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Abstract

Mammalian brains exhibit population oscillations whose structures vary in time and space 

according to behavioural state. A proposed function of these oscillations is to control the flow of 

signals among anatomically connected networks. However, the nature of neural coding that may 

support oscillatory selective communication has received relatively little attention. Here we 

consider the role of multiplexing, whereby multiple information streams share a common neural 

substrate. We suggest that multiplexing implemented through periodic modulation of firing rate 

population codes enables flexible reconfiguration of effective connectivity among brain areas.

Periodic synchronisation of neuronal spiking is a striking feature of brain activity, occurring 

both within and across regions. The spatiotemporal structures of these network oscillations 

often vary systematically with behavioural and cognitive tasks. At the cellular and network 

level the mechanisms underlying periodic activity in neural circuits are increasingly well 

understood1-5 (Box 1). Relatively less is known about the computational roles that 

oscillatory dynamics play in high-level processes, although a prominent hypothesis is that a 

function of network oscillations is to control the flow of information through anatomical 

pathways, thus flexibly modulating effective connectivity among local networks6-10. Such 

mechanisms may play an important role in supporting flexible and context-dependent 

behaviour; because local circuits perform highly specialised computations or process 

information from different sources, distinct behavioural tasks require different combinations 

of regions to work together, calling for different patterns of information flow through long-

range anatomical connections. For example, information about the target location for a 

movement may come from distinct sensory modalities or be recalled from memory. The 

same motor output must therefore utilise information represented in different brain areas. 

Conversely, a given sensory cue may be used to guide different motor actions such as a 

reaching limb movement or a saccade, or a purely cognitive action such as updating 

information held in short-term memory. In each of these cases information from the relevant 

sensory area must be accessed by distinct downstream targets.

There are of course numerous mechanisms that can modify the flow of information through 

neural circuits without relying on population oscillations, such as synaptic plasticity across a 

range of timescales11 and plasticity of intrinsic neuronal excitability12. Additionally, 

network-level mechanisms have been proposed for routing asynchronous firing rate 
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signals13-15. However, as we summarise below, recent computational work has shown that 

oscillations can, in principle, support flexible and selective communication, and 

experimental evidence for task-dependent modulation of oscillatory activity provides 

compelling, albeit correlational, evidence for such a role.

Another long-standing hypothesis about the functional role of network oscillations is that 

they serve as a mechanism for multiplexed neural coding10,16-19. Multiplexing is the process 

of combining multiple signals for transmission through a single communication channel, in 

such a way that the distinct components can be independently recovered from the 

transmitted signal. In telecommunication systems a principal application of multiplexing is 

to support selective communication in situations where a single signal source communicates 

with multiple receivers, or conversely multiple sources with a single receiver, as exemplified 

by the reciprocal selective communication between a base station and mobile phones. In 

neuroscience, by contrast, multiplexed coding has been discussed primarily as a solution to 

problems of information representation, including binding features of sensory scenes 

corresponding to individual objects17, increasing the capacity or robustness of sensory 

neural codes18, or representing multi-item lists or sequences16,20,21.

With some exceptions10,22, there has been little explicit discussion of what role, if any, 

multiplexing plays in the hypothesis that network oscillations implement selective neural 

communication. This is the focus of the first section of this review, in which we argue that 

multiplexing plays a necessary role in such mechanisms. In the second section we suggest 

that multiplexing may be implemented through multiplicative modulation of firing rate 

population codes. This proposal may reconcile the abundant evidence for firing-rate 

population coding with data implicating changes in oscillatory patterning of activity in 

controlling information flow.

The role of multiplexing in selective oscillatory communication

All neuronal communication is in a trivial sense ‘selective’ because it is constrained by 

anatomical connectivity. In the discussion that follows we use the term to describe 

mechanisms that permit communication that is more selective than that implied by the 

underlying anatomical connectivity. Defined thus, selective communication may occur in 

either convergent or divergent pathways, both of which are widespread in long-range 

connections among both cortical and sub-cortical networks.

Information flow through a convergent pathway may be termed selective if a network 

receiving several inputs can respond preferentially to one or more of the inputs even after 

they have been combined by spatial overlap of synaptic activity. We will focus primarily on 

the simplest case: setting the gain for one of the inputs to one and for all the other inputs to 

zero. Such ‘hard switching’14 could be advantageous, for instance, if only one input is 

behaviourally relevant (the ‘target’ input), while all others (‘distractor’ inputs) should be 

ignored. In practice, control of effective connectivity may typically be subtler, but this 

limiting case is fundamental for understanding selective communication more generally.

Selective communication in a divergent pathway implies that a single population of neurons 

sends distinct signals to different projection targets. These signals could be qualitatively 
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different, or the same signal with independent control of the gain for each of the projections. 

We will focus primarily on the latter, and in particular on the limiting case where the signal 

is turned on or off for different targets.

Selective communication in either convergent or divergent pathways requires multiplexing 

because in both cases a single spatio-temporal pattern of spike activity must carry multiple 

independently accessible information channels. In a convergent pathway it is the combined 

presynaptic activity in the spatially overlapping convergent inputs that must implement a 

form of multiplexing. If there is no algorithmic operation that can separate out information 

about a specific component of the combined input from other converging inputs, the 

receiving network cannot respond differentially to that component, no matter what dynamics 

it implements. For separate components of a convergent input to be differentially processed, 

their activity must therefore be structured such that they encode their signal into separate 

information channels in their combined activity. Similarly, for selective communication in a 

divergent pathway, different projection targets must be able to read out different signals 

from the same pattern of activity. This requires that the spatiotemporal pattern of spiking in 

the projecting network contain separate information channels that can be accessed by the 

different projection targets.

To understand how oscillatory mechanisms for selective communication may operate we 

must therefore consider the coding schemes used to implement the required multiplexing, 

the algorithmic operations that support demultiplexing, and the implementation of both 

through neural dynamics.

Multiplexing population codes through multiplicative modulation

There is extensive evidence that spatial patterns of firing rates distributed across populations 

of neurons are an important component of information representation in mammalian 

brains23. We therefore focus on how network oscillations can extend firing rate population 

coding to support multiplexing and hence selective communication. As such, this review 

does not discuss phase codes or other schemes in which the precise timing of spikes encodes 

the value of stimuli, although phase of firing does play an important alternative role in our 

proposals. See ref. 18 for a recent discussion of neuronal multiplexing using phase codes, 

and ref. 10 for a selective communication scheme which relies exclusively on spike timing 

and not firing rates to encode information.

