if x G supp(u),

\h'(x)\ > Cl|A| Ifl^lf/AI^-2)^-1'^ - x(f/A)|
^dlf/AI-^-^maxil.Kf/A)!-^}
>e>0.

Thus we can integrate by parts k times in the integral l(f,g,u)(0), where k is
the largest integer less than Re z + n, obtaining

l(f,g,u)(0)= [    e^h^g(x)u(x)dx
Jr"

= |f|-fc /    el^hMLk{gu)(x)dx,
Jr"

where L is the different operator i]T}?=i dj[\Vh\~2djh] whose formal transpose Lx
satisfies Ltet^h = \t\\el^h. Now an induction argument shows that ag = Lk(gu) is
a sum J2  apbp, where each ap is a function in C°°(Rn \ {0}) which is homogeneous
of degree A, Re A > Rez — k, and bp G C2(R").  Thus ag is in the Besov space
Ap^_fc+n(Rn).  Now, since \h'\ is bounded away from zero on the support of u,
we can decompose u with a partition of unity into a sum u = J2j uj °f smooth
functons Uj with compact support in balls B3, in such a way that h can be taken as
a coordinate in a new local coordinate system in a neighborhood of each Bj. More
precisely, for every j there exists a unit vector ljj in R" and a C2 diffeomorphism
$j of a neighborhood of the origin onto Bj such that h o 3>.y(x) = x ■ wy. Thus

n/WM = irfcDK °*¿)i*í-rdí K)
j

and, since [ag o $j)|$j| G AR'^_fc+n(Rn), we have

\I(f,g,u)(0)\<^2\\(ago^)\^\\\A^        |e|-(R«+»)
'      * Re a — fc + n

<c(n,/,ff,M)|f|-(Reï+"'

for |f | > ¿>o|A|. This proves the theorem.    D

3. Estimates for maximal functions. In this section we shall apply the
results of the previous section to derive Lp estimates, 1 < p < oo, for maximal
operators associated to averages over a hypersurface S in Rn+1 which, modulo a
rotation and a translation, is the graph of a homogeneous function / : R™ —> R. We
shall assume that / satisfies the assumptions of §2, to wit / is a smooth function
in Rn \ {0}, homogeneous of degree d > 2, and there exists a positive constant a
such that (f"(x)v,v) > a\v\2 for every x,v in Rn, |x| = 1. Let pbe a finite Borel
measure of the form dp = wdS, where dS is the surface measure on S and w is a
function with compact support on S such that the function

x-U(x)=W(x,/(x))(l + |/'(x)|2)-1/2

is in C^°(Rn). We shall prove that the maximal operator

M<t>(x) = sup   /  4>{x - ty) dp(y)
t>o \Js

WcpeS(Rn+l\
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is bounded on Lp(Rn+1) for every p > p(n,d). The critical exponent p(n,d) is less
than 2 or larger than 2 according as d < 2n or d > 2n.

THEOREM 3.1. Suppose n>2. If d <2n then M is bounded on Lp(Rn+1) for
every p > 1 + (d/2n). If d> 2n then M is bounded on Lp(Rn+1) for every p > d/n.

PROOF. First, suppose that d < 2n. By [CM, Theorem 2.2] it suffices to show

(3.1) |£(0)|<c(l + |0|)-"/d   V0GR"+1.

([CM] treats surfaces which are starlike relative to the origin. The same method,
with "Riesz operators" centered at a point P, establishes the analogous result for
surfaces which are starlike relative to P.)

Since \ß(0)\ = \I{f,2,u)(9)\, estimate (3.1) follows at once from Theorem 2.1.
Next assume that d > 2n and denote by /c the Gaussian curvature of S. If

a > —(d — 2)_1 then Ka is integrable relative to surface measure. Let dpa — nadp.
By Theorem 2.1 if a > (d - 2n)/2n(d — 2) there exists e > 0 such that

\(paT{9)\ = |/(/,det(/T,«)l < c(l + I0I)-1/2-*    W G R"+1.
The conclusion now follows from [CM, Theorem 3.2].    D

REMARK. If d > 2n the result of Theorem 3.1 is sharp. Indeed let S be the
hypersurface x„+i = f{x') — 1, x' G Rn, and let u in C¡7°(Rn) be a function such
that u(x') = 1 in a neighborhood of the origin. Consider the function <j>(x) =
i?(x)|xn+i|_1//p(log2|xn+1|)_1, where r¡ is a nonnegative C¡7° function supported in
the unit ball, with -n = 1 near the origin. Then 0 is in Lp(Rn+1). However for
p < d/n the average

Mt(f>(x',xn+1) = /    4>{x' - ty',xn+x - t(f(y') - l))u(y')dy'
Jr"

is infinite for x„+i < 0 and t = |xn+i|. This is precisely the value of t that brings
together in convolution the singularity of (¡> and the point where the curvature of S
vanishes. Thus

M<l>(x', x„+i) = +00   Vxn+i < 0.

