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The effect of an oscillatory motion of a viscoelastic fluid over an infinite stretching sheet

through porous media in the presence of magnetic field with applied suction has been

studied. The surface absorbs the fluid in a porous medium in the presence of magnetic

field and the velocity oscillates depending on the stretching rate (b). Analytical expres-

sions for the velocity and the coefficient of skin friction have been studied, first by the

perturbation method and then by power series method. The effect of viscoelastic param-

eter k1, porous parameter k2, magnetic parameter Mn, and the vertical distance x in the

presence of suction/blowing on the velocity and the flow characteristics are discussed.

The velocity of the viscoelastic fluid is found to decrease in the presence of magnetic field

and porous media, as compared to the study of viscous fluid. It is also found that the

effect of unsteadiness in the wall velocity and skin friction are found to be appreciable in

the presence of suction/blowing parameter.

Copyright © 2006 K. Rajagopal et al. This is an open access article distributed under the

Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Boundary layer flow on continuous moving accelerating surfaces is an important type of

flow occurring in a number of technical processes which have applications in fuel indus-

tries, in an aerodynamic extrusion of plastic sheets and boundary layer along liquid film

in condensation processes. Drag, heat, and mass transfer are governed by the structure

of the layer. Flows due to a continuously moving surface involve continuous pulling of a

sheet through a reaction zone as in metallurgy, in textile and in paper industries, and in

the manufacture of polymer sheets, sheet glass, and crystalline materials.

In a series of three articles entitled “Boundary layer behaviour on continuous solid

surfaces” Sakiadis [20] pointed out the differences in boundary conditions between a

moving flat plate of finite length and a continuous surface. The governing equations for

both two-dimensional and axisymmetric flows were determined. In a subsequent paper
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he gave exact and approximate solutions for the flat sheet and the cylinder. This was

followed by the work of Crane [2], P. S. Gupta and A. S. Gupta [7] and Rajagopal et

al. [18].

A theoretical and experimental treatment for the moving flat plate was made by Tsou

et al. [27]. They determined heat transfer rates for certain values of the Prandtl numbers.

Siddappa and Abel [22] have extended Crane’s flow problem to the viscoelastic fluid of

Walters’ liquid B′ model, and obtained the solutions of equations of motion for boundary

layer flow past a stretching sheet.

One of the most popular models for non-Newtonian fluids is the model that is called

the second-order fluid or fluid of second grade. It is reasonable to use the second-order

fluid model to do numerical calculations. The constitutive assumption for the fluids of

second grade is in the following form:

T =−pI +µA−α1A2 +α2A
2
1, (1.1)

where T is the Cauchy stress,−pI the spherical stress due to the constraint of incompress-

ibility, µ the coefficient of viscosity, α1 and α2 material moduli and A1 and A2 are the first

two Rivlin-Ericksen tensors which are discussed in detail by Fosdick and Rajagopal [6].

Further, a comprehensive discussion on the restrictions for µ, α1, and α2 can be found in

the work by Dunn and Rajagopal [4]. The sign of the material moduli α1 and α2 is the sub-

ject of much controversy which was discussed by Rajagopal [14]. In the experiments on

several non-Newtonian fluids, the experimentalists have not confirmed these restrictions

on α1 and α2. Thus, the conclusion is that the fluids that have been tested are not fluids of

second grade and they are characterised by a different constitutive structure. The equa-

tion of motion of incompressible second-grade fluid, in general, is of higher order than of

the Navier-Stokes equations. The Navier-Stokes equation is a second-order partial differ-

ential equation, but the equation of motion of a second-order fluid is a third-order partial

differential equation. But in the present article we considered momentum equation for

a Viscoelastic incompressible fluid of Walters’ liquid B′ model which is of fourth-order

highly nonlinear differential equation having four boundary conditions which is solved

analytically first by perturbation method and then by power series solution. A marked

difference between the case of the Navier-Stoke’s theory and that for fluids of second

grade is that ignoring the nonlinearity in the Navier-Stoke’s equation does not lower the

order of the equation, however ignoring the higher-order nonlinearities in the case of the

second-grade fluid reduces the order of the equation. The no-slip boundary condition

is sufficient for a Newtonian fluid but for a second-order fluid it may not be sufficient

and therefore one needs an additional condition at boundary. Therefore a critical review

on the boundary conditions and the existence and uniqueness of the solution has been

given by Rajagopal [15]. In order to clarify these points, Rajagopal and Gupta [16] have

presented a paper on the flow of a second-order fluid past an infinite porous plate with

velocity component along the x-axis tending to U as y approaches infinity. The augu-

mentation of the boundary conditions has also been discussed by Rajagopal and Gupta