Rate coding requires that neuronal firing rates vary systematically with the signal to be 

encoded, typically characterised through neuronal tuning curves. The presence of oscillatory 

activity by definition indicates that instantaneous neuronal firing rates are also periodically 

modulated. The nature of the interaction between these two influences on instantaneous 

firing rate is central to the multiplexing framework outlined here. We suggest that 

approximately multiplicative oscillatory modulation of firing rate population codes is used 

to multiplex neural signals (Fig. 1). Such multiplicative modulation takes the form:
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Where Ri is the instantaneous firing rate of neuron i, Pi (S) is the tuning curve of neuron i 

with respect to the stimulus S, and m(t) is an oscillatory modulation of firing rates common 

across the ensemble of neurons forming a coding population. This coding scheme posits a 

division of labour between the population code, i.e. the spatial pattern of average firing rates 

over the oscillation cycle, which represents the value of the signal, and the oscillatory 

modulation which acts as a form of meta-data allowing the signal to be distinguished from 

those with different modulations; and hence selectively or differentially processed. A 

separation of timescales is also implicit in this coding scheme because the stimulus, and 

hence the population code, must vary on a slower timescale than the oscillatory modulation. 

This is because operations that can selectively read out these codes, discussed below, obtain 

at most one sample of the encoded signal per cycle of the oscillation, and hence to avoid 

aliasing, the signal must not vary at frequencies higher than half that of the oscillation24.

Multiplicative modulation supports multiplexing because algorithmic operations exist that 

can selectively recover signals with a given modulation while ignoring signals with different 

modulations, even when these signals are summed together. The question of how modulated 

population codes can be selectively read out or demultiplexed can be usefully addressed at 

both the algorithmic and implementational levels25: at the algorithmic level by identifying 

what mathematical operations on a pattern of spike activity allow population codes with 

different modulations to be selectively recovered, and at the implementational level by 

addressing what biophysical mechanisms may perform such operations in neural systems.

Time- and frequency-division multiplexing

Qualitatively different multiplexing schemes can be implemented by segregating signals by 

phase or frequency of oscillation. Segregation of signals into separate phases of a repeating 

cycle is termed time-division multiplexing (TDM) while segregation into different 

frequency bands is termed frequency-division multiplexing (FDM). Both forms of 

multiplexing are widely used in telecommunication, and in a neural context both can be 

implemented through multiplicative modulation of population-coded signals.

To multiplex population codes using time division, the activity contributing to each code 

must be modulated relative to a common oscillation, each at a different phase, such that each 

is active at a different time during the oscillation cycle. This is illustrated in Fig. 2a in a 

convergent pathway, where different input populations are active at different phases. 

Selectively recovering the individual signals is straightforward because they are active at 

different times. A simple algorithmic operation is to multiply the combined activity by a 

time-varying gain which is non-zero only when the target input is active and the other inputs 

inactive, and then integrate over time26 (Fig. 2a). As long as the temporal overlap of the 

separate input components is low, the fidelity achieved by this readout is comparable to that 

achieved in the absence of distracting inputs because only the target signal contributes to the 

output.

Implementation of this readout requires periodic modulation of gain in the receiving 

network, phase-locked to the target input. Network oscillations can modulate the gain of 

neuronal responses to external inputs, and synchronised oscillation between a sending and 
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receiving region has previously been proposed as a fundamental mechanism for selectively 

enhancing communication between networks9,27. Periodic modulation of gain across the 

oscillation cycle could occur through modulation of the membrane potential distribution, the 

level of shunting inhibition28 or synaptic noise29, in turn due to the periodic activity of local 

interneuronal populations. Changes in neuromodulatory or GABAergic tone across the 

oscillation cycle may also influence the effective gain for inputs through presynaptic 

modulation of transmission at afferent synapses30. Computational studies confirm that 

periodic input applied to a population of cells can enhance the representation of a target 

input relative to phase-separated distracting input by biasing excitability as a function of the 

phase of the input activity31-33.

While it is intuitive that coherent gain modulation can selectively read out signals that are 

segregated into distinct phases of an oscillation, it is perhaps less obvious that the same 

mechanism can in principle also extract signals in an FDM scheme, allowing selective 

readout of signals that are segregated into different frequency bands26 (Fig. 2b). This is 

possible because approximately sinusoidal gain modulation at one frequency has no effect 

on the average gain experienced by an input modulated sinusoidally at a different frequency, 

since periods of heightened and reduced gain cancel out when averaged over a few cycles. 

Mathematically, sinusoidal gain modulation at one frequency does not affect the average 

gain for inputs whose firing rate is modulated at a different frequency because the two 

modulations are orthogonal under the overlap integral operation that constitutes the readout 

algorithm (Box 2).

Indeed, orthogonality plays a key role in both the TDM and FDM schemes outlined above. 

Both work by reproducing population codes, i.e. static or slowly varying patterns of average 

firing rate distributed across constituent neurons, selectively into specific components of the 

rapidly varying firing rate, but not into other orthogonal components which can hence be 

used as separate communication channels. In TDM the population code is reproduced 

selectively into the spatial pattern of activity at a given phase, but not at other phases. In 

FDM the population code is reproduced selectively into the envelope of fluctuations of the 

firing rate in a specific frequency band, but not in other frequencies. Note that this selective 

reproduction is not a generic feature common to any periodic modulation of activity, but 

rather a consequence of the multiplicative nature of the modulation. For example, in a 

network where oscillatory activity generated additive modulation of firing rates, the 

population code would be equally present in activity at any phase of the oscillation and the 

envelope of firing rate fluctuations at the oscillation frequency would be flat and 

uninformative.

Demultiplexing FDM population codes does not necessarily require knowledge of the phase 

of the target input’s oscillation. It is sufficient to evaluate the spatial pattern of firing rate 

oscillation amplitude at the appropriate frequency34. This readout algorithm can be 

implemented by a pathway that performs band pass filtering followed by rectification (Fig. 

2c). We implemented this in a biophysical model34 where the band-pass filtering was 

performed by a network-level resonance35 in a feed-forward inhibitory population and 

rectification by the spike threshold. Sub-threshold resonance in individual neurons is an 
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alternative biophysical mechanism which could implement the required band-pass 

filtering22,34,36.