4. A one-dimensional oscillatory integral. Let / be the interval [0,1]. For
every m G N and every function / G Cm(I) we shall denote by ||/||(m) the norm
of / in Cm(I):

||/||(m) = max{|/(¿'(í)| : t G /, 0 < i < m}.

In this section we shall consider functions qb e CP+1(I), ip G CP~1(I), and u G
Cp(I), p > 3, such that

i.x\ ^ is a convex function on I, (f>(0) = <fi'{0) = 0, and there exist an
integer q in [2,p] and a positive constant e such that

max{|¿W(0)|: 2 < i < q} > e;

(4.2) there exists a positive constant c0 such that 0 < ip(t) < c0<j)"{t) for t G T,

(4.3) there exists a constant M such that

\\4>\\<p+i) < M   and    W(p_i)<M;
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(4.4) u(t) = 1 if 0 < t < 1/3 and u{t) = 0 if 2/3 < t < 1.
Our goal is to give estimates for the oscillatory integral Ik:

Jfc(A) = í  exp[¿A0(í)]t/;(í)'c+1u(í)f2'í~1 dt   VA G R
./o

for k a positive integer. We begin by proving an easy result on 0' (Lemma 4.1),
and then we estimate certain derivatives of t —► tp(t)k+1t2k~1, first in an easy case
(Lemma 4.2) then in a more difficult situation (Lemma 4.3). These estimates enable
us to prove our main estimate (Proposition 4.4) by integration by parts.

LEMMA 4.1. 7/0 satisfies hypotheses (4.1) and (4.3) then there exists a positive
constant c(e,p, M) such that

(f>'{t)>c(e,p,M)    Vie [1/3,1].
PROOF. The set F of all 0 in CP+1{I) which satisfy (4.1) and (4.3) is compact

in CP(I), and <f> —* 0'(l/3) is a continuous functional on CP(I); consequently, there
exists (¡>o in F so that, for any 0 in E, and t in [1/3,1],

#,(1/3) < 0'(l/3) < 0'(i).
Since </>(0) = 0ó(O) = 0 and $> *s increasing in I, if 00(1/3) were 0, then 0O would
be identically zero in [0,1/3], contradicting (4.1). So 00(1/3) > 0, as required.    D

(See also Lemma 3.3 and the following remark in [Sv].)
Let D,p be the differential operator given by the rule

D*f(t) = jtmtr1ttt)]   VfeC'il)
and write j for the identity function: j(t) = t, t e I.

LEMMA 4.2. Suppose 0 and ip satisfy (4.1), (4.2), and (4.3). Assume that for
some integer me [l,q — 1] one has

0«(O) = O,        i = 0,...,m, |0(m+1)(O)| >e.

Then there exists a constant c = c(p,q,e,co,M,k) such that

||0$(tf*+V,*-1)lloo<C.
PROOF. Since 0 is convex, 0(m+1'(O) > e. A simple induction argument on k

shows that
Dk^k+ij2k-i){t) = Y,P(UDt,i>(t),F(t),G(t))

p
where Dt = d/dt, F(t) = tip(t)/<j)'(t), G{t) = t2ip'{t)/(p'(t), and the sum runs over
a finite set of polynomials P in the variables i, Dt,ip, F, and G of degree at most
k in Dt- Thus we only need to prove that the norms of t/>, F, and G in Ck(I) are
bounded by a constant depending on p, q, e, c0, and M. By (4.3) this is obvious for
ip, since p > k + 1. To estimate the norms of F and G we write