[16].
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Subhas and Veena [25] have studied about the viscoelastic fluid flow and heat trans-

fer characteristics in a saturated porous medium over a stretching surface with frictional

heating and internal heat generation or absorption for both PST and PHF cases consid-

ering steady-state boundary layer equation.

A similar situation is obtained when the porous plate is bounded by another porous

plate. A similar work has been provided by Rajagopal and Kaloni [17].

Unsteady flows of a second-order fluid in a bounded region have been studied by Ting

[26]. Some unsteady uni-directional flows of second order fluids have been considered

by Rajagopal [13]. These works showed that the no-slip condition at the boundary for

this type of flow suffices. A recent work of Rajagopal et al. [1] showed that the solutions

for unsteady flows of a second-order fluid occupying the space above a plate are bounded

if the coefficient of higher-order derivative is positive. However, this is not necessary for

steady flows of a second-order fluid.

Erdogan [5] has studied the unsteady motions of a second-order fluid over a plane wall

and he has shown that a Newtonian fluid induced by a flat plate that applies a constant

stress to the fluid flows faster than a second-order fluid.

Besides these excellent reviews of the literature dealing with nonsteady flows present-

ed by Lighthill [10] and Stuart [24], the behavior of viscoelastic fluids in laminar flow

through porous media has been the subject by numerous investigators, including Pilitisis

and Beirs [12], H. Pascal and F. Pascal [11], Jones and Walters’ [8], Rudraiah et al. [19],

and Vafai and Kim [28].

Siddappa et al. [23] have investigated the oscillatory motion of a viscoelastic fluid past

a stretching sheet and have shown that the unsteadiness in the wall velocity and skin fric-

tion are found to be appreciable. Devi and Nath [3] have discussed the similar solutions of

the unsteady boundary layer equations for a moving wall and they predicted their results

as the Prandtl number strongly affects the heat transfer, but the skin friction is unaffected

by it.

Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid was

discussed by Wang [29]. He considered an elastic sheet which was stretched back and

forth in a viscous fluid. His problem was governed by a nondimensional parameter S

which represents the relative magnitude of frequency to stretching rate.

As unsteady flows of viscoelastic fluids through porous media in the presence of mag-

netic field are of great interest and have several applications such as in electromagnetic

propulsion and in the flow of nuclear fuel slurries, flow of fluid metals, and alloys,

Sarpakaya [21] was the first who has studied the MHD flows in non-Newtonian fluids.

He studied about the MHD flow in Bingham plastic and Ostwald fluids and presented

his results with the conclusion that as the intensity of the magnetic field increases, the

distribution of velocity is increasingly more uniform.

The nonuniqueness of MHD flow of a second-order fluid past a stretching sheet was

presented by Lawrence and Rao [9].

Motivated by all the above analyses, in the present paper we therefore investigate

the oscillatory motion of a viscoelastic Walters’ liquid B′ model over a stretching sheet

through porous media in the presence of magnetic field considering the nonsteady
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boundary layer equations with suction/injection. The effects of velocity profiles u on dif-

ferent parameters such as viscoelastic parameter k1, permeability permeter k2, and mag-

netic parameter Mn are discussed.

2. Formulation of the problem and mathematical solution

We consider the unsteady flow of an incompressible electrically conducting Viscoelastic

fluid (Walters’ liquid B′) through a porous medium over a stretching sheet with suc-

tion/injection that issues from a thin slit in which the flow approaches the sheet with

zero angle coincidence. Two equal and opposite forces are introduced along the sheet so

that the wall is stretched, keeping the origin fixed. The x-axis is taken along the sheet, the

y-axis perpendicular to it, and the origin is the slit. The speed of a point on the sheet is

assumed to be proportional to its distance from the slit.