Beyond time and frequency division

Much recent interest has focused on cross-frequency coupling (CFC) between 

oscillations37,19,38, and in particular on task dependent modulation of phase – phase CFC, 

i.e. systematic relationships between the phase of oscillations in different frequency bands, 

and phase – amplitude CFC, in which the amplitude of a high frequency oscillation is 

modulated by the phase of a low frequency oscillation. We will touch only briefly on what 

role CFC may play in a multiplexing framework employing modulated population codes 

because current data under-constrain which of different possible functions it may subserve. 

Phase – phase CFC seems most interpretable in a time-division framework in which 

channels are created by segregating activity with respect to the phase of multiple oscillations 

at different frequencies. Phase – amplitude CFC has possible interpretations in pure time-

division, pure frequency-division, or in mixed multiplexing schemes utilising both time and 

frequency division principles. In pure time division, where separate channels are segregated 

by phase relative to a low frequency oscillation, a concurrent higher frequency oscillation 

could help segregate activity contributing to each channel if each is active on a separate 

cycle, as proposed by the ‘theta – gamma’ code16,20 discussed further below. In a pure 

frequency division scheme, nesting of a high frequency oscillation within a lower frequency 

oscillation could be used to simultaneously reproduce a population code into both frequency 

bands34. Finally, in a multiplexing scheme combining time and frequency division 

principles, higher frequency oscillations could create frequency division sub-channels within 

time division channels segregated by the phase of a low frequency oscillation.

A more radical departure from the use of TDM or FDM principles is proposed by the 

influential communication through coherence (CTC) hypothesis9. CTC proposes that 

selective communication is achieved by coherence between oscillatory modulation of 

activity in a sending region and modulation of neuronal excitability in a receiving region, 

and conversely that communication is blocked by incoherence between such oscillations. 

(Because oscillations in the brain are typically irregular, incoherence does not require them 

to be separated in frequency.) There is substantial common ground between CTC and the 

selective communication framework outlined above; selective readout by gain modulation 

coherent with a target input is central to CTC, and although the nature of coding is less 

explicitly defined, a division of labour between spatial patterns of activity – used to encode 

information – and oscillatory modulation – used to define the communication channel – 

appears consistent with the CTC hypothesis.

However, the form of multiplexing implicitly underlying CTC is fundamentally distinct 

from either TDM or FDM. Consider the situation of a network receiving input from two 

afferent pathways, both oscillating in the same broad frequency band, incoherently with 

each other (Fig. 3a). The CTC hypothesis asserts that the receiving network can selectively 

respond to one of these inputs by oscillating coherently with it. However, the two inputs are 

neither consistently non-overlapping in time as in TDM, nor are they well segregated by 

frequency, as in FDM. This raises the questions whether CTC (henceforth used to describe 
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arrangements in which separate channels are defined by incoherent oscillations in the same 

broad frequency band) can actually work in principle (i.e. can accurate selective 

communication be achieved?), and if so what form of multiplexing it represents.

A partial answer to the first question is suggested by a recent computational study in which 

we evaluated how the structure of oscillatory activity across a set of converging input 

pathways determined the accuracy with which a ‘target’ input could be selectively read out 

by coherent gain modulation in the receiving network26. The structure of the model was as 

illustrated in Fig. 2, and the target and distracting inputs were either segregated using TDM 

or FDM, or oscillated incoherently in the same frequency band. The rate of information 

transmission was substantially reduced in the latter case because any pattern of gain 

modulation in the receiving network that was strongly driven by the target input incurred a 

substantial fluctuating drive from the distracting inputs as they drifted in and out of phase 

with the target (Fig. 3a). CTC only performed comparably with TDM or FDM multiplexing 

schemes in low firing rate regimes where stochastic spiking of individual neurons became a 

more significant source of noise than random fluctuations in overlap between the target and 

distracting inputs. Although we think it unlikely that mammalian brains operate in a firing 

rate regime where CTC is comparably efficient to schemes using TDM or FDM (see ref 26 

for a quantitative discussion), this question can ultimately only be resolved with respect to a 

detailed quantitative picture of communication in specific systems.

With respect to the form of multiplexing underlying the CTC hypothesis, the closest analogy 

is with a scheme know as code division multiple access (CDMA, ref, 39) used in digital 

telecommunication (see diagram; Fig 3b). In both the CTC hypothesis and CDMA the signal 

is modulated with a broadband time series – an irregular oscillation in the former case and a 

pseudorandom noise (PN) sequence in the latter. In both cases the modulations used by 

different channels overlap in time and frequency and are not coordinated with each other. As 

the PN sequences used to modulate different CDMA channels are not strictly orthogonal, 

some interference occurs between channels. However, despite this drawback, CDMA finds 

widespread use in wireless communication, in part due to the advantage that different 

sources do not need to be synchronised with each other as in time division schemes. 

However, this analogy risks overstating the practicality of CTC as a multiplexing scheme. 

Pseudorandom noise is not the same as broadband oscillation; while sequential bits of a PN 

sequence are uncorrelated, the phase of even a broadband oscillation is correlated over 

multiple cycles. Such autocorrelation in the modulations will reduce how quickly distracting 

signals can be ‘averaged out’ from a target signal, and hence, compared with pseudorandom 

noise, broadband oscillations appear poorly suited for use as a modulation in spread-

spectrum multiplexing.

In summary, oscillatory modulation of population-coded signals can in principle implement 

multiplexing and hence selective communication using time- or frequency- division 

principles, or a form of spread spectrum multiplexing using irregular oscillations. These 

different approaches may offer distinct trade-offs between communication accuracy and 

implementational complexity. TDM in principle offers zero crosstalk between channels if 

activity contributing to each is completely non-overlapping in time. Some crosstalk is 

inevitable in FDM because Poisson-like activity fluctuations that occur during network 
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states with irregular neuronal activity contain some power at all frequencies. However 

network architectures implementing FDM may be less complex because networks 

transmitting into different frequency channels do not need to be synchronised with each 

other, and selective readout can be implemented by simple filtering networks using resonant 

dynamics. Spread-spectrum multiplexing using irregular oscillations in the same frequency 

band appears to offer substantially worse signal to noise performance than TDM or FDM 

except in low firing rate regimes. Although separate sending networks do not need to be 

synchronised, unlike in FDM some external mechanism is still required to synchronise the 

receiving network with a target input.

