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O. I n t r o d u c t i o n  

I t  has been known since a long time that  the function in R a 

m~(~) = (1 - 1~12)% l~l < 1; m~(~) = 0, I~l ->- 1, 

where c~ is a real number, is not a multiplier on F / 2 ( R  d) unless 

~ O, ~ > d [ l / p  - -  1121 - -  112. (0 .1)  

In  fact, this follows from the asymptotic expansion of the Fourier transi0rm m~. 
When d = 1 the sufficiency of (0.1) follows from the estimates of IV[. Riesz for 
conjugate functions so we assume d > 1 in what follows. Stein [7] showed that  

a > ( d -  1 ) l l / p -  1/2[ (0.2) 

is always a sufficient condition but  it is evidently stronger than (0.1) except when 
~o ~ 1 or p = ~ .  More recently Fefferman has proved in [2] that  (0.1) is a sufficient 
condition when I 1 / p  - -  1/2[ > (d ~- 1)/4d, and in [3] he proved that  

> max (0, d l l / p  - -  1/2[ --  1/2) (0.3) 

is a necessary condition if  p # 2. When ~ = 2 Carleson and Sj51in [1] have 
proved completely that  (0.3) is a sufficient condition for m~ to be a multiplier on 
FLp(Rd). The main point in their proof is an Lp estimate for oscillatory integrals 
which is very  interesting in its own right. In  a special case they developed an idea 
of Stein and Fefferman (see [2]) to show that  it follows from the Hausdorff-u  
inequality but  in the general ease they used a much more complicated argument. 
In this note we shall simplify their proof by  applying an extension of the I-[ausdorff- 
Young inequality also in the general case. This gives somewhat more precise estimates 
also. 
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The function ma in R 2 can be replaced by  any function of compact support 
which is smooth except near a curve with non-zero curvature where it is the distance 
to the curve raised to the power ~. In  a recent manuscript SjSlin [6] has extended 
the result to curves with tangents of higher bu t  always finite order. We simplify 
his proof here. 

In  a final section we indicate some of the open problems on Lp estimates for 
oscillatory integrals in any number of variables. These seem to be of interest not 
only in the s tudy of multiplier problems but  in other contexts as well. 

1. L p estimates for oscillatory integrals 

We begin with an extension of the Hausdorff-Young inequality. 

THEOREM 1.1. Let a E C~(R~d), let ~o 6 C~(R 2~) be real valued and set with 
A~>I 

TNI(x) -~ f e 'N~(~'y)a(x, y)f(y)dy, f 6 C~ (Rd). (1.1) 

I f  de ta2q~/0x0yr  in s u p p a  and 1<= p ~ 2, 1/p q- 1/19' = 1 then 

IIT~fllf g C-:V-a/P'llfll~,, f 6 C~(lla). (1.2) 

That  this is an extension of the Hausdorff-Young inequality is seen by  taking 

~0(x, y)-= <x,y> and a with a(0, 0 ) =  1. I f  f(y) is replaced by  f(y%/-N) the 
Hausdorff-Young inequality is the limit of (1.2) when _N --> ~ .  

_Proof of Theorem 1.1. The statement is obvious when p = 1 so in view of ~ .  
Riesz' convexity theorem it suffices to prove it when p ---- 2. In the proof we 
may assume that  f has small support. We have to estimate 

where 

IiT /H = f f a (y,z)f(y)](z)dydz 

[ ,  

a~(y, z) = J e ~Iv(~(~'x) - r ~))a(x, y)a(x, z)dx. 

When y and z are close to a given point and (x,y) 6 s u p p a  we have 

t? la/ax(~(x, y) - ~ ( x ,  z))l = I ~ ( y  - z)l  -t- O ( [ y  - zI ~) ~ o ly  - zl 

so /c partial integrations give if k is any positive integer 

[a~v(y, z~] <= Ck(1 -1- hrly -- z]) -k. 
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I f  k = d + 1 it follows tha t  f JaN(y, z) ldy < ON -~, f faN(y, z)[dz < CAT -d. 
Hence  IIT~fl[~ < ON-allfil~ and the theorem is proved.  