The constitutive equations for the incompressible Viscoelastic (Walters’ liquid B′)

fluid are

Pik =−Pgik +P′ik,

P′ik(x, t)= 2

∫ t

−∞
φ(t− t′)

∂xi

∂x′m
∂xk

∂x′r
e(1)mr(x′, t′)dt,

(2.1)

where

φ(t− t′)=
∫∞

0

N(τ)

τ
· exp

[

− (t− t′)∗ τ
]

dτ, (2.2)

where N(τ) is the distribution function of relaxation times, Pik the stress tensor, P is an

isotropic pressure, gik(x) is the metric tensor of fixed co-ordinate system x′, and P′ik is the

rate of strain tensor. In the case of fluids with short memories, that is, short relaxation

times, the above equation of state can be written in the following simplified form:

P′ik = 2µe(1)ik − 2k0
δ

δt
e(1)ik (2.3)

in which µ=
∫∞

0 N(τ)dτ is the limiting viscosity at small rates of shear, k0 =
∫∞

0 τN(τ)dτ,

and δ/δt denotes the convected time derivative introduced by Oldroyd (1958).

The governing boundary layer equation for Walters’ liquid B′ through porous media

in the presence of magnetic field with suction or injection is of the form

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
−

1

ρ

∂p

∂x

− k0

{

∂3u

∂t∂y2
+u

∂3u

∂x∂y2
+ v

∂3u

∂y3
+
∂u

∂x
·
∂2u

∂y2
−
∂u

∂y

∂2u

∂x∂y

}

−
ν

k′
u−

σB2
0u

ρ

(2.4)
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and the equation of continuity is

∂u

∂x
+
∂v

∂y
= 0, (2.5)

where ν is the coefficient of viscosity, k′ the coefficient of porosity, σ electrical conductiv-

ity, B0 the magnetic field strength, and ρ the density of the fluid.

The corresponding boundary conditions are

u= bx(1 + εCosωt), v = vw at y = 0,

u= 0, uy = 0 as y −→∞.
(2.6)

Here b denotes the maximum rate of stretch with dimension (time)−1.

We assume S= ω/b ≡ 1/ε≫ 1, where ε is very small. S implies the small amplitude of

oscillations. The boundary conditions suggest the following transformation:

u= bx fη(η,τ), v =−(bν)1/2 f (η,τ), p = p(η,τ),

τ = ωt, η =

√

b

ν

y.

(2.7)

Substitution of (2.7) in (2.4) leads to

S1 fητ(η,τ) + S2

[

f 2
η (η,τ)− f (η,τ) fηη(η,τ)

]

= S2 fηηη(η,τ)−
k0

ν

[

S3 fηηητ(η,τ) + 2 fη(η,τ) fηηη(η,τ)

− f (η,τ) fηηηη(η,τ)− f 2
ηη(η,τ)

]

−
(

S4 + S5

)

fη(η,τ),

(2.8)

where

S1 =
ω

b2
, S2 =

S

ω
=

1

b
, S3 =

ω

b
,

S4 =
ν

k′b2
, S5 =

σB2
0

ρb2
.

(2.9)

The corresponding boundary conditions are

fη(η,τ)= l+ εCosωt; f (η,τ)=−
vw√
bν

at η = 0,

fη(η,τ)= 0; fηη(η,τ)= 0 as η −→∞.

(2.10)
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Here vw is the suction velocity across the stretching sheet when vw < 0 and it is blowing

velocity when vw > 0.

To solve (2.8) we employ perturbation analysis of Wang [29] by setting

f (η,τ)= g1(η) + εRe
{

eiωtg2(η)
}

. (2.11)

Substituting (2.11) in (2.8) and (2.10) and equating harmonic and nonharmonic terms

to zero, we obtain fourth-order nonlinear ordinary differential equation for g1(η) and

fourth-order nonlinear differential equation for g2(η) with variable coefficients

S2

{

g2
1ηη(η)− g1ηη(η)g1(η)

}

= S2g1ηηη(η)−
k0

ν

[

2g1ηηη(η)g1η(η)− g1ηηηη(η)g1(η)− g2
1ηη(η)

]

−
(

S4 + S5

)

g1η(η),

(2.12)

S6g2η(η) + S2

{

2g1η(η)g2η(η)− g1ηη(η)g2(η)− g2ηη(η)g1(η)
}

= S2g2ηηη(η)− k1

⌊

S3iwg2ηηη(η) + 2g2ηηη(η)g1η(η) + 2g1ηηη(η)g2η(η)

−g2ηηηη(η)g1(η)−g1ηηηη(η)g2(η)−2g1ηη(η)g2ηη(η)
⌋

−
(

S4 +S5

)

g2η(η),

(2.13)

where

k1 =
k0

ν

, S4 =
ν

k′b2
=

k2

b2
, S5 =

σB2
0

ρb2
=

Mn

b2
,

S6 = S1iω, S7 = S3iω.