Time-division multiplexing in the hippocampal system

We now turn to experimental evidence suggesting the use of oscillatory multiplexing. We 

focus on four oscillatory activity patterns observed in specific regions and behavioural 

states: (i) theta oscillations during navigation in rodent hippocampus, (ii) theta oscillations in 

primate cortex during working memory tasks, (iii) beta oscillations in cortico – basal ganglia 

circuits during action planning, and (iv) gamma oscillations in the early visual cortex in 

spatial attention tasks. The first is a system where the interaction between rate coding and 

oscillatory modulation of activity is uniquely well characterised and is highly suggestive of 

TDM. The second and third offer striking examples of task-dependent changes in the 

amplitude of oscillatory activity in narrow frequency bands across distributed networks, a 

possible signature of FDM-based selective communication. The fourth illustrates changes in 

inter-regional synchronisation of oscillation with apparently minimal changes in other 

aspects of oscillatory activity.

In a system using modulated population codes to implement multiplexing we expect to see 

that spatial patterns of firing rate are important carriers of information, but vary on a slow 

timescale relative to approximately multiplicative oscillatory modulation of activity. 

Additionally, because oscillatory modulation of firing rates acts as a carrier for information, 

the achievable signal to noise ratio strongly depends on the strength of modulation26,34, with 

weak modulations resulting in the signal being drowned out by noise from stochastic 

spiking. Thus, efficient use of this coding scheme calls for strong oscillatory modulation of 

activity relative to the average firing rate.

Neural coding during theta oscillations in dorsal hippocampus appears consistent with these 

criteria. Firing rates vary systematically with the spatial position of the animal40-44 (Fig. 4a), 

and with non-spatial behavioural variables45-47. Unit activity is strongly modulated as a 

function of theta phase, with the firing rate of many units dropping close to zero across a 

substantial portion of each cycle42-44,48. If the oscillatory modulation is approximately 

multiplicative, there should be an approximately linear relationship between the average 

firing rate of a cell across the theta cycle and the amplitude of modulation of its firing rate 

on that cycle. Although we are not aware of a systematic characterisation of this 

relationship, the activity of example units indicates that the difference in instantaneous firing 

rates between phases of maximum and minimum activity is substantially larger when the 

cycle average firing rate is high compared with when it is low42-44,49 (Fig. 4b), consistent 

with prediction. Hippocampal activity also appears to respect a separation of timescales 
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between changes in firing rate due to changes in the encoded variables and oscillatory 

modulation of activity. This is suggested by the activity of place units on linear tracks, 

where the increase and decrease of firing rates as the animal traverses a place field takes 

place over a duration of order 5 – 15 theta cycles (Fig. 4b), depending on place field size and 

the animal’s velocity42,43,48. Finally, the phase of peak firing of individual units precesses to 

earlier phases as the animal traverses the place field, such that distinct populations of cells 

are active at different times during the cycle48,42,43,50,44,49 (Fig. 4c). This phenomenon is 

often termed sequence compression42, as ensembles of place cells representing locations 

visited over a timescale of several seconds are active in a temporally compressed sequence 

on each theta cycle. Although sequence compression is best characterised in spatial 

navigation, sequential activation of units across the theta cycle has also been reported during 

non-spatial behaviours51,52.

Time division multiplexing by theta oscillation phase has been proposed as a general 

mechanism for representing information with a naturally sequential or multipartite structure, 

including sequences of events forming episodic memories21 and lists of items stored in short 

term memory16. Cross-frequency interactions may enhance the segregation of different 

items in a ‘theta-gamma’ code in which different neuronal ensembles spike on successive 

cycles of a gamma oscillation, with the sequence of items in the list repeated periodically at 

a slower theta frequency20. Theta phase segregation requires readout mechanisms that can 

selectively or differentially process spike activity dependent on its phase. As described 

above, periodic gain modulation in a downstream network is an effective selective readout 

algorithm for time-division multiplexed signals, and has been proposed in this context31. 

However, rather than supporting selective readout into patterns of activity in downstream 

populations, an important function of theta phase segregation may be to permit selective 

readout of activity at specific phases into patterns of synaptic plasticity21,42,53. Hippocampal 

neurons in vitro exhibit spike-timing dependent plasticity54,55 (STDP), whereby a 

presynaptic spike arriving shortly before a post synaptic spikes results in synaptic 

potentiation, but arriving shortly after leads to depression. Such a plasticity rule is thought to 

potentiate synapses from cells spiking at a given theta phase onto cells spiking at a 

somewhat later phase. STDP between sequentially activated cell assemblies is therefore a 

potentially powerful mechanism for the storage of navigation trajectories into directional 

patterns of connectivity between place cells, and potentially for storage of sequences of non-

spatial events in episodic memory21.

A separate hypothesised role of hippocampal theta in learning and memory is the creation of 

separate encoding and retrieval phases during the oscillation cycle, to prevent the retrieval of 

previously stored associations from interfering with the encoding of new memories56. This 

proposal stems from observations that the strength of input to the CA1 network from both 

the CA3 region and the entorhinal cortex is modulated by the theta cycle, with peak input 

from the two regions occurring at opposite phases. Additionally, both the strength and the 

sign of plasticity at synapses made by Schaffer collaterals from CA3 to CA1 pyramidal cells 

are modulated as a function of the phase of the theta oscillation57-59. Briefly stated, the idea 

is that during the encoding phase strong input from entorhinal cortex to CA1 and CA3 drives 

activity representing new external events in these networks, and heightened synaptic 
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plasticity at the Schaffer collateral synapses stores associations between events. Then, 

during the retrieval phase, weaker entorhinal input and stronger transmission from CA3 to 

CA1 permits the recall of previously stored associations. TDM plays a dual role in this 

proposal, supporting both selective communication – anti-phase modulation of entorhinal 

cortex and CA3 input allows CA1 to respond alternately to each in the encoding and recall 

phases – but also selective readout into patterns of synaptic weight through modulation of 

the gain for plasticity at Schaffer collateral synapses.