]~emark. Using arguments  close to those in HSrmander  [4, sections 2.2 and  4.3] 
it is easy  to  show tha t  

2Vd/21]T~]]2 --> sup [a(x, y)[ ]det (O2~/OxOy/2~)l -~1~ 

provided  tha t  y ---> ;39(x, y)[Ox is inject ive for f ixed  x and (x, y) E supp a. 
I f  the  mat r ix  029/axay in Theorem 1.1 is al lowed to be singular it is much  

harder  to analyse the  possible L p es t imates  for T N. The simplest  s i tuat ion occurs 
when 9 is independent  of  Yd, thus  a funct ion of  2d --  1 variables  only. When  
d ----- 2 we shall prove  a s l ightly improved  version of  the ke y  es t imate  of  Carleson 
and  Sj61in [1]: 

THEOREM 1.2. JLet a E C~~ let q~ E G| a) be real valued, and aesume that 
the Jacobian D(39/Oy, a2q~/Oy~)/Dx has no zero in supp a. (Here the variables in 
R a have been denoted by (x, y); x -~ (x l, x2). ) Set 

Tier(x) ---- f e'N*(x'Y)a(x, y)f(y)dy,  f E C~(R),  x ~! R 2. (1.3) 

Then it follows that 

liT~fi[~ <~ CN-~/q(q/(q --  4))~/4[1fi[~ i f  q > 4 and 3/q + l[r = 1. (1.4) 

Proof. To be able to  app ly  Theorem 1.1 we int roduce 

..(x) = (T.:(x)). = f f .,.,.,..., +.,...,,.. ,)o(., .)j(,)f(.),.,,. 

However the hypotheses of Theorem I.I are not fulfilled since 

t) I det  O~(9(x, t) + ~f(x, s))/OxO(t, s)) = I q~:,(x, s)cp:n(x, s), ' 

which vanishes when t = s. For  t close to s the  de te rminan t  is equal  to  
(8 --  t)D(9 :, qh~)[D(xl, x2) + O((t - -  s) 2) so it is bounded  f rom below b y  e]t - -  s I 
in the  suppor t  of  a(x, t)a(x, s) i f  a has suff ic ient ly  small support .  Since 
9(x, t) + 9(x, s) is a symmet r i c  funct ion of  t, s it is a C ~ funct ion  r of x and 
y ----- (t + s, ts). Similarly 2a(x, t)a(x, 8) is the  restr ict ion to  /2 = {y; 4y 2 ~ ~ }  of  
a C~ ~ funct ion b(x, y). Since D(y)/D(t, s ) =  t -  s, i t  follows t ha t  q~ satisfies 
the  hypotheses  of  Theorem 1.1, and  

FN(x) -~ f e'N~(x'Y)b(x, y)f(t)f(s)]t --  s]-ldy. 
o d  
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(ff 
Hence 

I f  1 ~ p _~ 2 i t  follows from Theorem 1.1 t h a t  

]]TNf]l~e, = llF~vllp, < 6'N -2:P" If(t)f(s)IP[t --  sl -Pcl 

= ON-':,' f f lf(t)l, lf(s),,lt -- sll-,  dt) 1:'. 

To es t imate  the r ight  hand  side we use the classical inequal i ty  for f rae t ionary  
integrals 

f f  Ig(t)g(s)l]s- tl~-idsdt ~ C~-lllg[l:, 1 ~ 2/~ = ( ~ + 1  ~ 2. 

Taking ~ - -  1 = 1 ~ / 9 ,  t h a t  is, ~ : 2 - - / 9  we obtain 

\l]p 

If(t)f(s)lPls --  t]l-Pdsdt) g C(2 --/9)-~/Pllfll~e, 1 < 2/q = 3 --/9. 