(2.14)

The corresponding boundary conditions are

g1(η)=−
vw√
bν

, g2(η)= 0, g1η(η)= g2η(η)= 1 at η = 0,

g1η(η)= g2η(η)= g1ηη(η)= g2ηη(η)= 0 as η −→∞,

(2.15)

suffix denotes differentiation with respect to η. Making use of (2.15), we derive the exact

analytical solution of (2.12) in the form

g1η(η)= e−αη,

g1(η)=
1− e−αη

α
−

vw√
bν

.
(2.16)

α is the positive root of the cubic equation

α3−

(

k1− S2

)

(

vw/
√
bν

)

k1
α2 +

S2

k1
α−

(

S2 + S4 + S5

)

(

vw/
√
bν

)

k1
= 0. (2.17)
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Further, we apply series method to obtain the solution for (2.13). Hence the solution of

(2.13) subjected to the boundary conditions (2.15) is obtained as

g2(η)=

[

1 + (A/B)exp(−αη)− (A/B) · (C/D)exp(−2αη) + ···
]

[

(A/B)− 2(A/B) · (C/D) + ···
] , (2.18)

where

A= S2 + k1α
2,

B = k1α
2− S2α

2 + k1S7α
2 + S56− S2,

C = S2 + 2k1α
2,

D = 8k1α
2− 4S2α

2 + 4k1S7α
2 + S6− 2S2.

(2.19)

3. Skin friction

Shearing stress at a point on the plate for the Viscoelastic fluid is

τ0 = u0

[

−µ
∂u

∂y
− vk0

∂2u

∂y2

]

y=0

. (3.1)

Substituting similarity transforms in the above equation, the form of the equation will

be

τ0 = u0

⌊

−µ fηη + k0 f fηηη
⌋

. (3.2)

u0 = b3/2x/
√

ν and the calculated skin friction is

τ0 =
u0α

AX

[

µAX + εexp[iωt](AY − k0TB)
]

,

X = 1− 2
C

D
+ ··· , Y = 1 +

A

B
−
A

B

C

D
+ ··· , T = 1− 4

C

D
+ ··· .

(3.3)

4. Results and discussion

In Figure 4.1(a) a graph of g1(η) versus η is drawn for various values of the elastic param-

eter k1 = 0.4, 0.6, 0.8 in both cases of suction and blowing. It is observed from the figure

that g1 decreases with increasing values of k1.

In Figure 4.1(b) a graph of g1(η) versus η is drawn for various values of the permeabil-

ity parameter k2 = 1.0,100,1000 and it is seen from the figure that velocity increases as the

permeability parameter k2 increases owing to the inhibitive influence of the permeability

parameter k2 in both the cases of suction and blowing.

In Figure 4.1(c) a graph of g1(η) versus η is drawn for various values of the magnetic

parameter Mn and it is observed from the figure that g1 increases with increasing values
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Figure 4.1. (a) Velocity profiles g1(η) for various values of the elastic parameter k1 = 0.4,0.6,0.8 with

b = 0.5, ν= 0.04, k2 = 1.0, Mn= 0.5. (b) Velocity profiles g1(η) for various values of the permeability

parameter k2 with b = 0.5, ν = 0.04, k1 = 0.4, and Mn = 0.5. (c) Velocity profiles g1(η) for various

values of the magnetic parameter Mn keeping b = 0.5, k1 = 0.4, ν= 0.04, and k2 = 1.0 fixed.
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of Mn in the presence of porous medium, that is, velocity increases with small values

of elastic parameter k1, which might be regarded as a manifestation of the presence of

normal stresses inside the boundary layer. Speaking in physical terms, the thickening of

the boundary layer may be attributed to the tensile stress in the layer which causes an axial

contraction. These results are well in agreement with the results of Rajagopal et al. [18].