These different proposals emphasise some important points about multiplexed neural 

coding. Firstly, although we argue that multiplexing plays a necessary role in selective 

oscillatory communication, the converse is not true; there are certainly applications for 

multiplexed coding that are not selective communication in the sense of controlling signal 

flow between different regions. There are strong parallels for this in telecommunication 

where for example, multiplexing plays an essential role in allowing a base station to 

communicate selectively with multiple mobile phones, but additionally between a single 

phone and base station further multiplexing is used to create separate information channels 

for voice, data and other information streams. Secondly, while selective readout or 

demultiplexing is an essential complement to multiplexed coding, readout may be into 

patterns of modification of synaptic weights rather than activity in downstream populations. 

Thirdly, mechanisms for selective readout into downstream activity and into synaptic weight 

changes may be similar at an algorithmic level. Periodic modulation of the gain of neurons 

input – output transfer function can selectively readout multiplicatively modulated 

population codes into activity, while periodic modulation of the gain for plasticity can 

implement selective readout into patterns of synaptic modification.

Oscillation bursts: A signature of FDM?

Some of the most striking circumstantial evidence implicating oscillations in selective 

communication comes from evidence of transient bursts of oscillation, occurring 

synchronously across distributed networks and correlated with specific behavioural events. 

One such example occurs in working memory tasks in which the subject is presented with 

either a single stimulus or sequence of stimuli followed after a delay by a probe stimulus, 

and must indicate whether the probe matches the original stimulus. In humans performing 

such tasks, the amplitude of theta frequency oscillatory activity measured with intracranial 

electroencephalography (iEEG), changes dramatically during the trial in local regions of 

cortex, most prominently in occipital and parietal regions60,61. Many sites show an abrupt 

increase in theta power at trial onset that is sustained until it stops abruptly at trial offset. 

Trial to trial variability in amplitude changes in temporal and frontal regions predicted 

behavioural performance62, implying a functional role for the oscillations. Recordings in 

area V4 of macaque cortex during delayed match to sample tasks show a transient burst of 

theta frequency oscillation in the local field potential (LFP) during the delay period, 

accompanied by phase locking of spikes to the LFP (ref. 63,64) (Fig. 4e). Cortical theta 

oscillations associated with working memory in humans do not appear to form a single 

synchronised network as many sites oscillate independently61. However recordings in 

macaque showed enhanced phase synchronisation between V4 and lateral prefrontal cortex 

(LPFC) during the delay period, which was stronger on correct than incorrect trials64, 
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indicating that in some cases oscillatory activity is synchronised between spatially separated 

sites, and implying that this coupling is relevant to task performance.

Another striking example of transient task-dependent oscillation is seen in the beta and low 

gamma frequency range in primate motor, premotor, and somatosensory cortex65-69. Short 

bursts of oscillation lasting from a few cycles to several seconds occur preferentially in task 

periods65,66, and are more prominent in free movement and tasks requiring fine motor 

control compared with repetitive motor movements65. In tasks where the subject can prepare 

an action but must wait for a cue to initiate it, beta oscillations occur strongly in the delay 

period but are greatly reduced during movement66,68,69, suggesting involvement in motor 

planning. Neuronal activity is modulated as a function of the phase of LFP oscillations, with 

deep modulation evident in some example units65,67,69. Evaluation of spike – field 

coherence between premotor and parietal cortex in a visually guided reaching task revealed 

transient oscillatory synchronisation lasting approximately 300 ms in a narrow ~15 Hz 

frequency band coinciding with search array onset, suggesting that bursts of beta oscillation 

observed in motor and premotor regions are part of larger patterns of synchronous 

oscillation. Consistent with this, transient bursts of beta oscillation occur in primate striatum 

during behaviour70, though it is unclear whether these are coherent with cortical beta 

oscillations. Striatal beta oscillations were recently shown to occur simultaneously – and 

synchronised – with bursts of oscillation across multiple basal ganglia nuclei when rats used 

a cue to guide subsequent behaviour71.

Transient bursts of oscillatory activity have a natural interpretation in an FDM framework, 

because by modulating activity at a frequency where it was previously unmodulated they 

effectively transmit the network’s population code into a channel where it was not 

previously represented. Transient bursts of oscillation could therefore be used to selectively 

propagate information to those downstream networks with appropriate filtering properties34. 

Similar principles have previously been suggested to support selective communication 

between individual neurons using spike bursts (Box 3). Additionally, by periodically 

modulating excitability, oscillation bursts may affect the filtering performed by a network on 

its inputs. A set of connected networks engaging in a burst of coherent oscillation could 

therefore enhance effective connectivity amongst those participating in the oscillation 

relative to other inputs that do not share the modulation. Such a transient enhancement of 

effective connectivity between oscillating ensembles could support a proposed role of beta 

oscillations in stabilising the representation of selected behavioural programs71,72.

We see changes in oscillation amplitude as fitting less neatly into a TDM framework, where 

the most natural way to control interactions would be to manipulate the relative phase of 

activity of cell ensembles. This said, a change in amplitude by definition implies a change in 

the distribution of spikes as a function of oscillation phase, and hence changes in amplitude 

could in principle play a role in systems working purely on time division principles or 

employing a multiplexing scheme mixing time and frequency division.
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Gamma coherence in visual attention

Finally we turn to two recent studies73,74 characterising oscillatory synchronisation between 

V1 and V4 during visual spatial attention tasks in macaque (Fig. 4f,g). In both tasks, two 

visual stimuli were presented simultaneously, located such that they were within the 

receptive fields of separate populations of V1 neurons but both within the larger receptive 

field of a population of V4 neurons. The subject was cued to pay attention to one of the two 

stimuli, and had to make a perceptual discrimination about the attended stimulus while 

ignoring the distracting stimulus. Using either iEEG73 or LFP74 recordings, both studies 

observed striking increases in synchronisation between the region of V1 representing the 

attended stimulus and V4, selectively in a 50 – 80 Hz gamma frequency range. The locus of 

attention did not substantially affect the amplitude of gamma oscillations in either V1 

region, and although one study reported a slight increase in the frequency of gamma 

oscillations in the V1 region representing the attended stimulus73, oscillations in both V1 

regions still overlapped substantially in the frequency domain.