HT~vfH~, < CN-~/P" (2 -~/2,, ~ /9 2. ---- - - / 9 )  Ilfllv/(a-p), 1 < 

Here we write 21o' = q  and  2/9/(3--/9) = r .  Since l / r =  3 / 2 / 9 -  1/2 and  
3/q ---- 3/2/0' we obta in  3/q q- 1/r ---- 1 and  q > 4 which are the only  restrictions 
on q and  on r. The est imate  (1.4) now follows immediately.  

be a G ~ 

Proof. Since qs' and  ~ are assumed to be l inearly independent  the funct ion 
~(x ,y)  = (x, ~b(y)~ satisfies the hypothesis  of Theorem 1.2 in R ~ •  Choose 
b C C~(R 2) wi th  b(0) = 1 and  apply  Theorem 1.2 wi th  a replaced by  b(x)a(y). 
This gives the desired bound for 

COROLLARY 1.3. Let I be an open interval on R, let I ~ y --> ~(y) 
immersion of I as a curve with curvature :/: O, and set with a E C~(I)  

= fe'<x'r f r C~(ll) ,  x r Ir (1.5) Sf(x) 

Then it follows that 

IlSfiI, < C(q/(q - 4))l/'llfllr / f  f e cg ( l l ) ,  q > 4, 3/q q- 1/r = 1. (1.6) 

Moreover, i f  ~ is the Fourier transform of g 

4 3 1 
= --  - - , - -  - -  = 3. (1.7) Ha(~ o ~b)l], < 6(4 3q)-1/4[[gl] ~ i f  g r Cg(lt :) ,  1 =< q < 3 q q- r 
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When N--> oo the estimate (1.6) follows. By duali ty we obtain (1.7). 

The following is a simple combination of Theorems 1.1 and 1.2: 

THEO~E~ 1.4. Let a E C~(R4), ~ E Cr176 4) and assume that in supp a we have 
a~/~yax r 0 and 

t 6 R 2, O/ay<t, O~/~x> = O~/Oy~<t, Oq~/Ox> = 0 =~ t = O. (1.8) 

(Here the variables in R a have been denoted by (x, y); x, y E R~.) I f  

T~vf(x) = f e'N~(~'X)a(x, y)f(y)dy, f E C~(R~), x E R ~, 

it follows that (1.4) is valid. 

Proof. The statement is weaker than  Theorem 1.1 if the support of a is close 
to a point where det ~2q~/ay~x 4: O. Let us therefore assume tha t  the support of 
a is close to a point say x ---- y ---- 0 where det a2~/ayax = o. After a linear change 
of the variables x and y we may assume tha t  at (0, 0) 

a:q~/OyjOxl ---- 0, j = 1, 2; o~q~/aylax2 ~ o, 03q~/Oy~Oxl V: o. 

I t  follows that  the function (x, y~) --> ~(x, Yl, Y~) satisfies the hypothesis of Theorem 
1.2 in a neighbourhood of 0. Writing 

S~vf(x, Y2) = f e'NV(~'Y)a( x, y)f(y)dyl 

we have TNf(x) = f Sivf(x, y~)dy2 and Theorem 1.2 gives 

,IT~fl,, <= ~N-="(q/(q-- 4))ll~ f dy~ ( f  ,f(y. y~)l'dyO 11" . 

We can assume tha t  the support of f is in a fixed compact set and the double 
integral can then be estimated by [[fH, in view of H61der's inequality. The proof is 
coml~lete. 

Example 1.5. Let ~(x, y) ---- ~5(x -- y) where ~ E C ~ ( R ~ ( 0 } )  is positively 
homogeneous of degree 1, and let a E C~(R ~ • R ~) vanish near the diagonal. Then 
the hypotheses of Theorem 1.4 are fulfilled if r r 0 when z ~ 0. In fact, the 
equation qS"(z)t = 0 is fulfilled by t = z since r  is homogeneous of degree 0, 
and qY"(z)z ----- -- ~"(z) ~ O. 
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2. Some convolution operators and multipliers 

The preceding example leads to the following theorem of Carleson and SjSlin [1]. 