In Figure 4.2(a) velocity profiles for g2(η) versus η are drawn for various values of

viscoelastic parameter k1 and it is noticed from the figure that g2 decreases with increasing

values of k1 in the presence of suction or blowing.

In Figure 4.2(b) velocity profiles for g2(η) versus η are drawn for different values of

permeability parameter k2 and it is noticed from the figure that g2 increases as k2 increases

in the presence of both suction and blowing.

In Figure 4.2(c) a graph of g2(η) versus η is drawn for various values of magnetic pa-

rameter Mn in the presence of suction or blowing and it is seen from the figure that

velocity increases as Mn increases.

In Figure 4.3(a), that is, from the graph of g′1(η) versus η, it is found that the effects

of impermeability of the boundary wall velocity increase as Mn increases in the case of

suction and blowing on the horizontal velocity profiles in the boundary layer with per-

meability k2 = 100 and the viscoelastic effect of k1 = 0.2 being drawn in the absence of

magnetic field and it is observed from the figure that velocity decreases with increase of

distance. The effect of suction is to decrease the velocity and that of blowing is to increase

the velocity. These results are consistent with the physical situation.

Figure 4.3(b) is plotted for the same set of parameters except in the absence of porous

medium and with the magnetic effect of Mn = 100 and it is observed that g′1 decreases

with increase in the values of magnetic parameter Mn. Comparison of these two graphs,

4.3(a) and 4.3(b), reveals the fact that the effect of porosity and magnetic parameter is

to decrease the velocity for all cases of suction, blowing, and impermeability of the wall.

This is because of porous medium’s and magnetic field’s obstruction to the flow over the

oscillatory motion of a stretching sheet.

In Figure 4.4 velocity profiles for g′2(η) versus η for a set of parameters like k1 = 0.4,

Mn = 10.0, b = 0.4, ν = 0.04 in the absence of porous medium are drawn and it is no-

ticed from the figure that velocity decreases within the boundary layer of an oscillatory

stretching sheet with the increase of distance from the boundary. The effect of suction

is to decrease the velocity and injection increases the velocity. we also notice that veloc-

ity decreases as the distance increases from the boundary sheet and also observe that the

oscillatory motion of the stretching sheet produces oscillating flow in the fluid.

We reveal the fact that for increasing values of stretching rate parameter (b) the oscil-

lation also increases. In other words, that the mode of oscillation depends on stretching

rate.

It is observed that the magnitude of skin friction decreases initially and later increases

as the viscoelastic parameter k1 increases. Similarly, for various values of magnetic param-

eter Mn and for fixed value of k2 = 1.0, we observed that the effect of magnetic parameter

decreases the magnitude of skin friction up to certain level and suddenly increases to the

top level.
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Figure 4.2. (a) Velocity profiles g2(η) for various values of viscoelastic parameter k1 for fixed values

of b = 0.5, ν= 0.04, k2 = 0.5, and Mn= 1.0. (b) Velocity profiles g2(η) versus η for various values of

permeability parameter k2 keeping k1 = 0.4, b = 0.5, ν= 0.04, and Mn= 1.0 fixed. (c) Velocity profiles

g2(η) versus η for various values of magnetic parameter Mn for fixed values of k1 = 0.4, b = 0.5,

ν= 0.04, and k2 = 0.5.
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Figure 4.3. (a) Velocity profiles for g′1(η) fixed values of permeability parameter k2 = 100, k1 = 0.2,

b = 1.0, Mn= 0.5. (b) Velocity profiles for g′1(η) fixed values of magnetic parameter Mn= 10, k1 = 0.2,

b = 1.0, and k2 = 0.0.
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Figure 4.4. Velocity profiles for g′2(η) versus η for k1 = 0.125, k2 = 0.0, Mn= 100, b = 0.4, ν= 0.04.

Table 4.1. Values of τ.

k1 0.005 0.01 0.02 0.05

τ −38.4438 −18.2708 −8.1637 −4.7763

Table 4.1 represents the values of shear stress for different values of viscoelastic pa-

rameter and it is observed that the magnitude of skin friction coefficient decreases with

increasing values of viscoelastic parameter k1. For industrial applications, this result is of

some importance, since the power expenditure in stretching the sheet decreases with in-

creasing values of k1. The same idea has already been investigated by Rajagopal et al. [18]

in the case of steady flows.
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