The oscillations in the two V1 regions were not sufficiently segregated in the frequency 

domain to suggest FDM; nor was there evidence of a consistent phase offset as required by 

TDM. We see several possible to interpretations of these findings. The coherence changes 

could be a signature of selective communication using spread spectrum multiplexing 

principles employing broadband modulation of population-coded signals in the two V1 

regions. As discussed above, we think there are genuine questions about whether this could 

work efficiently from a signal to noise perspective, but it is the most straightforward 

functional interpretation of the observed coherence changes. A second possibility is that the 

changes in coherence play a role in controlling effective connectivity, but the multiplexing 

scheme used is very different from that proposed above and does not employ modulated 

population codes to represent information. A third possibility is that the incomplete picture 

of network activity currently available obscures important aspects of the network state, such 

as, for example, a structured rather than random phase relationship between the two V1 

regions. This is suggested by observations of gamma phase reset across V1 and V4 by a ~3 

Hz oscillation associated with microsaccades75, and systematic modulation of V1 – V4 

coherence with the phase of this oscillation73. An additional fact that may be relevant is that 

direct projections from V1 to V4 are sparse76, particularly in the peripheral visual field 

relevant to these studies77. This raises the possibility that a change in oscillatory activity in 

an interposed area, for example an increase in gamma amplitude in a network representing 

only the attended stimulus, could play an important role. Finally, there remains the 

possibility that the observed changes in phase synchronisation could be a consequence of 

changes in effective connectivity implemented through some other non-oscillatory 

mechanisms rather than playing a functional role in controlling signal flow.

Future directions

We conclude by highlighting areas where emerging experimental techniques will help 

clarify the role of network oscillations in neuronal communication. The rapidly increasing 

size of neural ensembles that can be recorded simultaneously78 will enable the interaction 

between oscillatory dynamics and population coding to be characterised in unprecedented 
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detail, and hence increasingly constrain how oscillations may multiplex neural signals. Of 

particular relevance to the multiplexing proposed here is whether modulations produced by 

oscillatory dynamics interact in an approximately multiplicative fashion with rate coding, 

and whether modulation is deep enough relative to average firing rates to achieve high 

signal to noise levels. Improved characterisation of how spatio-temporal structures of neural 

oscillation map onto convergent and divergent anatomical pathways should clarify whether 

and how different multiplexing principles are used to create channels for selective 

communication.

Moving beyond correlation, a necessary step is to evaluate the effect of manipulations of 

oscillatory activity on signal propagation and brain function. The use of temporally 

structured stimulation to either entrain on-going oscillations79,80 or artificially induce 

periodic modulation at a given frequency81 offers a powerful approach to manipulating 

oscillatory activity. Artificially induced oscillations may be used to test how periodic 

modulation of activity in a given network affects the response in target regions. Optogenetic 

fMRI82 may be particularly powerful in this context as the haemodynamic response can be 

evaluated in parallel across many target regions, potentially revealing differences in filtering 

properties of different projections from a given network. Entrainment of on-going 

oscillatory activity in behaving animals or human subjects offers the possibility of directly 

manipulating inter-regional synchronisation or the relative phase of oscillation to determine 

effects on function. A pioneering recent study manipulated theta oscillations during a visual 

working memory task using dual site transcranial alternating current stimulation over frontal 

and parietal cortex83. In-phase stimulation significantly reduced reaction times while anti-

phase stimulation increased them, providing evidence for a causal role of theta band 

synchronisation in communication between these areas.

Through detailed characterisation and targeted perturbation of oscillatory activity, we expect 

rapid progress in identifying the coding principles and algorithmic operations through which 

oscillatory network dynamics influence neuronal communication.
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Glossary

Effective 
connectivity

Following ref. 84 we use the term effective connectivity to describe ‘the 

influence one neural system exerts over another’.

Local field 
potential

The voltage signal recorded from extracellular space in neural tissue. The 

lower frequency components (<250 Hz) are thought primarily to reflect 

synaptic activity within a few hundred micrometres of the electrode85.

Amplitude A measure of how much a periodic signal varies over the course of its 

cycle. Amplitude can be quantified in various ways including peak-to-
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peak amplitude – the difference between the highest and lowest value 

reached by the signal during the cycle.

Integrate and 
fire neuron

Simplified neuron models used widely in network simulations in which 

the biophysical processes generating the action potential are not 

explicitly represented. Instead, the neuron is said to have spiked 

whenever the membrane potential crosses a threshold value.

Poisson 
neuron

A stochastic neuron model in which the spike train is generated by a 

Poisson process, with spike probability specified entirely by the firing 

rate, which is in general a function of time.

Aliasing When a signal is sampled at a rate that is too slow to capture its 

variation, the contribution of high frequency components to the sampled 

values is ambiguous, leading to noise when the signal is reconstructed 

from the samples.

Coherence A statistic used to evaluate the similarity of two signals as a function of 

frequency. Coherence at a given frequency is affected by both the 

covariance of the amplitude and the consistency of the phase relationship 

between the signals at that frequency. The absolute value of coherence 

measures involving spike trains strongly depends on the firing rate of the 

units used in the analysis86-88. This dependence complicates relating 

such measures to underlying variables of interest such as the consistency 

of phase relationship between oscillations in two regions. Alternative 

measures of phase synchronisation have recently been developed which 

overcome many of the limitations of coherence when applied to spike 

trains88.
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Box 1

Network Oscillations

Network oscillations are states in which the activity of a population of neurons is 

periodically synchronised, i.e. in which the spike probability of individual neurons 

exhibit periodic auto- and cross- correlations. Network oscillations have been an active 

area of research since Hans Berger’s seminal 1929 observation of oscillations in the 

electrical potential of the scalp over occipital cortex in human subjects with their eyes 

closed. He termed this large amplitude ~10 Hz activity ‘alpha’ oscillations, and 

distinguished it from higher frequency, smaller amplitude ‘beta’ oscillations observed 

when subjects opened their eyes. This nomenclature for classifying neural oscillations by 

their frequency survives to this day and has been expanded to include delta (1 – 4 Hz), 

theta (4 – 10 Hz), beta (10 – 30) and gamma (30 – 80 Hz) bands. Network oscillations 

have emerged as a major field of research in contemporary neuroscience as it has become 

clear that periodic synchronisation is a prominent feature of both spontaneous brain 

activity and that evoked by sensory stimulation, and that changing patterns of network 

oscillation are often tightly correlated with behaviour or features of sensory stimuli.