THEORE~ 2.1. Let q~ E C~(R2~(0)) be real valued, laositively homogeneous of 
degree 1, and assume that r r 9 for every x r O. I f  

gf(x) = f - y)f(y)dy,  f E C~(R2), (2.1) 

where a E C~(R ~) and a(tz) = t-Za(z) when [z[ :> 1 and t ~> 1, it  follows that K 
is continuous from L P to L P i f  

2 > max (3/2, 211/1) --  1/2] -~ 1). (2.2) 

Proof. By passage to the adjoint we can reduce the proof to the case p > 2. 
Choose z E C f f ( R  4) so tha t  x # y  if (x,y) E s u p p g ,  and set for t > l  

s . f ( x )  = f e"~ y)f(y)dy, f E C~~ 

Then we have 

IISJIIp ~ Cp(t)]lf[Ip (2 .3)  

I t  is obvious tha t  

where 

.f(x) = fe,,o,.   ,z(x - o y - -  z)f(y)dy. 

f z(x - -  - -  = F ( x  - -  y)  z, Y z)dz 

where F E C~' vanishes near 0 and is ~ 0 if g is. By suitable choice of Z we 
can obtain any such F,  for multiplication of g by a function g(x --  y) leads 

where 

o , ( t )  = o t - ~ / , ( p l ( p  - 4)) 1/', p > 4; o , ( t )  = ot-1/2(log t) 1/~-1~', 2 =< p _ 4. (2.4) 

In  fact, we may assume tha t  supp f belongs to a fixed compact set, and for 1o > 4 
the assertion is then a consequence of Theorem 1.4 as seen in Example 1.5. When 
t0 -- 2 it follows from Theorem 1.1 applied to a suitable variable as in the proof 
of Theorem 1.4. Interpolation by the M. Riesz convexity theorem between p ---- 2 
and p ---- 4 -k 1/log t gives the estimate for to ~ 4 and another application of 
Riesz' theorem proves it for p between 2 and 4. 

I f  ~v is a function such tha t  g(x, y) ~ 0 implies ~v(y) = 1, then 

I]S,, J l ~  g Cp(t)llv(.  - z)f]]p,f e G~(R2), z e R 2, (2.3)' 
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to the  funct ion gF instead of F .  Since St. =f(x) can only be different from 0 for 
Ix --  zI < C, we have by  H51der's inequal i ty  

F S ,  P < f z f ( x )  dz  C1 ]S,,=f(x)[Pdz. . = . ,  

In tegra t ion  wi th  respect to x gives in view of (2.3)' 

NR,fNe <= CCe(t)[lflle, f e C~(R2), (2.4) 

where we have wri t ten 

.,,(x> = f s,..,r = - .>,(.>.. 

After a change of variables (2.4) takes the form 

f e'O('-Z)F((, y)/t)f(y)dy ~ e Cg. Ct2Ce(t)llf[le, f 
e 

We mul t ip ly  by  t -~-~ and  integrate  f rom 1 to ~ wi th  respect to t not ing tha t  
cO 

f tx-~Cp(t)dt< ~ because 1 - - 2 - - 2 / 1 0 < - -  1 and  1 - - 2 - - 1 / 2 < - -  1 by  
1 

(2.2). (Recall t h a t  p ~ 2.) I f  
r  

o(x)-- f 
1 

i t  follows t h a t  K is continuous in i ~. Now a is homogeneous of degree --  ~ for 
[xl > R if  ~'(x) = 0 for [xl > R, and  every such funct ion can be wr i t ten  as the  
sum of  one of the  form (2.5) and  one of  compact  support.  This completes the proof. 