Fit) = [f*70,(í)]MO/í'n-1]    and    G(t) = [ím/^(í)][^(*)/*m"a]-

By Taylor's formula with integral remainder,

tl>(t) = tm-1Ç{t)    and    tl>'{t) = tm-2rj{t),
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where f G Cp-m(I) while r, G Cp-m(I) if m > 2 and rj G Cp-2(I) if m = 1. At
any rate, since A; < min{p - m,p - 2}, f and ry are both in Ck{I) and

llfll(fc) + N|(k) < c(p, 9)||V||(P-i) < c(p,q,M).
Hence we only need to estimate the norm of jm /0' in Ck(I). Consider first the
function 0'/im- Again by Taylor's formula we have 0'(i) = tma(t), where a G
Cfc(7) and

IHI(fc) < c(p,g)||0||(p+i) < c(p,9,M).
Next we claim that there exists a positive constant c(e, M) such that

|a(i)| >c(e,M)   Vie/.

Indeed, since 0(m+1)(O) > e, we have

0m+1(í)>£/2    ViG[O,£/2||0||(p+1)].

Thus for 0<t<e/2i(p+1),

a(i) = 0'(i)rm = [(m-l)!]-1 f (l-u)m-l(j>(rn+1)(tu)du>el2[m]\.
Jo

On the other hand, since 0' is increasing, we have for e/2||0||(p+1) < t < 1

a(i)>0'(£/2||0||(p+1))rm
>(e/2||0||(p+1)re[m!]>c(£,(?,M)>O.

Thus im/0' = a"1 is in Ck(I) and

IUm/0'll(fc) <c(p, q, £,M).
This proves the lemma.    D

LEMMA 4.3.   Let<f> andtp satisfy hypotheses (4.1)-(4.3). //

p > max(fc + 9-1,^ + 2)

then the function D^(ipk+1 j2k~l) is bounded in I and there exists a constant B —
B(p,e,c0,M,k) such that
(4.5) ||JD*(^fc+1ya*-1)||O0 < Ä.

If I < k then we have also
(4.6) ¿rn ^(^fc+1i2fc-1)(i)=0.

PROOF.  To prove (4.6) just consider the Taylor expansions of j2k-i^k+i an(j
0' centered at 0. We shall prove estimate (4.5) by induction on m:

m = min{nGN: |0(n)(O)| > e}.

At most q — 2 steps will be required since we start when m = 2 and stop when
m = q. If m = 2, Lemma 4.2 applies. Next suppose that estimate (4.5) holds
whenever 2 < m < p and take 0 such that

min(fi6N: |0(n)(O)| >e}= p+l.
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If 0Í™' (0) — 0 for n = 0,..., p we are done by Lemma 4.2. It remains to treat the
case where there is some n G [2:p] with 0(")(O) / 0. For s,t in /, let

<t>a{t) = s-1-"0(si),        i)s(t) = sx-^(st).

Since

(4.7) ^(t) = sl-1-^^(st),        i = 0,...,P+l,

(4.8) ^)(<) = sî+1-Vî)(s<),        i = 0,...,p-l,

we have

(4.9) 0 < tps(t) < co<j>'¡(t)    Vi G/,

and 0Í (0) = st_1_'í0(t'(O). Since, for 0 < i < p, |0s (0)| is a decreasing function
of s which tends to oo as s —> 0+, there exists a critical value a in (0,1) such that

(4.10) max{\<j>il){0)\:0<i<p} = £    as s = a.

Moreover there exists a constant M = M(q, s, M) such that

(4.11) ||0s||(p+1) + ||^||(P-i)<M    Va e (0,1).

Indeed to prove (4.11) observe that by (4.7) if i > p + 1,

10^(01 <H0(î)lloc< M   Vi el.
If i < p we have by (4.10)

i0ii)(í)i < i#(o)i + f \4>si+i\u)\du < e+u(:+i)u-
Jo

Hence, by a backward induction argument on i:

W Hoc < (/* + 1 - i)e + ||0("+1) Hoo,        i = 0,..., p.
This proves that

Ua\\(P+l) <(»+ l)e + ||0||(P+1) < (q + l)e + M.

Finally, to prove that HV'sIlíp-i) is bounded uniformly with respect to s, we use
(4.8), (4.9), and the well-known estimates

Halloo <7(ll^||oo + ||V'ip-1)||oc), i = 0,...,p-l.
Next it is easily seen that for t, s in /,

DlMf-'j2"-1)^) = s8-*-"^^^1;-3*-1)]^).
Since k + p — 2 > lwe have

(4.12) Iflft^+V*-1)^)! < |JDl(^fc+1J2fc-1)(i)|.