Oscillatory synchronisation of neurons can arise through diverse mechanisms, recently 

reviewed in ref 2. One important distinction is between spike-to-spike synchrony and 

sparsely synchronised oscillation2,3. In spike-to-spike synchronous states individual 

neurons spike regularly, and are brought into synchrony via chemical and/or electrical 

synapses. Whether coupled neurons synchronise in this way depends on how activity of 

each neuron affects the phase of other neurons it is coupled to. This can be characterised 

by their phase response curves (PRCs), which in turn depend on their synaptic and 

intrinsic neuronal properties. Any synchronising effect of the synaptic coupling must 

overcome differences in the intrinsic spiking frequency of the individual neurons and the 

desynchronising effects of noise.

By contrast, in sparsely synchronised states individual neurons spike irregularly, but the 

oscillation emerges in the aggregate firing rate of the entire neuronal population. 

Oscillatory dynamics at the network level occur as a result of delayed negative feedback, 

which can arise either through self-inhibition of an exclusively inhibitory neuronal 

population, or through reciprocal innervation of excitatory and inhibitory sub-

populations3. This mechanism can be understood by considering the effect of a random 

fluctuation in excitatory drive, which transiently raises firing rates. In a network with 

strong delayed negative feedback this will lead to a subsequent undershoot in firing rates 

below equilibrium. This will in turn lead to an overshoot of firing because of 

disinhibition, leading to a population oscillation. Depending on the strength and delay of 

the negative feedback, these dynamics can give rise either to a self-sustaining oscillation, 

or resonance at a particular frequency34,35. The firing rate of neurons participating in 

sparsely synchronised oscillations can be highly heterogeneous allowing firing rate 

population coding to coexist with oscillatory activity.
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Box 2

Orthogonality

Two functions f(t) and g(t) are orthogonal over the interval a ≤ t ≤ b if their overlap 

integral is zero, i.e. if they satisfy the following equation:

We suggest that orthogonality plays an important role in the hypothesis that effective 

connectivity between two regions can be selectively enhanced by modulating neuronal 

gain in one region coherent with modulation of firing rates in the other region. The 

simplest model of gain modulation is to treat a change in gain as a change in the slope of 

a linear input – output function. In such a model, the effect of a temporal pattern of gain 

modulation g(t) on the average gain for an input with firing rate modulation f(t) is given 

by the overlap integral of f and g. To selectively enhance the average gain for a ‘target’ 

input relative to that for other distracting inputs, a receiving network must therefore 

generate a pattern of gain modulation that has a large overlap with the modulation of the 

target input but is as close as possible to orthogonal to those of the distracting inputs. 

This is straightforward where different inputs are segregated in time or frequency as 

illustrated in Fig. 2, but not for inputs oscillating incoherently in the same frequency 

band.
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Box 3

Multiplexing in single spike trains

Spike bursts in individual neurons have been proposed to support selective 

communication between individual neurons by interacting with subthreshold 

resonances22,89, such that a burst at a given frequency elicits spikes only in those 

downstream neurons with an appropriate resonance frequency. This form of multiplexing 

is conceptually similar to FDM of population codes discussed in the main text as in both 

cases the amplitude of fluctuation in a spike train at given frequency acts as a channel for 

communication, the key difference being whether it is the spike train of a single neuron 

or of a population that is modulated. Selective communication by bursts and sub-

threshold resonance is an example of amplitude to firing rate conversion implemented 

through bandpass filtering by sub-threshold resonance followed by rectification by the 

spike threshold. Multiplexing at the scale of individual neuron spike trains and 

population activity patterns are not mutually exclusive. However, selective 

communication by bursts is presumably restricted to regimes in which the strength of 

individual synapses is large enough, and background synaptic input low enough, that a 

burst in a single neuron produces a change in the frequency content of the input to 

downstream neurons detectable above noise from background synaptic activity.
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Figure 1. Multiplicative modulation from oscillatory dynamics

(a) Schematic illustrating a network model consisting of an excitatory (E) and an inhibitory 

(I) population of integrate and fire neurons, recurrently and reciprocally connected. A time 

varying stimulus (b) is encoded by the activity of the excitatory population as a firing rate 

population code with bell shaped tuning curves, such that as the value of the stimulus 

changes a localised bump of activity moves across the population (c). The stimulus tuning is 

inherited from spatially patterned external input, i.e. the firing rate of external input received 

by excitatory cells varies across the population as a bell shaped curve (a – blue trace), the 

position of which changes with the value of the stimulus (a - blue arrows). The network 

transitions from an asynchronous to a sparsely synchronised state3 (Box 1) and back again 

as a result of a change in recurrent synaptic connection strengths, which could occur for 

example due to altered neuromodulation (yellow bar indicates period with modified synaptic 

weights). The network oscillation produces an approximately multiplicative modulation of 

the firing rate population code. This can be seen from the close similarity of the simulated 

activity in (c) to that of a population of Poisson neurons (units with uncorrelated inter-spike 

intervals whose firing probability is determined entirely by a time varying instantaneous 

firing rate) shown in (d). The firing probability of each unit was generated by a bell-shaped 

spatial pattern of activity (blue curve), whose position varied with the stimulus, 

multiplicatively modulated by a rapidly oscillating ‘carrier’ signal during the oscillating 

state (red curve). Network model is the input network from ref 34.
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Figure 2. Selective communication using time and frequency division multiplexing

(a, b) Schematic showing how selective communication can be achieved through coherence 

between oscillations in a sending (input) network and periodic gain modulation in a 

receiving region. A set of three input networks encode separate stimuli, in this case the 

orientation of a bar, as a firing rate population code. Each input network consists of a 

population of Poisson neurons whose firing rate is given by a bell shaped tuning curve with 

respect to stimulus orientation, multiplied by an oscillatory modulation that is common to all 

neurons in a given input network (as in figure 1d). For each input network we show the 
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spatio-temporal pattern of activity over 200 ms (box), the average firing rate of each neuron 