We shall now consider some multipliers on F L  p. :For the  re levant  facts on 
multipliers we refer to I tSrmander  [5, Chapter  1]. We shall denote by  Mp the space 
of  multipliers on F L  P. 

TH~oar 2.2. Let I be an interval on R, let ~p C C~(I) 
assume that W" ~ 0 ou I. I f  a E C ~ ( / •  it follows that 

m . ( ~ )  = a ( ~ ) ( $  2 - -  ~ o ( $ 1 ) ) ~  

is  in M e i f  

> m a x  (0, 21Wp - 1/2[ - -  li2). 

Here we have used the notation r+ = max  (r, 0); r E R. 

be real valued and 

(m6) 

Proof. Since M e is a C~ ~ module we m~y assume tha t  

a(~) = ax(~l)a2(~ --  ~(~1)), aj E C~. 
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a a m s is t he n  the  Four ie r  t r ans fo rm of A(x~)I(xl, x2) where A(r = 2(r and  

1 (Xl, x~) - -  f e 2~I(~'~' + v($')~)al(r 1. 

I t  is a well known consequence of  the  s t a t ionary  phase m e th o d  t h a t  the  funct ion  
I(x)  is rap id ly  decreasing except  in directions such t h a t  x 1 ~- ~v'(r = 0 for some 
r fi supp al which defines r as a homogeneous  func t ion  of  x of  degree 0. I f  
�9 (Xl, x~) == 2~r(r -t- ~v(r for  this  value  of Cx, we can ex t end  ~b to a 
homogeneous  funct ion  of  degree I sat isfying the  hypotheses  of  Theorem 2.1, and 
A(x2)I(Xl, x2)e -~0(~) has an asympto t i c  expansion in C ~ homogeneous  te rms  of  
degree - -  cr - -  312 , - -  ~ - -  5 / 2 , . . .  Hence  the theorem follows f rom Theorem 2.1 
and  the  fact  t ha t  convolut ion b y  a n y  integrable funct ion  is bounded  in L ~. 

The following improvemen t  is due to Sj51in [6] who gave a different  proof: 

TH~o~v,~ 2.2'. Theorem 2.2 remains valid i f  y /  has zeros in I ~rovided that they 
are of f ini te order. 

Proof. Since v2" can only  have  a f ini te  n u m b er  of  zeros in supp ax we m a y  
assume tha t  there  is on ly  one, say at  r -~ 0. Since composi t ion of  a n y  mult ipl ier  
wi th  a l inear  t r ans fo rmat ion  in 11 ~ is ano the r  mult ipl ier  with the  same norm we 
m a y  assume tha t  

~(r = cr + 0(r ~ # o. 

To examine  wha t  happens  at  r = 0 we in t roduce  ~ ( r  ~-~(er  W h en  
~--> 0 we have  ~(r --~ c~ '  in C ~. I f  Z E C ~ ( I •  vanishes in a ne ighborhood 
of  0 i t  follows f rom Theorem 2.2 t h a t  

is in M r for  0 < s ~ 1, and  the  p roo f  shows t h a t  the  no rm in 3//v is independen t  
of e. I n  view of  the  invar iance of  mult ipl iers  under  composi t ion wi th  l inear maps  
( t tSrmander  [5, Theorem 1.13]) i t  follows t h a t  

z($~/e, r162 - ~(r 

is a mul t ipl ier  wi th  un i fo rmly  bounded  n o rm  when 0 < r ~ 1. I f  we choose 
Z(r = ~0(r - -  ~(2r , 2mr where ~ r C ~ ( I X  It) is equal  to 1 near  0 and  no te  t h a t  

~(r162 - v(r = ~ x(2~r 2k~r162 - ~(r r # o, 
0 

i t  follows t ha t  the  left  hand  side is in Mp since ~ 2 -m~ < co. The theorem is 
proved.  
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I t  was convenient  in the  proof  of Theorem 2.2' to  have  the  s ingular i ty  of  ma 
on a curve  of  the  form ~2 = ~o(~) bu t  a pa r t i t ion  of  u n i t y  immedia te ly  ex tends  
the  conclusion to  a rb i t r a ry  curves wi th  no t angen t  of  infini te  order.  