If 0 < s < a we can find t in [0,1] such that s = at. Since 0CT and t/>CT satisfy
(4.1)-(4.3) with q = p and M instead of M, we get by (4.12) and the inductive
hypothesis

\Dk(xPk+'j2k-l)(s)\ < |(^)*(^+1i2fc_1)(i)l < B(p,e,c0,M,k).
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To estimate \Dk(tpk+i j2k  1){s)\ when a < s < 1, we observe that (4.12) yields

|Dfc(^+iy3*-i)(a)l < |jo*-(^*+1ya*_1)(i)l-

The functions 0S and tps for a < s < 1 satisfy conditions (4.2)-(4.3), with M
replaced by M. Yet K be the set of all pairs of functions (0, i/>) in Cp+l(I) x
CP~1(I) satisfying (4.2)-(4.3) for a fixed choice of the constants q,e,co,M. By
the compactness of the injection Cm+1(/) —> Cm(/), K is relatively compact in
CP(I) x CP~2(I). Moreover by Lemma 4.1, 0'(1) is bounded below for (0, VO in
K. Thus there exists a constant c(K) such that \Dk)(ipk+1j2k-1){í)\ < c(K) for all
(0, ip) in K. This proves the lemma.    D

PROPOSITION 4.4. Let <p,4>, and u satisfy hypotheses (4.1)-(4.4). If p >
max(fc 4- q — 1, k + 2) then there exists a constant a = a(p, e, en, M, u, k) such that

|/fc(A)| < a|A|-fc    VAeR.

PROOF. We can estimate /¿(A) by integrating by parts k times; thus

h(X) = (-iXyk f eMiM{t)]Dk^k+lj2k-lu){t)dt,
Jo

and so
|/fc(A)| < \\Dl(ii¡k+132K-íu)\\0O\X\-k    VA € R.

By expanding out the derivatives, we find that

Dl(tpk+lj2k-lu) = uDk^k+l j2k~x) + other terms.

Each of the other terms involves a derivative of u and so it vanishes outside
[1/3,2/3]. By Lemma 4.1 and Leibnitz' rule the contribution of the other terms is
bounded by a constant which depends only on e,c0,M,u, and k. The estimate for
Dk,(ipk+1j2k~1) is the content of Lemma 4.3.    D

5. Estimates for convex surfaces. Let S denote a smooth convex hyper-
surface in Rn+1 (not necessarily closed), with Gaussian curvature k and induced
Lebesgue measure dS. Let w G C¡7°(S) be a function compactly supported away
from the boundary of S.

THEOREM 5.1. If S has no tangent of infinite order and a = a(n) = [(n+3)/2],
then the Fourier transform of the measure pa with dpa — KawdS satisfies the
estimate

\pa(0)\<C(n,w,S)\0\-n'2    Vi?GR"+1.

PROOF. We shall represent the surface S in a neighborhood of each point p in
supp(iy) as the graph of a convex function defined on the tangent plane Tp at p.
Introducing polar coordinates in Tp we shall reduce matters to the estimation of
a one-dimensional oscillatory integral of the type studied in the previous section.
A similar approach has been previously used by several authors to estimate these
Fourier transforms [He, Sv, R].

Since S is strictly convex, for every vector 6 in the unit sphere En in Rn+1 there
exists at most one point A'(O) on S with interior normal O, i.e. (x — X(Q)) • 6 > 0
for every x G S.  Let E'n be the compact subset of E„ consisting of those O for
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



66 MICHAEL COWLING AND GIANCARLO MAUCERI

which X(Q) exists and belongs to the support of w. Since the function naw is
smooth, by a well-known argument (see for instance [L]) the contribution to

(5.1) p{XG)= f elXQxKa(x)w(x)dS{x)    VA G R
Js

coming from portions of S outside a small neighborhood of the points X(Q) and
X(—Q) is a rapidly decreasing function of A as |A| —► oo. Thus it is enough to
examine the contribution to (5.1) coming from a small neighborhood N(Q) of X(Q),
whose radius can be chosen to be independent of O, and it suffices to prove the
estimate