(curve left of box), and the oscillatory modulation (curve below box). These input networks 

converge to provide a combined input to a receiving network. The information encoded in 

one input network (the ‘target’ input shown in red), can be selectively routed through the 

convergent pathway by periodic modulation of the gain of neurons in the receiving network 

coherent with the oscillation of the target input (gain modulation input is shown in blue, the 

time course of gain modulation shown by the blue trace). The receiving network was not 

modelled biophysically but rather consisted of units with a linear input – output function 

whose slope was determined by the gain modulation input. The output of the receiving 

network is integrated over time to produce a spatial pattern of activity that reflects only the 

activity of the target input, from which the target stimulus can be accurately estimated. In 

panel (a) time division principles are used to segregate the activity of the different input 

pathways; each input is modulated at a different phase relative to a single oscillation. In 

panel (b) frequency division is used to segregate the different inputs; one distracting input 

oscillates in a frequency band that does not overlap with the target input, while the other 

distracting input is asynchronous and hence only transmits its population code into the 

average firing rate or 0 Hz channel. Note that the gain modulation in the receiving network 

takes both positive and negative values. Positive and negative net gain can be implemented 

by an excitatory pathway balanced by feed-forward inhibition. Adapted from ref 26. (c) An 

alternative method to achieve selective readout of frequency-division multiplexed signals. A 

time varying signal (‘encoded signal’ on figure) is encoded into the firing rate of an input 

population. Input activity is multiplicatively modulated during a transient burst of oscillatory 

activity (indicated by yellow bar), reproducing the encoded signal into the amplitude 

envelope of firing rate fluctuations at the oscillation frequency. By bandpass-filtering and 

then rectifying the input activity, the encoded signal can be selectively recovered when the 

input activity is modulated at the appropriate frequency but otherwise ignored, allowing 

bursts of oscillatory activity to propagate information selectively. A biophysical model 

implementing selective communication using this principle is detailed in ref 34.
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Figure 3. Communication through coherence (CTC) as spread spectrum multiplexing

(a) Two networks, A & B, oscillating incoherently in the same broad frequency band 

provide convergent input to a receiving network. Applying gain modulation to units in the 

receiving network coherent with input A can increase the average gain for that input relative 

to input B. However, this is achieved at the cost of fluctuations in effective gain for input B 

as it drifts in and out of phase with A (effective gain plotted in the right panel is the overlap 

of each input’s oscillation with the gain modulation waveform, smoothed with a Gaussian of 

standard deviation one oscillation period). These fluctuations act as a source of noise and 

degrade the accuracy of selective communication when compared with situations where 

different inputs are segregated by time- or frequency- division principles. (B) Code division 

multiple access (CDMA), a spread spectrum multiplexing scheme used in 

telecommunication, provides a useful analogy with multiplexing in the CTC hypothesis. 

Two digital signals, A and B, are modulated by different binary pseudorandom noise (PN) 

sequences known as spreading codes. The rate of the PN sequence is much higher than the 

rate of the signal; in this example each bit of the signal corresponds to 16 bits of the PN 

sequence. Modulation can be achieved simply by multiplying the signal with the PN code if 

true and false binary values are treated as 1 and −1 respectively. The resulting spread signals 

are combined for transmission through a single physical communication channel. For clarity 

we show simply the sum of the digital spread signals, though in practical applications the 

digital signals are typically encoded into modulation of an analogue carrier wave. A receiver 
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can selectively recover one of the component signals by correlating the combined signal 

with the appropriate PN sequence.
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Figure 4. Network oscillations in behavioural tasks

(a – c) Activity during theta oscillations in rodent hippocampus appears consistent with time 

division multiplexing of firing rate population codes. Data shown is from recordings in the 

CA1 region during runs in a single direction on a linear track. (a) Normalised firing rates of 

~1,000 neurons as a function of the animal’s position, sorted along the Y-axis by the 

position of peak firing. The firing rate of individual cells is tightly tuned for the animal’s 

position on the track and the distribution of firing rates across the population of cells forms a 

population code for position. (b) Spike count for a single cell as a function of theta phase 
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constructed from multiple runs through the cell’s place field. Spikes were aligned by theta 

phase and number of theta cycle relative to the time at which the rat passed a given position 

near the centre of the place field. Note the slow change in average firing rate relative to the 

rapid oscillatory modulation consistent with a separation of timescales between variation of 

the encoded variable and the oscillatory modulation. Note also the strong correlation across 

cycles between average firing rate and amplitude of firing rate modulation, consistent with 

approximately multiplicative modulation of activity by the network oscillation. (c) Activity 

of two cells as a function of position and theta phase. The two cells are active at largely non-

overlapping phases of theta, as required for time division multiplexing, and both precess to 

earlier phases as the animal traverses the place field. (d - e) Bursts of network oscillation are 

a possible signature of selective communication using frequency division principles (see 

main text). One striking example of an oscillation occurring at a specific point during 

behaviour has been reported in area V4 in a working memory task in macaque. (d) Sequence 

of events during each trial of the task; after visual fixation on a central target, monkeys were 

presented with a sample stimulus followed, after a delay period, by a probe stimulus. If the 

probe stimulus was the same as the sample, the subject could obtain a reward by releasing a 

lever, while if the probe differed from the sample, reward was obtained by withholding the 

response. (e) Local field potential recordings in visual area V4 showed theta frequency 

oscillation selectively during the delay period (top panel). Simultaneously recorded spike 

activity in V4 showed phase locking to the delay period theta oscillations (bottom panel). (f, 

g) Striking changes in gamma band coherence have recently been reported between V1 and 

V4 in visual attention tasks. (f) Two drifting gratings were presented in the peripheral visual 

field while a monkey fixated on a central spot. The stimuli were spaced such that each was 

represented by separate V1 regions but both fell within the receptive field of a single V4 

region. Activity in all three regions was simultaneously monitored using ECoG. The fixation 

target changed colour to indicate which grating should be attended on a given trial. The 

subject had to detect a subtle change in the shape of the attended target while ignoring any 

change in the distracting stimulus. (g) Though both attended and unattended target induced 

oscillations of comparable amplitude in a 50 – 80 Hz gamma band in their respective V1 

regions (not shown), coherence was dramatically enhanced between the region of V1 

representing the attended stimulus and V4. These findings have been interpreted in the CTC 

framework as a mechanism for selectively routing information from the attended V1 region 

to V4. The observations appear inconsistent with either time- or frequency- division 

multiplexing as the oscillations in the two V1 regions overlap substantially in frequency and 

do not have a consistent phase offset. See main text for further discussion. Adapted from 

references; a,c 49, b 42, d,e 63, f,g 73.
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