3. Open problems 

We shall now discuss the  analogue of  Theorem 1.2 for several  variables.  At  the  
same t ime we will show t h a t  Theorem 1.2 is optimal.  

W i th  a E C~~ 2d-l) and  a real  va lued  ~0 e C~(R 2d-l) we wri te  

T~f(x) = f y)f(y)dy, f e C~(Rd-1), x e t l  ~. 

We shall assume 

rank  02cf/OxOy = d --  1 when (x, y) 6 supp a; (3.1) 

O/Oy(Oq~/Ox, t> -= 0, 0 • t E I t  a ~ det  02/Oy2(Orf/Ox, t> :/: O, (x, y) E supp a; (3.2) 

which reduces to  the  hypotheses  of  Theorem 1.2 when  d ---- 2. Assume for example  
t h a t  a - =  1 near  0. The  no rm of TN as an opera tor  between L e spaces is no t  
changed i f  we replace ~(x, y) b y  ~(x, y) - -  ~0(x, 0) - -  ~(0, y) -t- ~0(0, 0) so we m a y  
assume tha t  ~0(x, 0) = 0 and  ~0(9, y) ~ 0 identical ly.  After  a l inear change of  
variables x and y we have  b y  (3.1) 

d--1 d--1 d 

q~(x, y) = ~, xjyj + ~, aj(x)yj -t- ~ xjbj(y) + O([xIlyl(]xl ~ + ly[~)). 
1 1 1 

Here  a i and  b] are quadra t ic  forms. I f  the suppor t  of  a is suff ic ient ly  small 
we can take  x j -~a j  and  y j ~ b  i as new variables,  j < d ,  and  reduce ~ to 
the  fo rm 

q)(x, y) ----- (x', y~ + xd(Ay, y~/2 + O([x] [y]([xl ~ -t- ]Y[2]) (3.3) 

where A is a symmetr ic  ma t r i x  and x ~ (x', Xd). Wri t ing  x'--= xdz we have  

of(x, y) -= xd((z, y~ -t- (Ay,  y~/2 + ~o(Zd, X, y)), 

where ~p(z, xa, y ) = O([yl(x ~ + IyI2)). F o r  suff ic ient ly  small xa and  z i t  follows 
t h a t  ~0 has a un ique  crit ical point  near  0 as a funct ion  of  y. I f  f is 1 in a neighbor-  
hood  of  0 and  has suff ic ient ly  small suppor t  i t  follows f rom the  s t a t iona ry  phase 
m e t h o d  t h a t  

lT~f(x,~z, xd) l ' ~  (2:Tr/l~'Xd)(d-1)/2 [dct A I -~/2 

when Nx  a --> oo and z, x a --> 0. I t  follows t h a t  there  are posi t ive constants  
cl, �9 �9 c4 such t h a t  for lzi ~ c:~, c l /N ~ Xd ~ C2 we have  

]T~f(xdz, Xd)[ => c4(NXd) (1-~)/~. 



I - ~ e n c e  

ca 

f ]TNf]qc~x ~ CS.~q(1--d)/2 f X(d-1)(1-q/2)~Xd" 
cl/N 

Depending on the  convergence or divergence of  the  integral  a t  O we obta in  the  
following conclusions 

lim inflITNfll~N(d-a)/2 ~ C(1/q -- 1]2 + 1/2d) -a/~, 1]2 --  1/2d < 1/q ~ 112; (3.4) 

lim infHT2vfll~N(d-~)/2(log N) -x/q ~ C, 1]q = 1/2 - -  1/2d; (3.5) 
N--> oo 

liminf]lT2vf]]~N d/q ~ C]l/q -- 1/2 + l/2dl -I/q, 1/q < 1/2 - -  1/2d. (3.6) 
N.--~ oO 