(5.2) /.
el^xKa{x)Wl{x)dS{x) <c{n,w,S)\X\-n/2    VAGR

for W\ e C%°(N(Q)). Now consider a rotation and translation of Rn+1 so that the
point X(Q) is moved to the origin, and the tangent plane of S at X(9) becomes the
hyperplane xn+i = 0. Then in a ball B$ centered at the origin, of radius 6 that can
be chosen independent of 6, the surface S can be given as the graph of a smooth
convex function /e : Bf, —► R such that /e(0) = 0, /¿(0) = 0, and further the map
6 —► /e is continuous from E^ to Cm(Bs) for every m G N. Henceforth we shall
write / instead of /e, for the sake of brevity, unless we want to stress explicitly the
dependence of / on O. Then estimate (5.2) is equivalent to the estimate

(5.3) f    elXñx)(detf"{x))aw2(x)dx
Jr"

< c{n,w,S)\X\~n/2    VAGR,

where w2(-) — w2(-,Q) G C^°(B¿) and the map 9 —> w2(-,Q) is continuous from
E^ into Cm(Bß) for every m G N. Next we introduce polar coordinates t, f in Rn
and we put

0(£,f,9) = /e(£)   Vi>0,Vf gE„_l
In terms of these new coordinates the integral in (5.3) becomes

/        df í  exp(2A0(í,f,9))i/)Q(í,f,e)w(í,f,e)í"-1dí,
/e„_i      Jo

where ip{t,t¡,0) = det(/£(x)) and u(t, f,6) = w2(i,f,6). For every m G N the
maps

(f,e)-0(-,f,e),   (f, e)-</>(-, f, e),   (f,e)^w(-,f,e)
are continuous from E„_i x T,'n into Cm([0,6]). Hence their image is a compact
subset of Cm([0,6]). Moreover for every (f,O) G En_i x T,'n the function t —<•
u(t, f, O) vanishes in a neighborhood of 6; moreover, the function t —+ 0(£, f, 6) is
convex, satisfies 0(0, f, 0) = dt<f>{0, f, G) =0 and, since S has no tangent of infinite
order, there exist an integer q > 2 and a positive constant e, both independent of
(f,©), such that

max{|dJ0(O, f, 6)| : 2 < i < q) > e.
We now need a geometric lemma.

LEMMA 5.2.   There exists a constant Co, independent o/(f, 0), such that
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PROOF. Let / be a convex C2 function on an open subset fi of R™. Then for
every vector f in E„_i,

(5.4) det/"(2/)<||/"(;y)|r-1(/"(y)f.f)
for all y G fi. Indeed let fi,...,fn be an orthonormal basis of eigenvectors of
f"(y) and denote by Ci,...,Cn the corresponding eigenvalues. Let f = £^//¿f¿,
£//2 = 1, be a unit vector in Rn. Then, since 0 < C¿ < ||/"(y)||, we have

det/"(y) = nci<||/"(y)|rincr'
i=l 1=1

< n/"(y)irx ¿ä = wnvwHrm ■ o
i=l

by the inequality between the geometric and arithmetic means. By applying in-
equality (5.4) to the function /e we obtain the desired conclusion.    D

PROOF OF THEOREM 5.1  (CONTINUED). Now, if n is even, say n = 2k, then
a(n) = k + 1 and Proposition 4.4 yields

/ exP(¿A0(í, f, e))va(B)(t, f, e)u(i, f, e)u(t: f, e)«"-1 dt
Jo

< c(n,ô'E)|Ar"/2    VA GR,

from which estimate (5.3) follows easily. If n is odd we increase the dimension to
n + 1 by considering the function F defined on a ball of center 0 and radius 6 in
Rn+1 by

F(xx,...,xn+X) =f(xi,...,x„) + \x2n+x.

Given a point x G Rn+1 we shall write x = (x', xn+i) where x' — (xi,..., xn). Then
detF"(x) = detf"(x'). Let w3 in C?>(-6,6) be a function such that w3(0) = 1.
Then, since n + 1 is even, a(n + 1) = a(n), and the previous argument yields

(5.5)       \f       exp(iXF(x))(detF"(x))a(-n)w2(x')w3(xn+x)dx  <c\X\

On the other hand the integral in (5.5) factors into the product of

exp(iA/(x'))(det f"{x'))a{n)w2(x') dx'

-(n+l)/2

LR»+'

and

(/  6XP \2XX"+1) VJz(x"+1'dx"-

Since by [E, Chapter II],

/   exp í-Ax2+1J iü3(x„+i)dx„+1 ~sgn(A) Í —

estimate (5.3) holds also for n odd.    D

-1/2
as |A| —► oo,
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