Here  C is a posi t ive cons tant  depending on f. Clearly (3.6) is equivalent  to  

liminfllT2vfll~N d!~ >: C}l/q -- 1/2 q- 1/2dl 1/e'~-~/2, 1/q < 1/2 - -  1]2d, (3.6)' 
2V-> o:) 

so we conclude tha t  the  cons tant  in (1.4) cannot  be improved  even for a f ixed  f.  
Comparison of  (3.6)' and  Theorem 1.2 suggests tha t  for 1/q < 1/2 --  1/2d we 

should have an es t imate  of the  form 

IlT2Vfllq _--__ CN-a/q(1] 2 1/2d -- 1/q)am-a/2llfl[,. (3.7) 

I f  9 satisfies (3.3) we have  

f y)f(y)dy, N--> 

where r  ~ O~(x, y)/ax, x = O. ~Tote tha t  our assumptions  on ~0 mean  t ha t  
y --> r  is an immersion of R d-1 as a surface of to ta l  curva ture  ~ 0; conversely  
for every  such ~ the  funct ion <x, ~5(y)> satisfies (3.1), (3.2). I f  we set 

Tf(x) = f e'<X'r (3.8) 

where ao(y)-~ a(O, y) is in Cff(Rd-1), i t  follows from (3.7) tha t  

lIT/H, < C ( 1 ] 2  - -  1/2d - -  1 1]2d-1[2 , /q) Ilfll, f c C~(ltd-x). (3.9) 

(Compare this with Corollary 1.3.) 
B y  (3.3) we have  qS(y) _= (y, <Ay, y>/2) -t- O(lYla). 2r set f,(y) =f(y/e) 

where f qC: and e >  0. Then we have ]If~lt, = 8(d-1)/rllfllr and 

(Tf,)(z'/~, x,/82)e 1-~ --> Sf(x) 

where we have used the nota t ion  

Sf(x) = f e ~<~' y> + ixa<AY' Y>/2f(y)dy. (3.1 O) 
J 
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I~ence, if  1/r -~  1 / r ' :  1, 

lira inf  e (a+l)l~- (d-~)k'liTf, llq/llf~ll , >= llSfllq/ilfll,. 
a-'~ID 

We conclude t h a t  ne i ther  (3.7) nor  (3.9) can  be val id unless 

1/q < 1/2 - -  1/2d, (d + 1)/(d - -  1)q -~ 1/r :<_ 1. (3.11) 

I f  there  is equa l i ty  in the  second inequa l i ty  i t  follows t h a t  

llSfllq -<__ O(1/q - 1 / 2 d  - -  1/q)l/~a-x/21lfll , ,f  e C~(Ra-~). (3.12) 

When  d = 2 the  second condi t ion in (3.11) becomes 3/q + 1/r ~ 1 which 
shows t h a t  Theorem 1.2 is op t imal  also wi th  respect  to  the  L p classes involved.  

Question 3.1. Does (3.7) follow f rom (3.1), (3.2) and  (3.11)? 
Question 3.2. Does (3.9) follow f rom (3.11) when y--> # (y)  is an immers ion 

def ining a surface wi th  to ta l  curva tu re  ~ 07 
Question 3.3. Is  (3.12) val id  for any  real  symmet r ic  non-singular  m a t r i x  A 

when  (3.11) is val id  with equa l i ty  in the  second inequality.~ 
No te  t h a t  we have  p roved  t ha t  a posi t ive answer to  one of  these implies a posi t ive 

answer to  the  following ones. The a rguments  given in sections 1 and  2 still app ly  
to  show t h a t  a posi t ive answer to  Quest ion 3.1 implies t h a t  ma is a mult ipl ier  
on _FLP(R a) when (0.3) is fulfilled. 
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